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Some Anisotropic Viscoelastic Green Functions∗

Elie Bretin† Abdul Wahab†

February 19, 2011

Abstract

In this paper, we compute the closed form expressions of elastody-
namic Green functions for three different viscoelastic media with simple
type of anisotropy. We follow Burridge et al. [Proc. Royal Soc. of London.
440(1910): (1993)] to express unknown Green function in terms of three
scalar functions φi, by using the spectral decomposition of the Christoffel
tensor associated with the medium. The problem of computing Green
function is, thus reduced to the resolution of three scalar wave equations
satisfied by φi, and subsequent equations with φi as source terms. To
describe viscosity effects, we choose an empirical power law model which
becomes well known Voigt model for quadratic frequency losses.

Keywords: Green Function, Viscoelastic Media, Anisotropic Media
MSC 2000: Primary 35A08, 74D99; Secondary 92C55, 74L05.

1 Introduction

Numerous applications in biomedical imaging [6, 14], seismology [2, 22], ex-
ploration geophysics [29, 30], material sciences [4, 15] and engineering sciences
[1, 17, 32] have fueled research and development in theory of elasticity. Elas-
tic properties and attributes have gained interest in the recent decades as a
diagnostic tool for non-invasive imaging [28, 37]. Their high correlation with
the pathology and the underlying structure of soft tissues has inspired many
investigations in biomedical imaging and led to many interesting mathematical
problems [7, 10, 9, 11, 8, 16, 38, 39].

Biological materials are often assumed to be isotropic and inviscid with re-
spect to elastic deformation. However, several recent studies indicate that many
soft tissues exhibit anisotropic and viscoelastic behavior [27, 35, 38, 39, 33, 47].
Sinkus et al. have inferred in [38] that breast tumor tends to be anisotropic,
while Weaver et al. [46] have provided an evidence that even non cancerous
breast tissue is anisotropic. White matter in brain [33] and cortical bones [47]
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also exhibit similar behavior. Moreover, it has been observed that the shear
velocities parallel and orthogonal to the fiber direction in forearm [35] and bi-
ceps [27] are different. This indicates that the skeletal muscles with directional
structure are actually anisotropic. Thus, an assumption of isotropy can lead
to erroneous forward-modelled wave synthetics, while an estimation of viscosity
effects can be very useful in characterization and identification of anomaly [16].

A possible approach to handle viscosity effects on image reconstruction has
been proposed in [18] using stationary phase theorem. It is shown that the ideal
Green function (in an inviscid regime) can be approximated from the viscous
one by solving an ordinary differential equation. Once the ideal Green function
is known one can identify a possible anomaly using imaging algorithms such
as time reversal, back-propagation, Kirchhoff migration or MUSIC [7, 12, 14,
6]. One can also find the elastic moduli of the anomaly using the asymptotic
formalism and reconstructing a certain polarization tensor in the far field [10,
12, 15, 13].

The importance of Green function stems from its role as a tool for the numer-
ical and asymptotic techniques in biomedical imaging. Many inverse problems
involving the estimation and acquisition of elastic parameters become tractable
once the associated Green function is computed [5, 7, 12, 18]. Several attempts
have been made to compute Green functions in purely elastic and/or isotropic
regime. (See e.g. [18, 16, 19, 22, 36, 43, 44, 45] and references therein). How-
ever, it is not possible to give a closed form expression for general anisotropic
Green functions without certain restrictions on the media. In this work, we pro-
vide anisotropic viscoelastic Green function in closed form for three particular
anisotropic media.

The elastodynamic Green function in isotropic media is calculated by sep-
arating wave modes using Helmholtz decomposition of the elastic wavefield
[2, 18, 16]. Unfortunately, this simple approach does not work in anisotropic
media, where three different waves propagate with different phase velocities and
polarization directions [22, 17, 23]. A polarization direction of quasi-longitudinal
wave that differs from that of wave vector, impedes Helmholtz decomposition
to completely separate wave modes [26].

The phase velocities and polarization vectors are the eigenvalues and eigen-
vectors of the Christoffel tensor Γ associated with the medium. So, the wavefield
can always be decomposed using the spectral basis of Γ. Based on this observa-
tion, Burridge et al. [19] proposed a new approach to calculate elastodynamic
Green functions. Their approach consists of finding the eigenvalues and eigen-
vectors of Christoffel tensor Γ(∇x) using the duality between algebraic and
differential objects. Therefore it is possible to express the Green function G in
terms of three scalar functions φi satisfying partial differential equations with
constant coefficients. Thus the problem of computing G reduces to the reso-
lution of three differential equations for φi and of three subsequent equations
(which may or may not be differential equations) with φi as source terms. See
[19] for more details.

Finding the closed form expressions of the eigenvalues of Christoffel tensor
Γ is usually not so trivial because its characteristic equation is a polynomial
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of degree six in the components of its argument vector. However, with some
restrictions on the material, roots of the characteristic equation can be given
[36]. In this article, we consider three different media for which not only the
explicite expressions of the eigenvalues of Γ are known [19, 44], but they are also
quadratic homogeneous forms, in the components of the argument vector. As a
consequence, equations satisfied by φi become scalar wave equations. Following
Burridge et al. [19], we find the viscoelastic Green functions for each medium.
It is important to note that the elastodynamic Green function in a purely elastic
regime, for the media under consideration, are well known [44, 19]. Also, the
expression of the Green function for viscoelastic isotropic medium, which is
computed as a special case, matches the one provided in [18].

It has been shown in [20] that Voigt model is well adopted to describe the
viscosity response of many soft tissues to low frequency excitations. In this
work, we consider a more general model proposed by Szabo and Wu in [40],
which describes an empirical power law behavior of many viscoelastic materials
including human myocardium. This model is based on a time-domain statement
of causality [41, 42] and reduces to Voigt model for the specific case of quadratic
frequency losses.

We provide some mathematical notions, theme and the outlines of the article
in the next section.

2 Mathematical Context and Paper Outlines

2.1 Viscoelastic Wave Equation

Consider an open subset Ω of R3, filled with a homogeneous anisotropic vis-
coelastic material. Let

u(x, t) : Ω× R
+ → R

3

be the displacement field at time t of the material particle at position x ∈ Ω
and ∇xu(x, t) be its gradient.

Under the assumptions of linearity and small perturbations, we define the
order two strain tensor by

ε : (x, t) ∈ Ω× R
+ 7−→ 1

2

(
∇xu+∇xu

T
)
(x, t), (2.1)

where the superscript T indicates a transpose operation.
Let C ∈ L2

s(R
3) and V ∈ L2

s(R
3) be the stiffness and viscosity tensors of

the material respectively. Here L2
s(R

3) is the space of symmetric tensors of
order four. These tensors are assumed to be positive definite, i.e. there exists a
constant δ > 0 such that

(C : ξ) : ξ ≥ δ|ξ|2 and (V : ξ) : ξ ≥ δ|ξ|2, ∀ξ ∈ Ls(R
d),

where Ls(R
3) denotes the space of symmetric tensors of order two.
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The generalized Hooke’s Law [40] for power law media states that the stress
distribution

σ : Ω× R
+ → Ls(R

3)

produced by deformation ε, satisfies:

σ = C : ε+V : A[ε] (2.2)

where A is a causal operator defined as

A[ϕ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(−1)γ/2
∂γ−1ϕ

∂tγ−1
γ is an even integer,

2

π
(γ − 1)!(−1)(γ+1)/2H(t)

tγ
∗t ϕ γ is an odd integer,

− 2

π
Γ(γ) sin(γπ/2)

H(t)

|t|γ ∗t ϕ γ is a non integer.

(2.3)

Note that by convention,

A[u]i = A[ui] and A[ε]ij = A[εij ] 1 ≤ i, j ≤ 3.

Here H(t) is the Heaviside function, Γ is the gamma function and ∗t represents
convolution with respect to variable t. See [3, 21, 40, 41, 42] for comprehensive
details and discussion on fractional attenuation models, causality and the loss
operator A.

The viscoelastic wave equation satisfied by the displacement field u(x, t)
reads now

ρ
∂2u

∂t2
− F = ∇x · σ = ∇x ·

(
C : ε+V : A[ε]

)
,

where F(x, t) is the applied force and ρ is the density (supposed to be constant)
of the material.

Remark 2.1 For quadratic frequency losses, i.e, when γ = 2, operator A re-
duces to a first order time derivative. Therefore, power-law attenuation model
turns out to be the Voigt model in this case.

2.2 Spectral decomposition by Christoffel tensors

We introduce now the Christoffel tensors Γc,Γv : R
3 → Ls(R

3) associated
respectively with C and V defined by:

Γc
ij(n) =

3∑

k,l=1

Ckiljnknj, Γv
ij(n) =

3∑

k,l=1

Vkiljnknj , ∀n ∈ R
3, 1 ≤ i, j ≤ 3.
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Remark that the viscoelastic wave equation can be rewritten in terms of Christof-
fel tensors as :

ρ
∂2u

∂t2
− F = Γc[∇x]u+ Γv[∇x]A[u]. (2.4)

Note that Γc and Γv are symmetric and positive definite as C and V are already
symmetric positive definite.

Let Lc
i be the eigenvalues and Dc

i be the associated eigenvectors of Γc for
i = 1, 2, 3. We define the quantities M c

i and Ec
i by

M c
i = Dc

i ·Dc
i , and Ec

i = (M c
i )

−1Dc
i � Dc

i . (2.5)

As Γc is symmetric, the eigenvectors Dc
i are orthogonal and the spectral

decomposition of the Christoffel tensor Γc can be given as:

Γc =
3∑

i=1

Lc
iE

c
i with I =

3∑

i=1

Ec
i (2.6)

where I ∈ Ls(R
3) is the identity tensor.

Similarly, consider Γv the Christoffel tensor associated with V and define
the quantities Lv

i , D
v
i , M

v
i and Ev

i such as

Γv =

3∑

i=1

Lv
iE

v
i with I =

3∑

i=1

Ev
i . (2.7)

We assume that the tensors Γc and Γv have the same structure in the sense
that the eigenvectors Dc

i and Dv
i are equal. (See Remark 3.3). In the sequel we

use D instead of Dc or Dv and similar for E and M , by abuse of notation.

2.3 Paper Outline

The aim of this work is to compute the elastodynamic Green function G asso-
ciated to viscoelastic wave equation (2.4). More precisely, G is the solution of
the equation

(Γc[∇x]G(x, t) + Γv[∇x]A[G](x, t)) − ρ
∂2G(x, t)

∂t2
= δ(t)δ(x)I, (2.8)

The idea is to use the spectral decomposition of G of the form

G =

3∑

i=1

Ei(∇x)φi =

3∑

i=1

(Di ⊗Di)M
−1
i φi, (2.9)

where φi are three scalar functions satisfying

(Lc
i (∇x)φi + Lv

i (∇x)A[φi])− ρ
∂2φi
∂t2

= δ(t)δ(x) (2.10)

(See Appendix A for more details about this decomposition.)
Therefore, to obtain an expression of G, we need to:
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1- solve three partial differential equations (2.10) in φi

2- subsequent equations
ψi =M−1

i φi (2.11)

3- and calculate second order derivatives of ψi to compute

(Di ⊗Di)ψi

In the following Section, we give simple examples of anisotropic media which
satisfy some restrictive properties and assumptions (see Subsection 3.4) defining
the limits of our approach. In Section 4, we derive the solutions φi of equations
(2.10). In Section 5, we give an explicite resolution of ψi = M−1

i φi and (Di ⊗
Di)ψi. Finally, in the last section, we compute the Green function for three
simple anisotropic media.

3 Some Simple Anisotropic Viscoelastic Media

In this section, we present three viscoelastic media with simple type of anisotropy.
We also describe some important properties of the media and our basic assump-
tions in this article.

Definition 3.1 We will call a tensor c = (cmn) ∈ Ls(R
6) the Voigt represen-

tation of an order four tensor C ∈ L2
s(R

3) if

cmn = cp(i,j)p(k,l) = Cijkl 1 ≤ i, j, k, l ≤ 3

where

p(i, i) = i, p(i, j) = p(j, i), p(2, 3) = 4, p(1, 3) = 5, p(1, 2) = 6.

We will use c and v for the Voigt representations of stiffness tensor C and
viscosity tensor V respectively.

We will let tensors c and v to have a same structure. For each media,
the expressions for Γc, Lc

i(∇x), Dc
i (∇x) and M c

i (∇x) are provided [19, 44].
Throughout this section, µpq will assume the value cpq for c and vpq for v
where the subscripts p, q ∈ {1, 2, · · · , 6}. Moreover, we assume that the axes
of material are identical with the Cartesian coordinate axes e1, e2 and e3 and

∂i =
∂

∂xi
.
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3.1 Medium I

The first medium for which we present a closed form elastodynamic Green func-
tion is an orthorhombic medium with the tensors c and v of the form:




µ11 −µ66 −µ55 0 0 0
−µ66 µ22 −µ44 0 0 0
−µ55 −µ44 µ33 0 0 0
0 0 0 µ44 0 0
0 0 0 0 µ55 0
0 0 0 0 0 µ66




The Christoffel tensor is given by

Γc =



c11∂

2
1 + c66∂

2
2 + c55∂

2
3 0 0

0 c66∂
2
1 + c22∂

2
2 + c44∂

2
3 0

0 0 c55∂
2
1 + c44∂

2
2 + c33∂

2
3




Its eigenvalues Lc
i(∇x) and the associated eigenvectors Dc

i (∇x) are:

Lc
1(∇x) = c11∂

2
1 + c66∂

2
2 + c55∂

2
3

Lc
2(∇x) = c66∂

2
1 + c22∂

2
2 + c44∂

2
3

Lc
3(∇x) = c55∂

2
1 + c44∂

2
2 + c33∂

2
3

Dc
i = ei with M c

i = 1 ∀i = 1, 2, 3

3.2 Medium II

The second medium which we consider is a transversely isotropic medium having
symmetry axis along e3 and defined by the stiffness and the viscosity tensors c
and v of the form:




µ11 µ12 −µ44 0 0 0
µ12 µ11 −µ44 0 0 0
−µ44 −µ44 µ33 0 0 0
0 0 0 µ44 0 0
0 0 0 0 µ44 0
0 0 0 0 0 µ66




with µ66 = (µ11 − µ12)/2. Here

Γc =



c11∂

2
1 + c66∂

2
2 + c44∂

2
3 (c11 − c66) ∂1∂2 0

(c11 − c66) ∂1∂2 c66∂
2
1 + c11∂

2
2 + c44∂

2
3 0

0 0 c44∂
2
1 + c44∂

2
2 + c33∂

2
3




The eigenvalues Lc
i(∇x) of Γ

c(∇x) in this case are

Lc
1(∇x) = c44∂

2
1 + c44∂

2
2 + c33∂

2
3

Lc
2(∇x) = c11∂

2
1 + c11∂

2
2 + c44∂

2
3

Lc
3(∇x) = c66∂

2
1 + c66∂

2
2 + c44∂

2
3
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and the associated eigenvectors Dc
i (∇x) are:

Dc
1 =



0
0
1


 , Dc

2 =



∂1
∂2
0


 , Dc

3 =



∂2
−∂1
0


 .

Thus M c
1 = 1, and M c

2 =M c
3 = ∂21 + ∂22

3.3 Medium III

Finally, we will present the elastodynamic Green function for another trans-
versely isotropic media with the axis of symmetry along e3 and having c and v
of the form:




µ11 µ11 − 2µ66 µ11 − 2µ44 0 0 0
µ11 − 2µ66 µ11 µ11 − 2µ44 0 0 0
µ11 − 2µ44 µ11 − 2µ44 µ11 0 0 0

0 0 0 µ44 0 0
0 0 0 0 µ44 0
0 0 0 0 0 µ66




The Christoffel tensor in this case is

Γc =



c11∂

2
1 + c66∂

2
2 + c44∂

2
3 (c11 − c66) ∂1∂2 (c11 − c44) ∂1∂3

(c11 − c66) ∂1∂2 c66∂
2
1 + c11∂

2
2 + c44∂

2
3 (c11 − c44) ∂2∂3

(c11 − c44) ∂1∂3 (c11 − c44) ∂2∂3 c44∂
2
1 + c44∂

2
2 + c11∂

2
3




Its eigenvalues Lc
i(∇x) are:

Lc
1(∇x) = c11∂

2
1 + c11∂

2
2 + c11∂

2
3 = c11∆x

Lc
2(∇x) = c66∂

2
1 + c66∂

2
2 + c44∂

2
3

Lc
3(∇x) = c44∂

2
1 + c44∂

2
2 + c44∂

2
3 = c44∆x

and the eigenvectors Dc
i (∇x) are:

Dc
1 =



∂1
∂2
∂3


 , Dc

2 =



∂2
−∂1
0


 , Dc

3 =




−∂1∂3
−∂2∂3
∂21 + ∂22


 (3.1)

In this case, M c
1 = ∆x M c

2 = ∂21 + ∂22 and M c
3 = (∂21 + ∂22)∆x

3.4 Properties of the Media and Main Assumptions

In all anisotropic media discussed above, it holds that

• The Christoffel tensors Γc and Γv have the same structure in the sense
that

Dc
i = Dv

i , ∀i = 1, 2, 3.
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• The eigenvalues Lc
i(∇x) are homogeneous quadratic forms in the compo-

nents of the argument vector ∇x i.e.

Lc
i [∇x] =

3∑

j

a2ij
∂2

∂x2j
,

and therefore equations (2.10) are actually scalar wave equations.

• In all the concerning cases, the operatorM c
i (∇x) is either constant or has

a homogeneous quadratic form

M c
i =

3∑

j

m2
ij

∂2

∂x2j
.

In addition, we assume that

• the eigenvalues of Γc and Γv satisfy

Lv
i (∇x) = βiL

c
i(∇x).

• and the loss per wave length is small, i.e.

βi << 1.

Remark 3.2 The expression M c
3 = (∂21 + ∂22)∆x will be avoided in the con-

struction of the Green function by using the expression

G = φ3I+E1(∇x)(φ1 − φ3) +E2(∇x)(φ2 − φ3)

for the elastodynamic Green function.

Remark 3.3 In general, Dc
i and Dv

i are dependant on the parameters cpq and
vpq. Consequently, Γ

c and Γv can not be diagonalized simultaneously. However,
in certain restrictive cases where the polarization directions of different wave
modes ( i.e. quasi longitudinal (qP) and quasi shear waves (qSH and qSV)) are
independent of the stiffness or viscosity parameters, it is possible to diagonalize
both Γc and Γv simultaneously. Moreover, the assumption on the eigenvalues
Lv
i and Lc

i , implies that for a given wave mode, the decay rate of its velocity in
different directions is uniform, but for different wave modes (qP, qSH and qSV)
these decay rates are different.

4 Solution of the Model Wave Problem

Let us now study the scalar wave problems (2.10). We consider a model problem
and drop the subscript for brevity in this section as well as in the next section.
Consider

(Lc[∇x]φ+ Lv[∇x]A[φ]) − ρ
∂2φ

∂t2
= δ(t)δ(x). (4.1)
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Our assumptions on the media imply that Lc and Lv have the following
form;

Lc[∇x] =

3∑

j=1

a2j
∂2

∂x2j
and Lv[∇x] = βLc[∇x] =

3∑

j=1

βa2j
∂2

∂x2j

Therefore, the model equation (4.1) can be rewritten as:

3∑

j=1

(
a2j
∂2φ

∂x2j
+ βa2jA

[
∂2φ

∂x2j

])
− ρ

∂2φ

∂t2
= δ(t)δ(x),

By a change of variables xj =
aj√
ρ
ξj , we obtain in function φ̃(ξ) = φ(x) the

following transformed equation :

∆ξφ̃+ βA
[
∆ξφ̃

]
− ∂2φ̃

∂t2
=

√
ρ

a
δ(t)δ(ξ). (4.2)

where the constant a = a1a2a3.
Now, we apply A on both sides of the equation (4.2), and replace the result-

ing expression for A
[
∆ξφ̃

]
back into the equation (4.2). This yields:

∆ξφ̃+ βA
[
∂2φ̃

∂t2

]
− β2A2

[
∆ξφ̃

]
− ∂2φ̃

∂t2
=

√
ρ

a
δ(ξ) {δ(t)− βA[δ(t)]}

Recall that β << 1 and the term in β2 is negligible. Therefore, it holds

∆ξφ̃+ βA
[
∂2φ̃

∂t2

]
− ∂2φ̃

∂t2
≃

√
ρ

a
δ(ξ) {δ(t)− βA[δ(t)]} . (4.3)

Finally, taking temporal Fourier transform on both sides of (4.3), we obtain the
corresponding Helmholtz equation:

∆ξΦ̃ + ω2
(
1− βÂ(ω)

)
Φ̃ =

(
1− βÂ(ω)

) √
ρ

a
δ(ξ) (4.4)

where Φ̃(ξ, ω) and Â(ω) are the Fourier transforms of φ̃(ξ, t) and the kernel of
the convolution operator A respectively. Let

κ(ω) =

√
ω2
(
1− βÂ(ω)

)
.

Then the solution of the Helmholtz equation (4.4) (see for instance [25, 34]) is
expressed as

Φ(x, ω) =
√
ρ
(
1− βÂ(ω)

) e
√
−1κ(ω)τ(x)

4aπτ(x)
.
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where

τ(x) =
√
ρ

√
x21
a21

+
x22
a22

+
x23
a23

Using density normalized constants bj =
aj√
ρ
, we have

Φ(x, ω) =
(
1− βÂ(ω)

) e
√
−1κ(ω)τ(x)

4bρπτ(x)
. (4.5)

where constant b = b1b2b3 and

τ(x) =

√
x21
b21

+
x22
b22

+
x23
b23

5 Solution of the Model Potential Problem

In this section, we find the solution of equation (2.11). We once again proceed
with a model problem. Once the solution is obtained, we will aim to calculate,
its second order derivatives for the evaluation of D⊗Dψ.

5.1 Solution of the Potential Problem

Let ψ(x, t), be the solution of equation (2.11) and Ψ(x, ω) be its Fourier trans-
form with respect to variable t. Then Ψ(x, ω) satisfies,

MΨ(x, ω) = Φ(x, ω) =
(
1− βÂ(ω)

) e
√
−1κ(ω)τ(x)

4bρπτ(x)
. (5.1)

When M is constant, the solution of this equation is directly calculated. As
M = (∂21 + ∂22)∆x will not be used in the construction of Green function, we
are only interested in the case where M is a homogeneous quadratic form in the
component of ∇x i.e.

M =

3∑

j=1

m2
j

∂2

∂x2j
.

So, the model equation (5.1) can be rewritten as:

3∑

j=1

m2
j

∂2Ψ

∂x2j
=
(
1− βÂ(ω)

) e
√
−1κ(ω)τ(x)

4bρπτ(x)
mj 6= 0, ∀j (5.2)

By a change of variables xj = mjηj , equation (5.2) becomes Poisson equation
in Ψ(η, ω) = Ψ(x, ω) i.e.

∆ηΨ =
(
1− βÂ(ω)

) e
√
−1κ(ω)τ(η)

4bρπτ(η)
= Φ(η, ω) (5.3)
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where,

τ(η) =

√
m2

1η
2
1

b21
+
m2

2η
2
2

b22
+
m2

3η
2
3

b23
= τ(x) and Φ(η, ω) = Φ(x, ω)

Notice that the source Φ(η, ω) is symmetric with respect to ellipsoid τ , i.e.

Φ(η, ω) = Φ(τ , ω).

Therefore, the solution Ψ of the Poisson equation (5.3) is the potential field of
a uniformly charged ellipsoid due to a charge density Φ(τ , ω). The potential
field Ψ can be calculated with a classical approach using ellipsoidal coordinates.
(See for example [24, 31] for the theory of potential problems in ellipsoidal
coordinates.)

For the solution of the Poisson equation (5.3) we recall following result from
[31, Ch. 7, Sec.6].

Proposition 5.1 Let

f(z) =

3∑

j=1

ζ2j

(αjh)
2
+ z

− 1 and g(z) = Π3
j=1

[
(αjh)

2
+ z
]

and let Z(h, ζ) be the largest algebraic root of f(z)g(z) = 0. Then the solution
of the Poisson equation

∆2Y (ζ) = 4πχ

(
ζ21
α2
1

+
ζ22
α2
2

+
ζ22
α2
1

)
ζ ∈ R

3

is given by

Y (ζ) = 2πα1α2α3

∫ ∞

0

χ(h)I(h, ζ)dh.

The integrand I(h, ζ) is defined as

I(h, ζ) =

∣∣∣∣∣∣∣∣∣∣

h2
∫ ∞

Z(h,ζ)

1√
g(z)

dz Z > 0

h2
∫ ∞

0

1√
g(z)

dz Z < 0

Hence, the solution of (5.3) can be given as

Ψ(η, ω) =
2πb

m

(
1− βÂ(ω)

) 1

4π

∫ ∞

0

e
√
−1κ(ω)h

4bρπh
I(h, η)dh

or equivalently,

Ψ(x, ω) =
1

8ρπm

(
1− βÂ(ω)

) ∫ ∞

0

e
√
−1κ(ω)h

h
I(h,x)dh, m = m1m2m3

(5.4)

12



By a change of variable s = h−2z, we can write I(h,x) as:

I(h,x) =

∣∣∣∣∣∣∣∣∣∣

mh

∫ ∞

S(h,x)

1√
G(s)

ds h < τ

mh

∫ ∞

0

1√
G(s)

ds h > τ

(5.5)

with S(h,x) = h−2Z(h,x) being the largest algebraic root of the equation

F (s)G(s) = 0

where ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F (s) = h2f(h2s) =

3∑

j=1

{Vj(s)}−1
x2j − h2

G(s) =
m2

h6
g(h2s) = Π3

j=1 {Vj(s)}

with Vj(s) = b2j +m2
js

(5.6)

Remark 5.2 Note that, F (s) ≡ 0 corresponds to a set of confocal ellipsoids

s 7−→ h2(s) =

3∑

j=1

{Vj(s)}−1
x2j (5.7)

such that τ(x) = h(0) i.e. S(τ) = 0. Moreover, S > 0 if the ellipsoid h lies
inside τ and S < 0 if the ellipsoid h lies outside τ .

5.2 Derivatives of the Potential field

Now we compute the derivatives of the potential Ψ. We note that I(h,x) is
constant with respect to x when h > τ. So,

∂I(h,x)

∂xk
=

∣∣∣∣∣∣∣∣

−mh∂S(h,x)
∂xk

1√
G(S(h,x))

h < τ

0 h > τ

for k = 1, 2, 3 and by consequence,

∂Ψ

∂xk
= − 1

8ρπm

(
1− βÂ(ω)

)∫ ∞

0

e
√
−1κ(ω)h

h

∂I(h,x)

∂xk
dh

or

∂Ψ

∂xk
= − 1

8ρπ

(
1− βÂ(ω)

) ∫ τ

0

[
e
√
−1κ(ω)h

] ∂S(h,x)
∂xk

1√
G(S(h,x))

dh. (5.8)

13



Now, we apply
∂

∂xl
for l = 1, 2, 3 on (5.8) to obtain the second order derivatives

of Ψ:

−8ρπ
∂2Ψ

∂xkxl
=

(
1− βÂ(ω)

) ∂

∂xl

[∫ τ

0

[
e
√
−1κ(ω)h

] ∂S
∂xk

1√
G(S)

dh

]

=
(
1− βÂ(ω)

) ∂τ

∂xl

{[
e
√
−1κ(ω)τ

] ∂S(τ)
∂xk

1√
G(S(τ))

}

+
(
1− βÂ(ω)

)∫ τ

0

[
e
√
−1κ(ω)h

] 1√
G(S)

{
∂2S

∂xk∂xl
− 1

2

∂S

∂xk

∂S

∂xl

G′(S)

G(S)

}
dh

As F (S)G(S) = 0 and G(s) is normally non-zero on S, therefore by differ-
entiating F (S) = 0, we obtain [19, eq. (5.21)-(5.23)]

∂S

∂xk
=

−2xk
Vk(S)F ′(S)

(5.9)

∂2S

∂xkxl
=

−4xkxl

Vk(S)Vl(S) [F ′(S)]
2

{
F ′′(S)

F ′(S)
+

m2
k

Vk(S)
+

m2
l

Vl(S)

}
− 2δkl
Vk(S)F ′(S)

(5.10)
where,

F ′(s) =
3∑

j=1

−m2
jx

2
j

V 2
j (s)

, F ′′(s) =
3∑

j=1

2m4
jx

2
j

V 3
j (s)

, G′(s) = G(s)
3∑

j=1

m2
j

Vj(s)

(5.11)
and prime represents a derivative with respect to variable s.

Substituting the values from (5.9) and (5.10), the second order derivative of
Ψ becomes

4ρπ
∂2Ψ

∂xkxl
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−xkxl
(
1− βÂ(ω)

)

aa2ka
2
l F

′(0)

{
e
√
−1κ(ω)τ

τ

}

+
(
1− βÂ(ω)

)∫ τ

0

[
e
√
−1κ(ω)h

] 1

F ′(S)
√
G(S)

×
[

2xkxl
Vk(S)Vl(S)F ′(S)

{
F ′′(S)

F ′(S)
+

m2
k

Vk(S)
+

m2
l

Vl(S)
+

1

2

G′(S)

G(S)

}
+

δkl
Vk(S)

]
dh

(5.12)

Remark 5.3 If for some i ∈ {1, 2, 3}, mi → 0 one semi axis of the ellipsoid τ
tends to infinity but no singularity occurs. Therefore the results of this section
are still valid in this case.
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6 Elastodynamic Green Function

In this section we present the expressions for the elastodynamic Green functions

for the media presented in section 3. Throughout this section cp =

√
cpp
ρ

with

p ∈ {1, 2, · · · , 6}. We recall that κi(ω) =

√
ω2
(
1− βiÂ(ω)

)
.

6.1 Medium I

All the eigenvectors of Γ are constants in this case i.e. Di = ei, therefore
Mi = 1 and Ei = ei⊗ei. If Ĝ is the Fourier transform of the viscoelastic Green
function G with respect to variable t, then:

Ĝ =

3∑

i=1

Φi(x, ω)ei⊗ei =
1

4πρ

3∑

i=1



ci+3

(
1− βiÂ(ω)

)

cic4c5c6τi
exp(

√
−1κi(ω)τi)


 ei�ei

(6.1)
where

τ1 =

√
x21
c21

+
x22
c26

+
x23
c25
, τ2 =

√
x21
c26

+
x22
c22

+
x23
c24
, τ3 =

√
x21
c25

+
x22
c24

+
x23
c23
,

Medium b1 b2 b3 m1 m2 m3 Mi

I
c1 c6 c5 1 0 0 M1

c6 c2 c4 0 1 0 M2

c5 c4 c3 0 0 1 M3

II
c4 c4 c3 0 0 1 M1

c1 c1 c4 1 1 0 M2

c6 c6 c4 * * * M3

III
c1 c1 c1 1 1 1 M1

c6 c6 c4 1 1 0 M2

c4 c4 c4 * * * M3

Table 1: Values of bi and mi for different media. Here ∗ represents a value
which is not used for reconstructing Green function.
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6.2 Medium II

According to section 4, the functions Φi have following expressions:

Φ1(x, ω) =
(
1− β1Â(ω)

) e
√
−1κ1(ω)τ1(x)

4c24c3ρπτ1(x)

Φ2(x, ω) =
(
1− β2Â(ω)

) e
√
−1κ2(ω)τ2(x)

4c21c4ρπτ2(x)

Φ3(x, ω) =
(
1− β3Â(ω)

) e
√
−1κ3(ω)τ3(x)

4c26c4ρπτ3(x)

where

τ1(x) =

√
x21
c24

+
x22
c24

+
x23
c23
, τ2(x) =

√
x21
c21

+
x22
c21

+
x23
c24
, τ3(x) =

√
x21
c26

+
x22
c26

+
x23
c24

To calculate Green function, we use the expression

Ĝ = Φ3I+D1 ⊗D1M
−1
1 (Φ1 − Φ3) +D2 ⊗D2M

−1
2 (Φ2 − Φ3) .

D1 = e3 and M1 = 1, yield

D1 ⊗D1M
−1
1 (Φ1 − Φ3) = (Φ1 − Φ3) e3 ⊗ e3

To compute D2 ⊗D2M
−1
2 (Φ2 − Φ3), suppose

Ψ2 =M−1
2 Φ2 and Ψ3 =M−1

2 Φ3

and notice that m1 = m2 = 1 and m3 = 0. Moreover for Φ2 and Φ3, b1 = b2.
(See Table 1). Thus, we have

4ρπ(
1− β2Â(ω)

) ∂
2Ψ2

∂xkxl
= R̂kR̂l

{
e
√
−1κ2(ω)τ2

c21c4τ2

}
− 1

c4R2
(δkl − 2R̂kR̂l)

∫ τ2

0

[
e
√
−1κ2(ω)h

]
dh

4ρπ(
1− β3Â(ω)

) ∂
2Ψ3

∂xkxl
= R̂kR̂l

{
e
√
−1κ3(ω)τ3

c26c4τ3

}
− 1

c4R2
(δkl − 2R̂kR̂l)

∫ τ3

0

[
e
√
−1κ3(ω)h

]
dh

where R̂k =
xk
R

for k = 1, 2. See Appendix C for the derivation of this result.

By using the second derivatives of Ψ2 and Ψ3 and the expression

D2 ⊗D2M
−1
2 (Φ2 − Φ3) =

2∑

k,l=1

∂k∂l (Ψ2 −Ψ3) ek ⊗ el
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we finally arrive at

Ĝ =
(
1− β3Â(ω)

) e
√
−1κ3(ω)τ3(x)

4c26c4ρπτ3(x)
J+

(
1− β1Â(ω)

) e
√
−1κ1(ω)τ1(x)

4c24c3ρπτ1(x)
e3 ⊗ e3

+

[(
1− β2Â(ω)

) e
√
−1κ2(ω)τ2(x)

4c21c4ρπτ2(x)
−
(
1− β3Â(ω)

) e
√
−1κ3(ω)τ3(x)

4c26c4ρπτ3(x)

]
R̂⊗ R̂

− 1

4ρπc4R2
(J− 2R̂⊗ R̂)×

[(
1− β2Â(ω)

) ∫ τ2

0

[
e
√
−1κ2(ω)h

]
dh−

(
1− β3Â(ω)

)∫ τ3

0

[
e
√
−1κ3(ω)h

]
dh

]

Or equivalently,

Ĝ = Φ1e3 ⊗ e3 +Φ2R̂⊗ R̂+Φ3(J− R̂ ⊗ R̂)

− 1

R2

[
c21

∫ τ2

0

hΦ2(h, ω)dh− c26

∫ τ3

0

hΦ3(h, ω)dh

]
(J− 2R̂⊗ R̂)

Here J = I− e3 ⊗ e3 and R̂ = R̂1e1 + R̂2e2

6.3 Medium III

The solutions of the wave equation Φi in this case are

Φ1(x, ω) =
(
1− β1Â(ω)

) e
√
−1κ1(ω)τ1(x)

4c31ρπτ1(x)

Φ2(x, ω) =
(
1− β2Â(ω)

) e
√
−1κ2(ω)τ2(x)

4c26c4ρπτ2(x)

Φ3(x, ω) =
(
1− β3Â(ω)

) e
√
−1κ3(ω)τ3(x)

4c34ρπτ3(x)

where

τ1(x) =
1

c1

√
x21 + x22 + x23 =

r

c1
, τ2(x) =

√
x21
c26

+
x22
c26

+
x23
c24
, τ3(x) =

r

c4

To calculate Green function, we once again use the expression

Ĝ = Φ3I+D1 ⊗D1M
−1
1 (Φ1 − Φ3) +D2 ⊗D2M

−1
2 (Φ2 − Φ3) .

Suppose Ψ1 = M−1
1 Φ1 and Ψ3 = M−1

1 Φ3. Notice that m1 = m2 = m3 = 1
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for M1 and b1 = b2 = b3 for Φ1 as well as Φ3 (see Table 1). Thus,

4ρπ(
1− β1Â(ω)

) ∂
2Ψ1

∂xkxl
= r̂kr̂l

{
e
√
−1κ1(ω)τ1

c31τ1

}
− 1

r3
(δkl − 3r̂ir̂j)

∫ τ1

0

[
he

√
−1κ1(ω)h

]
dh

4ρπ(
1− β3Â(ω)

) ∂
2Ψ3

∂xkxl
= r̂kr̂l

{
e
√
−1κ3(ω)τ1

c31τ3

}
− 1

r3
(δkl − 3r̂ir̂j)

∫ τ3

0

[
he

√
−1κ3(ω)h

]
dh

See Appendix B for the derivation of this result. It yields

D1 ⊗D1M
−1
1 (Φ1 − Φ3)

=
1

4ρπ

[(
1− β1Â(ω)

) e
√
−1κ1(ω)τ1(x)

c31τ1(x)
+
(
1− β3Â(ω)

) e
√
−1κ3(ω)τ3(x)

c34τ3(x)

]
r̂⊗ r̂

−
[(

1− β1Â(ω)
)∫ τ1

0

[
he

√
−1κ1(ω)h

]
dh−

(
1− β3Â(ω)

) ∫ τ3

0

[
he

√
−1κ3(ω)h

]
dh

]
×

1

4ρπr3
(I− 3r̂⊗ r̂)

= [Φ1(x, ω)− Φ3(x, ω)] r̂⊗ r̂− 1

r3

[∫ τ1

0

h2Φ1(h, ω)dh−
∫ τ3

0

h2Φ3(h, ω)dh

]
(I− 3r̂⊗ r̂)

.

where r̂ = r̂1e1 + r̂2e2 + r̂3e3 with r̂i =
xi
r

for all i = 1, 2, 3.

To compute, D2 ⊗ D2M
−1
2 (Φ2 − Φ3), suppose Ψ2 = M−1

2 Φ2 and Ψ4 =
M−1

2 Φ3. By using formula (C.3) with m1 = m2 = 1 and m3 = 0, we obtain:

4ρπ(
1− β2Â(ω)

) ∂
2Ψ2

∂xkxl
= R̂kR̂l

{
e
√
−1κ2(ω)τ2

c26c4τ2

}
− 1

c4R2
(δkl − 2R̂kR̂l)

∫ τ2

0

[
e
√
−1κ2(ω)h

]
dh

4ρπ(
1− β3Â(ω)

) ∂
2Ψ4

∂xkxl
= R̂kR̂l

{
e
√
−1κ3(ω)τ3

c34τ3

}
− 1

c4R2
(δkl − 2R̂kR̂l)

∫ τ3

0

[
e
√
−1κ3(ω)h

]
dh
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with R̂k =
xk
R

and k, l ∈ {1, 2}. This allows us to write

D2 ⊗D2M
−1
2 (Φ2 − Φ3)

=
1

4ρπ

[(
1− β2Â(ω)

) e
√
−1κ2(ω)τ2(x)

c31τ2(x)
+
(
1− β3Â(ω)

) e
√
−1κ3(ω)τ3(x)

c34τ3(x)

]
×

(
R̂2

2e1 ⊗ e1 − R̂1R̂2[e1 ⊗ e2 + e2 ⊗ e1] + R̂2
1e2 ⊗ e2

)

− 1

4c4ρπR2

[(
1− β2Â(ω)

) ∫ τ2

0

[
e
√
−1κ2(ω)h

]
dh−

(
1− β3Â(ω)

) ∫ τ3

0

[
e
√
−1κ3(ω)h

]
dh

]
×

(
(1− 2R̂2

2)e1 ⊗ e1 − 2R̂1R̂2[e1 ⊗ e2 + e2 ⊗ e1] + (1− 2R̂2
1)e2 ⊗ e2

)

= [Φ2(x, ω)− Φ3(x, ω)] R̂
⊥ ⊗ R̂⊥

− 1

R2

[
c26

∫ τ2

0

hΦ2(h, ω)dh− c24

∫ τ3

0

hΦ3(h, ω)dh

] (
J− 2R̂⊥ ⊗ R̂⊥

)

.

where R̂⊥ = R̂2e1 − R̂1e2 and J = I− e3 ⊗ e3.
Finally, we arrive at

Ĝ = Φ1r̂⊗ r̂+Φ2R̂
⊥ ⊗ R̂⊥ +Φ3(I− r̂⊗ r̂− R̂⊥ ⊗ R̂⊥)

− 1

r3

[∫ τ1

0

h2Φ1(h, ω)dh−
∫ τ3

0

h2Φ3(h, ω)dh

]
(I− 3r̂⊗ r̂)

− 1

R2

[
c21

∫ τ2

0

hΦ2(h, ω)dh− c26

∫ τ3

0

hΦ3(h, ω)dh

]
(J− 2R̂⊥ ⊗ R̂⊥)

6.4 Isotropic Medium

When c66 = c44, medium III becomes isotropic. In this case

Φ2(x, ω) = Φ3(x, ω), β1 = β2, τ1(x) =
r

c1
, and τ2(x) =

r

c4
= τ3(x)

Thus, the Green function in an isotropic medium with independent elastic pa-
rameters c11 and c44 can be given in frequency domain as:

Ĝ = Φ2I+D1 ⊗D1M
−1
1 (Φ1 − Φ2)

= Φ1r̂⊗ r̂+Φ2(I− r̂⊗ r̂)− 1

r3

[∫ r

c1

0

h2Φ1(h, ω)dh−
∫ r

c4

0

h2Φ2(h, ω)dh

]
(I− 3r̂⊗ r̂)

where Φ1 and Φ2 are the same as in medium III. This expression of the Green
function has already been reported in a previous work [18].
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A Decomposition of the Green function

Consider the elastic equation satisfied by G:

(Γc(∇x)G(x, t) + Γv(∇x)A[G](x, t)) − ρ
∂2G(x, t)

∂t2
= δ(t)δ(x)I. (A.1)

If G is given in the form

G =

3∑

i=1

Ei(∇x)φi (A.2)

Then substituting (A.2) in (A.1) yields:

δ(t)δ(x)I = (Γc(∇x)G(x, t) + Γv(∇x)A[G](x, t)) − ρ
∂2G(x, t)

∂t2

=

3∑

i,j=1

(
Lc
j(∇x)φi + Lv

j (∇x)A[φi]
)
Ej(∇x)Ei(∇x)− ρ

3∑

i=1

Ei(∇x)
∂2φi(x, t)

∂t2

By definition Ei(∇x) is a projection operator which satisfies

Ei(∇x)Ej(∇x) = δijEj(∇x)

Consequently, we can have

δ(t)δ(x)I =

3∑

i,j=1

Ej(∇x)δijρ
−1
(
Lc
j(∇x)φi + Lv

j (∇x)A[φi]
)
− ρ

3∑

i=1

Ei(∇x)
∂2φi(x, t)

∂t2

=
3∑

i=1

Ei(∇x)

(
(Lc

i(∇x)φi + Lv
i (∇x)A[φi])− ρ

∂2φi(x, t)

∂t2

)
.

Moreover I =
3∑

i=1

Ei(∇x), therefore

3∑

i=1

Ei(∇x)

(
(Lc

i(∇x)φi + Lv
i (∇x)A[φi])− ρ

∂2φi(x, t)

∂t2
− δ(t)δ(x)

)
= 0

Finally, remark that G we can express in the form (2.8) if the functions φi
satisfy equation (2.10).
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B Derivative of Potential: Case I

If b1 = b2 = b3 and m1 = m2 = m3, we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V1(s) = V2(s) = V3(s) = b21 +m2
1s

F (s) =

3∑

j=1

x2j
V1(s)

− h2 =
r2

V1(s)
− h2

F ′(s) =

3∑

j=1

−m2
1x

2
j

V 2
1 (s)

=
−m2

1r
2

V 2
1 (s)

and F ′(0) =
−m2

1r
2

b41

F ′′(s) =

3∑

j=1

2m4
1x

2
j

V 3
1 (s)

=
2m4

1r
2

V 3
1 (s)

G(s) = (V1(s))
3 and G′(s) = G(s)

3m2
1

V1(s)

(B.1)

with r =
√
x21 + x22 + x23. When F (S) = 0, we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V1(S) =
r2

h2
,

[
1

Vk(S)Vl(S)F ′(S)

]
=

−1

m2
1r

2
and

1

F ′(S)
√
G(S)

=
−1

m2
1rh

,

{
F ′′(S)

F ′(S)
+

m2
k

Vk(S)
+

m2
l

Vl(S)
+

1

2

G′(S)

G(S)

}
=

3

2

m2
1

V1(S)
=

3

2

m2
1h

2

r2

(B.2)

Substituting (B.1) and (B.2) in (5.12) we finally arrive at:

4ρm2
1π(

1− βÂ(ω)
) ∂2Ψ

∂xkxl
= r̂kr̂l

{
e
√
−1κ(ω)τ

bτ

}
− 1

r3
(δkl − 3r̂ir̂j)

∫ τ

0

[
he

√
−1κ(ω)h

]
dh

(B.3)

where r̂j =
xj
r

for all j = 1, 2, 3.
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C Derivative of Potential: Case II

If b1 = b2, m1 = m2 and m3 = 0, we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V1(s) = V2(s) = b21 +m2
1s andV3(s) = b23

F ′(s) =

2∑

j=1

−m2
1x

2
j

V 2
1 (s)

=
−m2

1R
2

V 2
1 (s)

and F ′(0) =
−m2

1R
2

b41

F ′′(s) =

2∑

j=1

2m4
1x

2
j

V 3
1 (s)

=
2m4

1R
2

V 3
1 (s)

G(s) = b23 (V1(s))
2

and G′(s) = G(s)
2m2

1

V1(s)

(C.1)

with R =
√
x21 + x22. For all l, k ∈ {1, 2}, we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
1

Vk(S)Vl(S)F ′(S)

]
=

−1

m2
1R

2
and

1

F ′(S)
√
G(S)

=
−V (S)

m2
1b3R

2
,

{
F ′′(S)

F ′(S)
+

m2
k

Vk(S)
+

m2
l

Vl(S)
+

1

2

G′(S)

G(S)

}
=

m2
1

V1(S)

(C.2)

Substituting (C.1) and (C.2) in (5.12) and simple calculations, we finally arrive
at:

4ρm2
1π(

1− βÂ(ω)
) ∂2Ψ

∂xkxl
= R̂kR̂l

{
e
√
−1κ(ω)τ

bτ

}
− 1

b3R2
(δkl − 2R̂kR̂l)

∫ τ

0

[
e
√
−1κ(ω)h

]
dh

(C.3)

where R̂k =
xk
R

for k = 1, 2.
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