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Finite element analysis of fretting crack propagation

H. Proudhon1, ∗ and S. Basseville2

1MINES ParisTech, Centre des Matériaux, CNRS UMR 7633, BP 87 91003 Evry Cedex, France
2LISV, Université de Versailles Saint-Quentin, 45 avenue des Etats-Unis, 78000 Versailles, France

In this work, the finite elements method (FEM) is used to analyse the growth of fretting cracks.
FEM can be favourably used to extract the stress intensity factors in mixed mode, a typical situation
for cracks growing in the vicinity of a fretting contact. The present study is limited to straight cracks
which is a simple system chosen to develop and validate the FEM analysis. The FEM model is tested
and validated against popular weight functions for straight cracks perpendicular to the surface. The
model is then used to study fretting crack growth and understand the effect of key parameters such
as the crack angle and the friction between crack faces. Predictions achieved by this analysis match
the essential features of former experimental fretting results, in particular the average crack arrest
length can be predicted accurately.

PACS numbers: 60.20Mk, 62.20Qp
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I. INTRODUCTION

Fretting damage is still a major issue for a large num-
ber of multi-parts industrial applications subjected to vi-
brations [1]. Many palliatives have been developed over
the years such as modifying the geometry, coating sur-
faces to reduce friction or using shot penning in some
cases [2]. Very small oscillatory displacement of surfaces
in contact induce partial slip conditions which can lead
to rapid crack initiation and imped the life of assem-
bled structures. Well known examples can be blade/disk
TA6V contact in jet engines or Al alloys riveted lap joints
in aerospace structures.

Various models have been developed over the years
[3, 4] to predict the growth of fretting fatigue cracks but
they usually fail to predict the early stages of the crack
growth (typically before 1 mm). This stage is termed
short crack behaviour and usually exhibits strong devi-
ations with respect to the long crack domain which can
be attributed to a combination of mixed mode growth
under the influence of the highly multi-axial stress field,
plasticity and roughness induced crack closure and crys-
tallographic effects [5–7].

Recent developments in short fatigue crack models
tend to take into account more and more of those in-
gredients, but fretting crack growth is very often still
described at the macroscopic level. Notable exception
are recent studies which take into account the grain mi-
crostructure in the contact region but they are limited
to the initiation of fretting cracks [8, 9] and a study of
short fretting crack propagation using dislocation distri-
butions [10]. This work is a first step to study how FEM
analysis can be favourably used to access local material
behaviour at the crack tip to predict the overall fretting
crack growth. We focus on the simple case of straight
cracks initiated at the contact border; those cracks typi-
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cally evolve in a multiaxial stress state which will strongly
depend on the angle of propagation. Previous study of
fretting crack propagation usually neglect mode II and
use the assumption of Elber (∆K = Kmax) to determine
the stress intensity factor range [11, 12]. While this might
be justified for a fatigue crack under uniaxial load with a
negative stress ratio, the case of fretting loading is much
more complicated and there is no obvious reason for this
assumptions to stand. In particular, the friction between
the crack faces may influence mode II stress intensity
levels due depending on the crack angle [13].
First the FE fretting model with straight cracks is de-

scribed and two popular weight functions are used to
test and validate the stress intensity levels in the case of
cracks growing perpendicularly to the surface. FE com-
putations are used to predict the mixed mode stress in-
tensity levels during fretting cycles (thus accessing both
Kmax and Kmin) and to determine the influence of key
parameters such as the crack angle and the effect of fric-
tion between crack faces. Stress intensity ranges are even-
tually combined to the Paris law to predict crack growth
and arrest levels. Those predictions are compared to ex-
perimental crack lengths observed on interupted tests in
an 2xxx aluminium alloy.

II. NUMERICAL METHODS

A. Fretting model

The simulations ultimately aim at predicting real fret-
ting test and thus have been designed to closely match
the experimental geometry, materials and loading condi-
tions.
The cylinder/plane fretting wear test shown in Fig. Ia)

is represented in a 2D plane strain FE computation using
the finite element code Z-SeT/ZéBuLoN [15]. Far from
the contact zone, free meshing with plane strain 3-node
triangular full integration elements is used and the mesh
is gradually refined towards the contact region. To com-
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FIG. 1: a) Simplified schematics of a fretting wear test in
cylinder plane configuration, b) Measured fretting crack depth
as a function of the number of cycles in a 2xxx series alu-
minium alloy, P = 440 N/mm and Q = 240 N/mm; the three
domains labelled 1,2 and 3 correspond respectively to crack
initiation, fast propagation and crack arrest, after [14].

bine a high precision with reasonable computation times,
the mesh in the contact zone is paved with plain strain
rectangular 4-node full integration elements with a size of
20 µm. With the investigated conditions, this provides a
contact element over contact area ratio of 80 which is suf-
ficient to accurately describe the multiaxial field imposed
to the sample by the contact conditions (For a specimen
free of cracks, the stresses computed with this geometry
fits the analytical solution within 2%).
The loading is applied in two steps: first, a normal dis-

placement u2 is imposed on the top of the half cylinder to
cause a normal reaction of 410 N/mm (corresponding to
a half contact width of a = 0.8 mm and a Hertz pressure
of 325 MPa). The plate is kept fixed by locking its bot-
tom and side nodes. An horizontal cyclic displacement
u1 is imposed to the bottom and side nodes of the plate
to cause a tangential reaction of 240 N/mm.
For the present study the material is described by

isotropic elasticity; elastic constants E = 72 GPa and
ν = 0.3 are used to simulate a 2xxx aluminium alloy.
Contact between the two parts is modelled by a classi-
cal impactor/target technique and solved with a flexi-
bility method implemented in Z-SeT/ZéBuLoN. Techni-
cally, the contact reactions are at first computed in a local
contact algorithm and then added to the global problem.
The friction behaviour is introduced by the Coulomb’s
law with a friction coefficient of 1.1, which represents the
friction behaviour of a dry aluminium/aluminium con-
tact [16].

B. Finite element analysis of fretting cracks

In this approach, the cracks are explicitly introduced
within the FE mesh. A in-house program is used to mesh
both cracks independently, using as input their geome-
try (here initial position of the crack, length and angle).
Two rectangular spaces are reserved on both side of the

contact area to receive the cracks. While both crack faces
are initially superimposed, they are can open and close
during the computation and the contact conditions be-
tween them have to be defined. The crack tip is meshed
with a fine, regular region to ensure a good description of
the stress singularity; this region is used to compute the
energy release rate G. All these aspects are schematically
summarised in Fig. 2.
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FIG. 2: Cracks are explicitly introduced within the finite ele-
ments model with a refined mesh at the crack tip to compute
the energy release rate G.

Once cracks have been introduced within the mesh,
finite element computation can be carried out to deter-
mine the stress distributions in the neighbourhood of the
crack tip during the fretting cycle. Due to the cyclic reci-
procating motion of the counter body, both crack will al-
ternatively open and close. As an example, Fig. 3 shows
the mode I stress intensity factor for the left crack during
one fretting cycle. As expected the left crack opens when
the counterbody is moved to the right. By computing a
complete fretting cycle, the stress intensity factor ranges
∆KI and ∆KII can be determined.
This analysis is used iteratively to compute the stress

intensity levels during the growth of fretting cracks. Each
different stage uses a different mesh accounting for the
appropriate crack length and angle. The complete anal-
ysis is as follows:

1. For the first stage, the crack initiation position x0

and initial angle θ0 have to be defined. This can
be done using a fatigue multi-axial criterion (such
as Dang Van or SWT) as discussed thouroughly by
many authors (see [17] for a review). The present
work focuses on propagation and those values are
chosen somewhat arbitrarily. x0 is chosen equal
to 0.96a and θ0 will vary from zero (crack is per-
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FIG. 3: Example of left crack stress intensity factor extracted
form the FEM calculation; here the crack is straight, 400 µm
long and inclined towards the center of the contact (θ = 15°).

pendicular to the surface) to 45° (crack is inclined
towards the center of the contact).

2. The cracks are introduced within the mesh as ex-
plained earlier and a complete fretting cycle is com-
puted.

3. The energy release rate G at the crack tip is deter-
mined by post-processing the finite element results
with a perturbation method [18].

4. Local displacements fields un and ut respectively
normal and tangent to the crack tip direction are
computed and the ratio q = ut/un is evaluated over
the 4 pair of nodes behind the tip (this correspond
to a 20 µm distance).

5. Both mode I and mode II stress intensity factors
are deduced from

q = KII/KI

and

G =
K2

I

E′
+

K2
II

E′

with E′ = E/(1− ν2) in plane strain.

6. The crack geometry is updated with a new segment
(li, θi), θi being kept constant and l0 being equal to
25 µm.

C. Weight functions for straight cracks

perpendicular to the surface

It is worth noting that thanks to R. D. Mindlin, the
analytical solution of the partial slip regime is known
precisely [19]. The analysis was derived for sphere/sphere

contact but can be used also for a 2D cylinder/plane
contact and provide the stress state of any material point
M(x, y) of the plane during the complete fretting cycle
(P held constant, Q(t) varying from +Q to −Q).

For very small displacement amplitudes, slip occurs
only on the outer edges of the contact, the central zone
|x| < c remaining in stick condition. During the fretting
cycle, the tangential force goes from +Q to −Q and the
stick/slip limit c′ evolves from c to a. The partial slip
contact can be described during the fretting cycle, by
superimosing the elastic solution from the normal load
only σ

∼

n and three slipping contact elastic solutions σ
∼

t:
(i) a slipping contact between −a and +a with a slip
amplitude of +δ (ii) a slipping contact between −c and
+c with a slip amplitude of +δ (iii) a slipping contact
between −c′ and +c′ with a slip amplitude of −2δ.

Using this description, the stress state can be derived
for any material point within the plane for a given fretting
loading (P ,Q). One can then describe the stress evolution
along a virtual crack path during the fretting cycle [20].
In particular, at the end of the fretting cycle c′ = c the
stress tensor at the position normalized by the conact
width (x/a, y/a) is:

σ
∼

(x

a
,
y

a

)

= σ
∼

n
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)

︸ ︷︷ ︸
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tang. forward load

− c

a
σ
∼

t
(x

c
,
y

c

)

︸ ︷︷ ︸

tang. reverse load

(1)
Stress from Eq. (1) can be favourably used as input for
a weight function of a straight crack to predict the stress
intensity factor of fretting cracks.

Many weight functions have been developed over the
years since the seminal work of Bueckner [21]. In this
work, two weight functions for a single edge crack in a
plate will be used to validate the finite element approach
in the case of a straight crack perpendicular to the sur-
face. The first one is Bueckner weight function and the
second one is an approximated weight function from Wu
and Carlsson which account for the finite width of the
plate [22]. The stress intensity factor is expressed as

K = f
√
πaW

a is the crack length, W the specimen thickness and

f =
√
W

∫ a

0

σ(x)m(a, x) dx (2)

with σ(x) being the stress normal to the crack face along
the crack path evaluated in the non cracked specimen
from Eq. (1) and

m(a, x) =
1

2πa

5∑

i=1

βi(a)
(

1− x

a

)i−3/2

where the βi(a) functions can be found in [22].
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III. RESULTS

The model presented in section II has been used to
study the influence of the crack path amid the complex
fretting stress field. First, straight cracks perpendicu-
lar to the surface are investigated and weight functions
are used to compare with values extracted from finite ele-
ments calculations. Then the influence of the crack angle
with respect to the surface on the stress intensity factors
range evolution as the crack propagates is regarded; the
effect of friction on crack faces is also studied. Eventu-
ally life predictions are derived from the stress intensity
factor ranges and compared to experimental values.

A. Straight crack perpendicular to the surface

Cracks are introduced in the mesh at x0 = ±0.77. Both
stress intensity factor ranges are extracted at each time
increment during the fretting cycle. After each calcu-
lation (starting with a 25 µm crack), the crack length is
increased by 25 µm. Selected results are shown on Fig. 4.
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FIG. 4: Isovalues of von Mises stress for 3 different crack
lengths: 50, 150 and 450 µm; straight crack perpendicular to
the surface.

Computations have been carried out for two different
values of the tangential force (Q1 = 150 N/mm and
Q2 = 240 N/mm). The maximum stress intensity fac-
tor for mode I has been extracted as explained in sec-
tionII B and are compared to the values predicted by the
use of weight functions (see section II C). For the case
of cracks perpendicular to the surface, normal loading of
the crack face is σxx(y) described by which is obtained
analytically from Mindlin analysis and used in Eq. (2)
to derive the evolution of KI as a function of the crack
length. For small crack lengths, the values computed by
FE are in very good agreement with those calculated with
weight functions as for longer crack lengths, the value
computed by FE is slightly lower. Presumably this can
be attributed to the finite length of the sample which is
not taken into account in the weight functions used here;
a similar effect can been observed in Single Edeg Notched
Tensile (SENT) specimens under uniaxial loading. In-
deed, computing KI by Bueckner’s weigth function de-
viates from the FE values when the crack size increases.
For the SENT case, a solution accounting for the finite
size of the specimen [23] can be used which match the

FE prediction very well. Nevertheless this approach vali-
dates the FE computations and the stress intensity levels
predicted by this method. Regardless of the tangential
force value, KI first increases with crack length, reaches
a maximum around 100 µm and then drops progressively.
The drop in crack driving force was expected since with
pure fretting conditions there is no bulk load and the
stress level decreases when moving away from the con-
tact area. The effect of the tangential force magnitude
is also clearly highlighted by Fig. 5, increasing Q lead to
an increase in maximum crack driving force. The mag-
nitude of Q also seems to influence the drop of KI , and
one can qualitatively predict a longer crack with a higher
Q which is in agreement with experimental observations.
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FIG. 5: Comparison of mode I stress intensity factors for a
straight fretting crack perpendicular to the surface computed
by means of weight functions and finite elements.

B. Slanted crack

Experimental observations of fretting cracks by met-
allography techniques often show that cracks can be in-
clined towards the center of the contact. The angle is
expected to have an influence on the mode I and mode
II levels due to the multiaxial stress state in the subsur-
face contact region. FE computations series have been
carried out with several values of the crack angle ranging
from 15° to 45°(0° being perpendicular to the specimen
surface). Selected results are shown on Fig. 6 for the
cases of 30°.
The stress intensity factors have been computed as ex-

plained in section II B for a variety of crack angles and
crack lengths. A comparison for the cases of 0 and 30° is
given in Fig. 7 for different crack lengths.
Fig. 7 highlights the importance of considering the

whole fretting cycle. For KI levels, the maximum is al-
ways reached at the end of the fretting cycle, where the
crack is open. For cracks perpendicular to the surface,
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FIG. 6: Isovalues of von Mises stress for 3 different crack
lengths: 50, 150 and 450 µm; straight crack inclined with a
30° angle.
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FIG. 7: Energy release rate G and stress intensity factors
KI and KII evaluated during the fretting cycle: left column
shows results for a straight crack perpendicular to the surface
whereas right column shows results for an inclined crack (θ =
30°); period of the fretting cycle is 8 seconds.

KImin
remains close to zero and the decrease in terms

of stress intensity factor range is due to the decrease of
KImax

. For slanted cracks, the drop of ∆KI as a func-
tion of crack depth is more pronounced due to the crack
angle. The more the crack is oriented towards the cen-
ter of the contact, the faster the crack driving force will
drop. Considering KII levels, the maximum occurs at a
different time during the fretting cycle for crack perpen-
dicular to the surface and slanted cracks. It is interesting
to see that for slanted cracks, KIImax

values will not de-
crease to zero as forKImax

, but increase. However,KImin

also increases, resulting in a decrease of ∆KII levels as
a function of crack depth are shown on Fig. 8. We shall
demonstrate in the next section that this can be predom-
inantly attributed to the friction of the crack faces.
Fig. 8 shows a summary of the evolution of the stress

intensity factor range ∆KI as a function of crack depth
for all investigated crack angles (0, 15, 30 and 45°).
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FIG. 8: Evolution of the stress intensity factor ranges ∆KI

and ∆KII as a function of crack depth for all investigated
crack angles.

C. Effect of friction on crack faces

To check the influence of friction applied between the
crack faces, computations for the crack inclined with a
30°angle has been carried out a second time enforcing
zero friction between the crack faces. Results of these
calculations are depicted in Fig. 9. This does not change
the maximum values of the stress intensity factors, since
those are obtained at the end of the fretting cycle when
the crack is open. However, this clearly shows that the
minimum value of KII is significantly lower leading to
higher ∆KII levels. This is due to the fact that slanted
cracks evolve in mixed mode and friction will limit crack
tip shear displacement. If friction of crack lips is en-
forced, stick condition will be reached at some point pre-
venting the shear displacement of crack tip nodes and
leading to a KIImin

value close to KIImax
as seen on

Fig. 7 for a crack larger than 350 µm. This result will
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strongly impact life predictions (maximum crack depth
as well as number of cycles to reach a certain depth) when
considering mixed mode crack growth.
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FIG. 9: Effect of the friction between crack faces on mode II
stress intensity levels.

Those results highlight the key role of the friction be-
tween crack faces. This effect is particularly expected in
the absence of bulk fatigue load (in pure fretting con-
ditions) where the mode I stress intensity factors will
progressively decrease to zero and mode II will become
predominant. The crack progression will then strongly
be controlled by the friction between the crack faces. A
high friction will prevent shear tip displacement and stop
the crack. High observed friction in experiments could
also be related to roughness induced crack closure, since
real fretting cracks may exhibit either strong deviations
due to a crystallographic crack path, either small rough-
ness as observed by post mortem examination or X-ray
tomography slices [24]. In both case, RICC levels are ex-
pected to be quite high which would lead to lower ∆K
levels and a lower crack arrest depth [25].

D. Life Predictions

Using the previous calculations, life predictions based
on the computed stress intensity factor range –or more
exactly crack depth prediction as a function of the num-
ber of cycle, since specimens do not fail in pure fretting
conditions– can be derived from the Paris Law:

N = Ni +

∫ ln

l0

1

C∆Km
eff

da

where Keff =
√

K2
I +K2

II , the coefficient C and the ex-
ponent m, are given for da/dN expressed in mm/cycle
and K in MPa

√
m. This equation has been originally

developed for mode I fatigue crack growth but can also
reasonably well describe mixed mode crack growth as
shown in [26]. The two constants are equal to C =
6.53×10−8mm/cycle, m = 3.387 for the considered 2xxx
aluminium alloy. For the studied fretting conditions, Ni

has been experimentally determined to be equal to 50.103

cycles [16].
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FIG. 10: Life predictions based on the stress intensity factors
determined by FEM for different crack angles; crack depth
measured experimentally have been added for comparison.

Fig. 10 shows the results of the fretting life predictions
for the same loading conditions as used in the experi-
ments [14]. One can readily observe that the crack angle
has a strong influence on the propagation life as sug-
gested by the ∆KI and ∆KII values already presented.
Increasing the angle of the crack towards the center of
the contact will have two effect: (i) the crack growth will
be slower and (ii) the crack arrest depth will be shorter.
For clarity, predictions for the 30° angle without fric-
tion between the crack faces are not presented in Fig. 10
but the curve is essentially the same with a longer crack
arrest depth (300 µm versus 200 µm in this particular
case). This is clearly due to the higher ∆KII value which
rapidly becomes predominant for inclined cracks (∆KI

reaches zero).
Regarding the comparison with the experimental re-

sults, one can observe that the 30° angle predictions
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closely match the initial experimental behaviour, al-
though the average crack arrest behaviour is best de-
scribed by the 15° angle results. This is to be compared
with the 20 to 25° average propagation angle measured
on cross section and by tomography. Of course in real
experiments, the crack angle is not constant and further
work is needed (using a bifurcation criterion) to extend
those prediction with a varying crack angle as a func-
tion of the crack depth. Criteria for the determination
of angles of crack growth are now well established un-
der proportional loading [27–29]. However, fretting con-
ditions induces non-proportional loading at crack tips
which are characterized by a KI/KII ratio varying dur-
ing the cycle. Only a few theorical studies are devoted
to non-proportional conditions and some of them [30, 31]
showed the inapplicability of certain classical criteria to
describe crack propagation. For instance, Hourlier and
Pineau applied a criteria under non-proportional condi-
tions where the crack path corresponds to the direction
where the mode I fatigue growth rate is maximum [32].
Bower suggested that the crack would tend to propagate
in the direction of the maximum value of ∆σmax [33].
Lamacq showed that for fretting fatigue conditions, the
KII = 0 approach worked well to predict the crack an-
gle [26]. Yet, there is no general agreement on which
criterion is to work in the pure fretting case.

IV. CONCLUSION

This paper presented a numerical framework suitable
to study crack propagation under pure fretting condi-
tions. The FEM simulations have been coupled with

LEFM to successfully describe some experimental char-
acteristic features of fretting cracks like the influence of
the crack angle and the crack arrest depth. Given the
highly multi-axial stress field developing under the con-
tact, the path taken by the crack appears critical with
respect to its propagation rate. Regarding mode I, the
maximum stress intensity value decreases as the crack
grows and it was shown that the decrease is stronger
when the crack is inclined towards the center of the con-
tact zone. For mode II, although the stress intensity level
KII remains high, its range ∆KII progressively decrease
to zero if the friction of crack faces is taken into account,
this ultimately being the cause of the crack arrest. If
crack propagation is assume to occur without friction,
predicted mode II stress intensity factor ranges are much
higher which leads to longer fretting cracks.
Two directions appear particularly important to ex-

tend this work. First, the effect of crack bifurcation
should be investigated. Many criteria are available from
the literature to try to predict the path of a crack in
a multiaxial stress field but the non-proportional nature
of fretting loads should be accounted for. Second, the
present model cannot yet account for microstructural ef-
fect on the crack path as shown by a number of stud-
ies. Cyclic plastic deformation at the crack tip should
be investigated using a suitable material constitutive be-
haviour such as crystal plasticity.
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