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Missing Data Imputation and Corrected Statistics for Large-Scale Behavioral Databases 

 

 

 

Abstract. This paper presents a new methodology to solve problems resulting from missing 

data in large-scale item performance behavioral databases. Useful statistics corrected for 

missing data are described, and a new method of imputation for missing data is proposed. 

This methodology is applied to the DLP database recently published by Keuleers et al. (2010), 

which allows us to conclude that this database fulfills the conditions of use of the method 

recently proposed by Courrieu et al. (2011) to test item performance models. Two application 

programs in Matlab code are provided for the imputation of missing data in databases, and for 

the computation of corrected statistics to test models. 

 

 

 

Key words: missing data imputation; statistics corrected for missing data; item performance 

behavioral databases; model goodness of fit. 

 



Pierre Courrieu & Arnaud Rey / Missing Data                              3/47 

1. Introduction 

 

An increasing number of large-scale item performance behavioral databases have been 

published recently, making available a large amount of shared data for building virtual 

experiments, testing hypotheses and models. In particular, three large-scale databases 

providing response times and accuracy data for thousands of words, in standard visual word 

recognition tasks (lexical decision, or naming), are now available for three different 

languages: the English Lexicon Project (ELP: Balota, Yap, Cortese, Hutchison, Kessler, 

Loftis, Neely, Nelson, Simpson, & Treiman, 2007), the French Lexicon Project (FLP: 

Ferrand, New, Brysbaert, Keuleers, Bonin, Méot, Augustinova, & Pallier, 2010), and the 

Dutch Lexicon Project (DLP: Keuleers, Diependaele, & Brysbaert, 2010).  

Examining response time raw data in these databases, one can observe that the amount 

of missing data is quite important, as a result of response errors, technical failures, or outliers. 

For instance, there are about 16% missing lexical decision RTs in DLP, which are easily 

countable since the raw data are simply available and DLP used a complete experimental 

design where all participants (39) responded to all test words (14089), contrarily to ELP 

(40481 words) and FLP (39840 words), where each of the numerous participants responded 

only to a subset of the whole set of test words. Nevertheless, based on the published percents 

of accuracy, one can estimate that the percent of missing lexical decision RTs is about 16% 

for ELP, and about 9% for FLP. This is not visible for final users because they usually do not 

use the raw data. In fact, the databases provide an average RT over all non-missing RTs for 

each test word, so, missing data are not actually a problem at this stage.  

However, in order to test models that predict RT performance at the item level (e.g. 

Perry, Ziegler, & Zorzi, 2010; Yap & Balota, 2009), it is necessary to know the reproducible 

proportion of item related variance that is available in the data. It has recently been shown 

that this proportion is given by a particular intraclass correlation coefficient (ICC), which is 

the so-called "ICC(C, k), Cases 2 and 2A" coefficient, according to the nomenclature of 

McGraw and Wong (1996), computed on the raw data table. This method is valid provided 

that the considered experimental measure fulfills an additive decomposition model that is very 

commonly assumed (Courrieu, Brand-d’Abrescia, Peereman, Spieler & Rey, 2011; Rey, 

Courrieu, Schmidt-Weigand & Jacobs, 2009). Courrieu et al. (2011) proposed an efficient 

test, named ECVT (for "Expected Correlation Validity Test"), to determine the suitability of 

the ICC approach for any given database. However, this test is based on a Monte-Carlo 

permutation resampling method, which is sensitive to missing data, and that does not 
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correctly work when the proportion of missing data is large (say, more than 5%). Moreover, it 

can be shown that missing data act in fact as a parasitic source of noise that harms the data 

consistency, and, consequently, lowers the reproducible proportion of item-related variance as 

measured by the ICC. The ICC itself and its confidence intervals can always be computed just 

using a standard analysis of variance (ANOVA) on any raw data table, and Rey and Courrieu 

(2010) recently published these statistics for the DLP database. However, without the ECVT 

test, one cannot be sure that the ICC accurately measures the reproducible proportion of item-

related variance. 

As we noted above, DLP used a complete experimental design, providing a 14089 

items by 39 participants data table on which one can easily compute the ICC (just removing 

33 items without valid RT data). However, this is not the case for ELP and FLP databases, 

where each test word was presented only to a subset of all participants. A possible solution to 

this problem is to build "virtual participants" by mixing the data provided by several real 

participants in such a way that each virtual participant has an observation for each item. Using 

raw data to do this could have catastrophic consequences if the mixed data were provided by 

real participants having different response characteristics, such as, for instance, their 

"cognitive speed" (Faust, Balota, Spieler, & Ferraro, 1999). With regard to response latencies, 

Faust et al. (1999) showed that the inter-individual variability is well modeled by linear 

relationships. So, a simple way of removing this linear component of the inter-individual 

variability from the data is to transform the raw data into Z-scores, that is, for each real 

participant, all his/her valid data are centered by subtracting their average, and divided by 

their standard deviation. This transformation is near unbiased provided that one assigns with 

each real participant a large random sample of items. Then Z-scores can be mixed to build 

virtual participants. So, using Z-scores probably represents a general solution for large-scale 

databases. However, even using (possibly mixed) Z-scores, there is still a problem with 

missing data because, in general, the number of valid data is not the same for all items. For 

instance, in DLP response time database, after removing 33 items with zero valid data, it 

remains 58 items with only 1 valid data each, 59 items with 2 valid data each, and so on, up to 

3219 items with 39 valid data each. This function is plotted in Figure 1. 

Statisticians widely studied the problem of missing data, which is often present in 

large-scale studies. This led them to develop imputation methods that allow replacing missing 

data with suitable estimates, avoiding introduce statistical biases, as much as possible. Many 

imputation methods rely on regression-like techniques that are not suitable to the type of data 

considered here. However, there is at least one imputation method that seems appropriate for 
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our problem. This is the so-called "Adjusted Random Imputation" method (Chen, Rao, & 

Sitter, 2000), which is very simple and near unbiased, and which, in addition, preserves the 

original data mean values, thus avoiding modifications of the data usually provided to final 

users of large-scale databases. 

 In the next section, we describe the Adjusted Random Imputation (ARI) method of 

Chen et al. (2000), and we rapidly examine its drawbacks for an application to the type of 

database considered in this paper. In Section 3, we show that the ICC of data tables with 

missing data is biased, and we describe a suitable estimate of the "true" ICC of any Z-score 

type data table with missing data. In Section 4, we describe a new missing data imputation 

method, called "Column and Row Adjusted Random Imputation" (CRARI), which is a 

suitable extension of the ARI method that allows adjusting the data ICC. A Matlab program 

implementing the CRARI method is listed in Appendix A, together with an example of 

application to real data. In Section 5, we demonstrate, using artificial data, that the ECVT test 

(Courrieu et al., 2011) provides the same results on data tables without missing data than on 

similar data tables where a substantial proportion of data has been removed and imputed by 

the CRARI method. In Section 6, we apply the CRARI imputation method to the DLP 

database, which then allows us to apply the ECVT test and to conclude positively about the 

relevance of the ICC approach for this database. In Section 7, we observe that missing data 

not only degrade the ICC, but they also degrade the average values used as item performance 

measures. So we propose corrected correlation statistics suitable to solve this problem when 

one tests models and predictors on the considered data. A Matlab program computing these 

statistics is listed in Appendix B, together with an example of application to real data. Finally, 

we conclude in Section 8. 

 

Figure 1 

 

2. The Adjusted Random Imputation method 

 

 The Adjusted Random Imputation method (ARI: Chen et al., 2000) allows replacing 

missing data, in a data table, with random estimates in such a way that the average of each 

row (item) remains the same as in the raw data table, and the expected variance in each row is 

equal to the observed variance of valid raw data in the same row. Given that the empirical 

mean and variance are unbiased consistent estimators of the parent parameters, one can hope 

that the imputation is at least approximately unbiased for the mean and variance. In addition, 
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the method is very simple: for each item, one first replaces each missing data with a valid data 

randomly selected (with replacement) among all valid data of the considered item. Then one 

subtracts the average of the replaced data from these data, and one adds to them the average 

of the valid data, which provides to the imputation the properties above mentioned. See Table 

1 for a concrete example. 

 

Table 1 

 

Unfortunately, this elegant method has also some drawbacks that we must take into 

account. First, in cases where there is only one valid data for a given item, the variance of the 

data under imputation is zero because only one value is used. Since it is not rare that only one 

valid data is available for an item in large-scale databases (e.g. this occurs for 58 items in 

DLP), there is here a possible variance bias. However, the variance in rows, by itself, is not 

the most important characteristic for the use of item databases. What is actually important, in 

this case, is the consistency of the data as measured by the ICC, so what we should obtain is 

an approximately unbiased ICC estimate under missing data imputation. 

In order to examine the performance of the ARI method from this point of view, we 

built artificial data tables, of Z-score type, with known ICCs. Then we gradually degraded 

these data tables by increasing the proportion of (randomly) missing data. In each case, the Z-

scores were recomputed on the degraded data, and the ICC of the obtained data table was 

computed. Then the ARI imputation method was applied to this table, and the data ICC under 

imputation was computed. Figure 2 shows a typical example of such an experiment, using 

1400-by-80 tables of Z-scores. As one can see in Figure 2, the ICC of the raw data table 

decreases, and substantially underestimates the exact ICC, as the proportion of missing data 

increases. On the other hand, the ICC of the data table under imputation by the ARI method 

increases, and substantially overestimates the exact ICC, as the proportion of missing data 

increases. Thus, nor the raw data ICC, nor the ICC of data imputed by the ARI method 

provides a reliable estimate of the exact ICC (i.e., the ICC of the original data table before 

degradations). In addition, Figure 2 shows a quite accurate estimate of the exact ICC that will 

be described in the next section. 

 

Figure 2 
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 In summary, the ARI method has the advantage of imputing missing data in a way that 

preserves the original item means. Unfortunately, this imputation method does not preserve 

the data consistency as measured by the ICC statistic, and it introduces consistency biases that 

increase as the proportion of missing data increases. So, we must find another approach. 

 

3. Intraclass correlation coefficient corrected for missing data 

 

 In this section, we define a suitable estimate of the exact ICC, using the ICC observed 

on the raw data and the proportion of missing data in the data table. Before doing this, we 

rapidly recall the data population model that leads to the ICC approach of the reproducible 

proportion of item related variance (Courrieu et al., 2011; Rey et al., 2009). 

 

3.1. Data population model 

 

Let 

! 

I  be a population of items, let 

! 

P  be a population of participants, and let 

! 

X  be a 

behavioral measure (e.g. response time) on the space 

! 

I " P , probabilized by a distribution 

representing, say, the probability for each pair (item, participant) to be selected in an 

experiment. One assumes that 

! 

X  conforms to the usual additive decomposition model: 

! 

X = µ +" + # + $ ,     (1) 

where 

! 

µ is the mean value of 

! 

X  on 

! 

I " P , and 

! 

" , 

! 

" , and 

! 

" are three independent random 

variables of mean zero, and of variance 

! 

"#

2 , 

! 

"#

2 , and 

! 

"#

2, respectively. The variable 

! 

"  is the 

participant effect, and it takes a constant value for each given participant. The variable 

! 

"  is 

the item effect, and it takes a constant value for each given item. The variable 

! 

" is considered 

as a random noise, however, it can as well result from the combination of an item-participant 

interaction and of a true random noise. The variable 

! 

" , whose values characterize the items, 

is the variable of interest in this study. 

 

 One can derive from 

! 

X  another measure, denoted 

! 

X
(n ), that is the arithmetic mean of 

! 

X  over 

! 

n  randomly selected distinct participants (thus 

! 

X
(1)

= X ), then one obtains from (1) 

the following decomposition: 

! 

X
(n ) = µ +" (n ) + # + $(n ),    (2) 

where the random variables 

! 

" (n ), 

! 

" , and 

! 

"(n ) are always independent with means zero, but 

their variances are now 

! 

"#

2
/n , 

! 

"#

2 , and 

! 

"#

2
/n , respectively. 
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Consider now the bivariate distribution of pairs 

! 

(x,y), where 

! 

x  and 

! 

y  are independent 

realizations of 

! 

X
(n ). Then the population correlation between 

! 

x  and 

! 

y , varying the items, is 

given by: 

! 

"(x,y) =
#$

2

#$

2
+#%

2
/n

.     (3) 

One can recognize in (3) the expression of a well-know intraclass correlation coefficient 

(ICC), that is the "ICC(C, k), Cases 2 and 2A" coefficient, according to the nomenclature of 

McGraw and Wong (1996). The expression (3) itself shows that the ICC is the proportion of 

systematic variance (

! 

"#

2 ) in the total item related variance (

! 

"#

2
+"$

2
/n ), which also follows 

from Equations (12-13) in Courrieu et al. (2011). 

 

3.2. Corrected ICC  

 

We consider now random variables similar to those defined in (2), but where a 

proportion 

! 

p  of values are randomly missing. Then the mean number of averaged values is no 

longer 

! 

n , but: 

! 

n'= (1" p)n       (4) 

Denoting 

! 

"p  the ICC for variables with a proportion 

! 

p  of randomly missing values, and using 

(3) and (4), one has approximately: 

! 

"p #
$%

2

$%

2
+$&

2
/n'

     (5) 

So we can write: 

! 

1/"
0
#1/"p $

%&

2

%'

2
1/n #1/n'( ) =

n'(1# "p )

"p

1/n #1/n'( ), 

where 

! 

"
0
 is the exact ICC (without missing values). It follows from the above relation that: 

! 

"
0
#

n'(1$ "p )

"p

1/n $1/n'( ) +
1

"p

% 

& 
' ' 

( 

) 
* * 

$1

=
"p

1$ p(1$ "p )
+ "p

,  (6) 

where the last inequality is strict if 

! 

p > 0 and 

! 

"p <1, which means that 

! 

"p  underestimates 

! 

"
0
. 

From (6), one can also define an estimate of 

! 

"
0
 as: 

! 

"cor =
"p

1# p(1# "p )
,     (7) 
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where the subscript "

! 

cor " means "corrected" (for missing data). In practice, 

! 

"p  is estimated 

by the ICC of the data table, computed by a standard ANOVA, and 

! 

p  is the observed 

proportion of missing data in this table. 

 

 One does not obtain 

! 

"
cor

= "
0
, in general, because randomly missing values induce 

contaminations between the different sources of variation, in such a way that (5) is a rough 

approximation if 

! 

"#

2  is not negligible. However, if 

! 

"#

2  is small with respect to both 

! 

"#

2  and 

! 

"#

2, then 

! 

"
cor

 appears to be a suitable estimate of 

! 

"
0
. Fortunately, 

! 

"#

2  is just the variance 

corresponding to the column (participant) effect in a data table, and thus this variance is 

removed when one uses Z-scores as behavioral measures. In order to test the suitability of 

! 

"
cor

 as an estimate of 

! 

"
0
, we built artificial data tables gradually degraded as in Section 2, but 

instead of considering only Z-scores, we used four different versions of each table: a version 

with non-centered columns (and a substantial 

! 

"#

2 ), a version with centered columns (thus 

! 

"#

2
= 0), a Z-scores version, and a mixed Z-scores version where the Z-data in each row 

where randomly mixed. One can see in Figure 3 that, when the columns of the data tables are 

not centered, the estimate (

! 

"
cor

) has a positive bias that increases as the proportion of missing 

data increases. However, when the columns are centered, as well as for Z-scores and mixed Z-

scores, the estimate is visibly reliable since it randomly oscillates in a close neighborhood of 

the exact value for all proportions of missing data (up to 30% in these examples, which is 

much greater than percentages of missing data commonly observed in real databases). Note 

that all plots in Figure 3 are identical, except the first one. In particular, randomly mixing Z-

scores in each row of a data table preserves the ICC statistics with respect to the non-mixed 

case. As a practical rule for the column effect, we observed that 

! 

"
cor

 is a reliable estimate of 

! 

"
0
 if there is no more than 5% missing data, or if the estimated column effect (

! 

s"
2 ) is not 

greater than both the row effect (

! 

s"
2 ) and the row-by-column interaction (

! 

s"
2). This rule is 

implemented in the application programs listed in Appendix A and Appendix B. 

 

Figure 3 

 

 In summary, we defined a simple and easy to compute statistic, denoted 

! 

"
cor

, which is 

an ICC corrected for missing data, and which is an estimate of the ICC that would be obtained 
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if no data were missing. This estimate is reliable provided that the column effect in the 

considered data table is small or removed. 

 

 

3.3. Building virtual participants from datasets with incomplete designs 

 

 As we observed in Section 3.2, randomly mixing Z-scores in each row of a data table 

preserves the ICC statistics with respect to the non-mixed case. This suggests a possible 

strategy for structuring datasets with incomplete designs (e.g. ELP, or FLP), in order to make 

possible the computation of their ICC statistics. First, one must transform the raw data into Z-

scores in order to remove the linear component of the individual variability. Let 

! 

n  be the 

observed maximum number of valid data per item, then one can build a rectangular data table 

with 

! 

m  items (rows) and 

! 

n  "virtual participants" (columns), and one randomly assigns each 

valid Z-score to a column, in the appropriate row. In general, this leaves "holes" in the table 

because there are items with less than 

! 

n  valid data. These holes can be treated as ordinary 

missing data, and the ICC statistics can be computed on the table as if we had 

! 

n  real 

participants. This approach will not be developed more in this article, and it is just mentioned 

as an indication for further investigations. 

 

 

4. Column and Row Adjusted Random Imputation method 

 

 In this section, we define a new imputation algorithm, called " Column and Row 

Adjusted Random Imputation " (CRARI), that allows replacing missing data by imputed 

values in such a way that the resulting item means are the same as those of the initial data 

table, and the ICC of the data table under imputation can be set to any desired value in a wide 

range of possible values, including the ICC of the initial data table (approximately

! 

"p), and 

the estimate 

! 

"
cor

 of 

! 

"
0
 defined by (7), when appropriate. In particular, this last option is 

always suitable for tables of Z-scores, as stated in Section 3. The CRARI algorithm is an 

extension of the ARI algorithm of Chen et al. (2000), however, it avoids the biases of the ARI 

method observed in Section 2 for items-by-participants data tables of Z-scores. 
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4.1. Principle of the method 

 

 First, we note that the CRARI algorithm, just as the ARI algorithm, is deterministic 

whenever there is no more than one missing data per item in the raw data table. In this case, 

an imputed value, for a given item, is necessarily equal to the average of all valid observations 

for that item, in order to preserve the item mean. Thus, in the following, we assume that at 

least one item has more than one missing data in the raw data table, which is usually the case 

in large-scale databases. 

 

 The first problem to be solved is the case of items with only one valid data, which 

leads to impute values with zero variance when using the ARI method. So, the first step of the 

CRARI method consists in applying the ARI algorithm to each column (instead of each row) 

of the data table, which results in a provisional imputed data table where all column means 

are unchanged, but each row (item) contains values with a non-zero expected variance, even if 

only one valid data is available for that item. At this stage, the item means are not adjusted, 

that is, they are (probably) different from those of the initial data table. The second step of the 

CRARI method operates on each row of the provisional data table, where all imputed values 

(if any) must be centered by subtracting their average. Then one multiplies them by a positive 

coefficient 

! 

c  whose computation will be described below, and one add to the imputed values 

the average of the valid data available for the considered item. As a result, whatever be the 

coefficient 

! 

c , the item means are now equal to those of the initial data table, leaving also the 

general mean of the table unchanged. However, the resulting column means can be somewhat 

different from those of the initial table, despite the fact that their expected value is unchanged. 

A suitable choice of the coefficient 

! 

c  allows adjusting the ICC of the data table under 

imputation, while this ICC can be arbitrarily chosen in a wide range of values. Two non-

arbitrary ICC values are of special interest: the ICC of the initial data table (hereafter called 

"low ICC"), which can always be computed by an ANOVA, and the estimate 

! 

"
cor

 that can be 

computed using the low ICC as 

! 

"p  in (7). Whatever be the target ICC, one can reach it thanks 

to the following mechanism. Provided that we consider several distinct imputed values for an 

item, their (non-zero) variance is multiplied by 

! 

c
2, and thus, globally, the variance of the data 

associated to that item increases as 

! 

c  increases, or it decreases as 

! 

c  decreases. Part of this 

variance affects the column effect, which is not of interest, but the remaining part of the 

adjustable variance affects the row-by-column interaction effect, which is just what we need 
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to control the ICC, given that the row effect remains unchanged due to the fact that the item 

means are fixed. As a result, the ratio 

! 

q ="#

2
/"$

2 decreases as 

! 

c  increases, and conversely 

! 

q 

increases as 

! 

c  decreases. Given that the ICC is a monotonic increasing function of the 

! 

q ratio, 

we have a simple mean to control the ICC value of the data table under imputation. So, one 

can use a simple dichotomic search procedure to compute the 

! 

c  value providing the target 

ICC value, which is the method implemented in the Matlab program CRARI listed in 

Appendix A. This program can be used directly, or as an implementation model. For readers 

not familiar with Matlab code, we summarize hereafter the method in pseudo-code. 

 

4.2. The CRARI algorithm 

 

Given: 

 - a data table of (m items)-by-(n participants), with missing data, 

 - and a Target ICC value (

! 

"p  computed by ANOVA, or 

! 

"
cor

 computed from 

! 

"p  by (7)) 

 

If (no more than one missing data per item) then    {deterministic case} 

 For item ← 1 to m 

  Replace the missing data, if any, by the average of all valid data in the row. 

 End 

 The output is the resulting table 

Else         {random imputation} 

 For participant ← 1 to n 

  For each missing data in the column 

   randomly replace the missing data by a valid data from the column. 

  End 

  Compute the average of the replaced data in the column. 

  Subtract this average from the replaced data in the column. 

  Compute the average of all valid data in the column. 

  Add this average to the replaced data in the column. 

 End 

 For item ← 1 to m 

  Compute the average of all replaced data (if any) in the row. 

  Subtract this average from the replaced data in the row. 
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 End 

 cmin ← 0, cmax ← maximal c (e.g. 10), tolerance←small positive number (e.g. 10-4) 

 Repeat 

  c ← (cmin + cmax) / 2 

  Compute a provisional table where: 

   all valid data remain unchanged, 

   and all replaced data are multiplied by c. 

  Compute the ICC of the provisional table by a standard ANOVA. 

  If (ICC > Target ICC) then 

   cmin ← c 

  Else 

   cmax ← c 

  End 

 Until (cmax - cmin) < tolerance 

The output is the last computed provisional table. 

End 

 

4.3. Behavior of the imputation method 

 

 In order to test the behavior of the new method, we replicated the experiments on 

artificial data of Section 2, but using the CRARI method, instead of the ARI method, for 

imputation. Figure 4 shows an example of experiment where the target ICC was the estimate 

! 

"
cor

. As one can see, the CRARI algorithm reached the target ICC in all cases, providing a 

close approximation of the exact ICC. Now, if one takes the low ICC as target, then one 

obtains an "imputed" curve undistinguishable from the "missing" curve of Figure 4. Thus, 

clearly, the CRARI algorithm is efficient for imputation of data with a prescribed ICC. 

 

Figure 4 

 

 In summary, the CRARI method, just as the ARI method, has the advantage of 

imputing missing data in a way that preserves the original item means. In addition, the 

CRARI imputation method allows us to preserve the data consistency as measured by the ICC 
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statistics, while one can choose the "low ICC" observed with missing data, or the ICC 

corrected for missing data (

! 

"
cor

), as the ICC of the data table under imputation. 

 

5. The ECVT test on data tables with imputation of missing data 

 

 A major interest of having an efficient imputation method is to allow the use of 

permutation resampling techniques that do not work on data tables with too many missing 

data. This is the case of the ECVT test (Courrieu et al. 2011), which was shown to efficiently 

test the compatibility of any data table with the additive decomposition model (1), and 

consequently, the relevance of the ICC approach to determine the proportion of item related 

variance that models should account for in the considered data set. This test cannot work, for 

instance, on the DLP database (Keuleers et al., 2010) because missing data (16%) prevent 

from obtaining pairs of complete vectors of item means necessary to the permutation 

resampling procedure of the ECVT test. This was, in fact, our first motivation to develop the 

CRARI method, however, before using it in conjunction with the ECVT test, we must be sure 

that the imputation does not induce biases that could lead the ECVT test to provide wrong 

conclusions.  

 

5.1. Building artificial data 

 

 A suitable way of examining this problem consists in building complete artificial data 

tables that fulfill or do not fulfill model (1), and degraded versions of the same data tables, 

including a substantial proportion of missing data, to which one applies the CRARI algorithm 

in order to impute the missing data. Then, applying the ECVT test to both data tables, one 

must obtain the same conclusions for the tables with imputed data as for the original tables. It 

is easy to build artificial data that fulfill model (1), however, building data that do not fulfill 

model (1), we must take care that the discrepancy of the data from model (1) cannot be 

removed by the Z-score transformation, since the CRARI method is mainly devoted to work 

on Z-scores. One can obtain suitable data using the following generating process: 

    

! 

xij = µ + sign(" i) # "i
$ j + %ij ,     (8) 

where 

! 

i  is the index for the row (item), and 

! 

j  is the index for the column (participant). The 

variables 

! 

µ, 

! 

" , and 

! 

" are defined as in model (1), however, the participant effect (

! 

" ) is not 
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additive, nor multiplicative since it would be removed by the Z-score transformation. The 

participant effect is a random variable generated by the following process: 

    

! 

" j =1# s$ log(1# u j ),     (9) 

where 

! 

u j  is uniformly randomly sampled in the interval 

! 

[0,1) , and 

! 

s is a non-negative 

parameter. Observe that if 

! 

s = 0  then the participant effect is always equal to 1, and the 

generated data fulfill model (1). However, the discrepancy of the generated data from model 

(1) increases as 

! 

s increases, as a result of using powers different from 1 in (8). The 

cumulative probability function of 

! 

"  in this model is given by: 

    

! 

P(") =1# exp(#(" #1) /s), " $1.    (10) 

 

 

5.2. Randomly distributed missing data 

 

 We randomly generated data tables of size 1400×80 using model (8), and varying the 

parameter 

! 

s of (9). For each table, we built a degraded version of the table with 16% 

randomly missing data, and we transformed the data of both tables in Z-scores. Then the 

CRARI algorithm was applied to the degraded tables with 

! 

"
cor

 as the target ICC, resulting in 

data tables with 16% imputed data. Finally, we applied the ECVT test to both data tables (for 

a detailed description of this test, see Courrieu et al. 2011). Figure 5 shows an example of 

ECVT results for data tables generated with 

! 

s = 0 , thus compatible with model (1), and for 

data tables generated with 

! 

s = 2 , thus incompatible with model (1). As one can see, in all 

cases, the ECVT test provided the correct conclusion, which was always the same for the 

original data table and for the corresponding imputed data table. Lowering 

! 

s to 1, one still 

obtains correct detections of the discrepancy from model (1) for both original and imputed 

data tables, although the discrepancy is no longer visible on the test graphs. As previously 

noted by Courrieu et al. (2011), the ECVT test is more sensitive than the eye. We conclude 

from this study that the ECVT test provides similar conclusions for original data tables and 

for data tables with a substantial proportion of data imputed by the CRARI algorithm, when 

the missing data are randomly distributed. 

 

Figure 5 
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5.3. Non-randomly distributed missing data 

 

 Randomly distributed missing data can occur in certain databases, for instance when 

missing data mainly result from technical failures. However, in experimental paradigms such 

as lexical decision or speeded naming, missing data frequently result from response errors, 

and these errors are not random since they typically concentrate on items with low frequency 

of use and special difficulties (Balota,  Cortese, Sergent-Marshall, Spieler, & Yap, 2004), 

which are also the items with the greatest response times (when not missing). Since the DLP 

database includes lexical decision times, it appeared necessary to verify that the ECVT test, 

combined with the CRARI imputation method, provides suitable conclusions on data tables 

with a distribution of missing data similar to that of DLP. In order to do this, we first 

reordered the rows (items) of the DLP database by increasing order of the item mean RTs 

transformed in Z-scores. Then the exact locations of all missing data in the resulting table 

were marked. Using (8), we generated complete artificial data tables of the same size as the 

DLP data table (14056 by 39), varying the s parameter of (9) from 0 to 6, and using a q ratio 

approximately equal to that of the DLP Z-scores (for s = 0). The rows of each table were 

reordered by increasing order of their means, and a degraded version of each table was 

obtained by removing the data at the same locations as the missing data in the reordered DLP 

data table. Then both tables were transformed in Z-scores, and the CRARI algorithm was 

applied for imputation of the missing data to the degraded tables, with 

! 

"
cor

 as the target ICC, 

and the ECVT test was applied to both resulting tables. With such data, it appeared necessary 

to increase the s parameter of (9) up to 6 in order to obtain detectable discrepancies from 

model (1). Outcomes of the ECVT test in this experiment are plotted in Figure 6, where one 

can see that the conclusions of the ECVT test are correct for s = 0 (compatibility with model 

(1)), as well as for s = 6 (discrepancy from model (1)), for both the original complete data 

tables and the corresponding data tables under imputation for missing data. However, one can 

note in Figure 6 that the standard deviations of the r distributions in case of discrepancy from 

model (1) are substantially lower for the data table under imputation than for the original data 

table, which suggests that the imputation is not unbiased in terms of distribution. 

Nevertheless, the ECVT test seems to provide reliable conclusions, even when combined with 

the CRARI imputation for missing data. 

 

Figure 6 
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 In summary, we observed that the ECVT test provides the same conclusions for data 

tables without missing data than for similar data tables where a substantial proportion of data 

has been replaced with data imputed using the CRARI method. This is true for randomly 

distributed missing data, as well as for more realistic distributions of missing data that mimic 

the one of the DLP database. 

 

6. Application to the DLP database 

 

 We computed the ICC and three of its confidence intervals (95%, 99%, and 99.9%) for 

four versions of the DLP response time database: the raw data (RTs), the Z-scores, the Z-

scores with imputation of missing data (16%) by CRARI with the low ICC, and Z-scores with 

imputation of missing data by CRARI with the 

! 

"
cor

 ICC. The results are reported in Table 2, 

where one can see that the statistics, including the confidence intervals, are exactly the same 

for Z-scores and imputed Z-scores with low ICC. We note also that using Z-scores (imputed 

or not) improves the reproducible proportion of item related variance with respect to raw data, 

and this improvement is significant since the confidence intervals do not overlap. Note, 

however, that this last result does not generalize to every database. Depending on each 

particular data distribution, Z-scores are sometimes advantageous, and sometimes they are 

not, as one can verify using simulated data. The imputation of missing data using 

! 

"
cor

 clearly 

provides the most consistent data table. Moreover, if one directly applies (7) to the confidence 

limits of the ICC of the DLP Z-scores, without imputation for missing data, one obtains the 

confidence intervals [0.879, 0.884], [0.878, 0.885], and [0.877, 0.886] for 95%, 99%, and 

99.9% confidence, respectively. These confidence intervals are equal, with three decimal 

digits, to those obtained with imputation for missing data with 

! 

"
cor

 as the target ICC. This 

provides a rapid way of estimating the confidence intervals of 

! 

"
cor

 without imputation. At this 

point, the reader probably ask to what ICC the proportion of variance accounted for by a 

model must be compared. We break the suspense: use the raw data ICC if the model 

correlation is computed with the average raw data, and use the Z-scores ICC if the model 

correlation is computed with the average Z-scores. The 

! 

"
cor

 ICC is useless to test models (we 

will see why in Section 7), except if one uses the 

! 

r
cor

2  goodness of fit statistic defined in 

Section 7.3. However, as demonstrated in Section 5, it is relevant to impute missing data 

using 

! 

"
cor

 as the target ICC, in order to be able to test properties of the data themselves. 
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Table 2 

 

 This is just what we do now, applying the ECVT test to the DLP Z-scores with 

CRARI imputation of missing data, using 

! 

"
cor

 as the target ICC. The result of the ECVT test 

can be shown in Figure 7, where one can see that the theoretical and observed correlation 

curves are undistinguishable, and the 

! 

" 2 test is non-significant, indicating that the DLP data 

are compatible with model (1). 

 

Figure 7 

 

 As a supplemental verification, we applied the ECVT test to the DLP Z-scores with 

CRARI imputation of missing data, but using the low ICC as the target. The result of the 

ECVT test can be shown in Figure 8, where one can see that, once again, the theoretical and 

observed correlation curves are undistinguishable, and the 

! 

" 2 test is non-significant, 

confirming that the DLP data are compatible with model (1). So, the statistics reported in 

Table 2 can be confidently used to test models with the DLP database. 

 

Figure 8 

 

 The validity of the ICC approach had been previously demonstrated, using the ECVT 

test, for word identification times in English, and for word naming times in English and in 

French (Courrieu et al., 2011). However, it is the first time that we can conclude with regard 

to lexical decision times (in Dutch), which is very important since lexical decision is the most 

widely used experimental paradigm in visual word recognition studies. An alternative 

approach would be to remove all items presenting a high proportion of missing data, and to 

apply the ECVT test only on the remaining items, without imputation for missing data. This 

approach leads to remove a large proportion of items with low frequency of use, which is not 

desirable because rare words are useful in experiments, where their relative frequency of 

occurrence is much greater than in the every day life. Moreover, statistics computed only on 

the most frequent items are not necessarily good estimates for the whole item population. 

 

 In summary, we provided the ICC statistics (with confidence intervals) for the lexical 

decision times of the DLP database and their Z-score transformation. Using the CRARI 



Pierre Courrieu & Arnaud Rey / Missing Data                              19/47 

imputation method allowed us to apply the ECVT test to DLP Z-scores, and to conclude that 

the ICC suitably measures the reproducible proportion of item related variance that models 

should try to account for in the Z-score version of the DLP database. 

 

 

7. Compensating item means inaccuracy for model tests 

 

7.1. Missing data induce inaccuracy in item means 

 

 It is well known that the empirical mean of a random sample of size 

! 

n  is an unbiased, 

consistent estimator of the parent mean. More precisely, as 

! 

n  increases, the estimation error 

of the mean rapidly tends to be normally distributed with mean 0, and variance 

! 

E(v
2
) " E

2
(v)( ) n , where 

! 

v  is the considered random variable, and 

! 

E  is the usual "expected 

value" operator. Thus, preserving the empirical item means in imputation methods is certainly 

a good strategy because empirical means are unbiased estimators of the parent means, 

however, the accuracy of the estimates clearly depends on the number of empirical data 

actually averaged for each item, while this number is affected by missing data. As a result, the 

accuracy of the empirical vector of item means decreases as the proportion of missing data 

increases in the data table. This is illustrated in Figure 9, were the results of an experiment 

with artificial data similar to those of Section 2 and Section 4 are plotted, together with the 

correlation between the vector of item means of the original data table, and the one of 

degraded data tables with an increasing proportion of missing data (up to 90%). As one can 

see, the degradation of the correlation of item means ("r(item means)" curve) is roughly 

parallel to the degradation of the low ICC ("missing" curve). In the same time, the 

! 

"
cor

 ICC 

("estimate" curve), and the CRARI imputation ICC ("imputed" curve) remain equal and 

oscillate in a neighborhood of the exact ICC ("exact" curve), with a moderately increasing 

variance. This is the reason why the low ICC is usually the good reference to test models, 

since one uses the (squared) correlation between model predictions and possibly degraded 

empirical item means, according to Courrieu et al. (2011). 

 

Figure 9 
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7.2. Virtues of the 

! 

r
2
/ICC  ratio 

 

 However, there is another way of testing predictor type models, and that way is, in a 

sense, more general than the simple model misfit test proposed in Courrieu et al. (2011). 

Noting that the usual squared Pearson's correlation coefficient 

! 

r
2  (or 

! 

R
2, for multiple 

regression models) is an estimate of the proportion of item related variance accounted for by a 

given model, we deduce that the ratio 

! 

r
2
/ICC  estimates the proportion of reproducible item 

related variance that is accounted for by the model, given that the ICC estimates the 

reproducible proportion of item related variance actually available in the data. But there is 

more, as we state now. 

 

 The parent ratio of 

! 

r
2
/ICC  is 

! 

"2(x,B) /"(x,y), where 

! 

B is the considered predictive 

variable (model prediction), 

! 

x  and 

! 

y  are two independent realizations of 

! 

X
(n ), as in (3). 

Remembering that 

! 

Var(x) =Var(y) ="#

2
+"$

2
/n  (see Courrieu et al., 2011), one can write: 

 

! 

"2(x,B) /"(x,y) =
Cov

2
(x,B)

Var(x)Var(B)

Cov(x,y)

Var(x)Var(y)( )
1/ 2

=
Cov

2
(x,B)

Var(B)Cov(x,y)
, 

and given that 

 

! 

Cov(x,B) = Cov(",B) + Cov(#(n ),B), 

! 

Cov(x,y) ="#

2 , and 

! 

Var(B) ="
B

2 , 

one obtains 

   

! 

"2(x,B) /"(x,y) =
Cov(#,B) + Cov($(n ),B)( )

2

%#

2 %B

2
.   (11) 

If 

! 

Cov("(n ),B) = 0 then 

   

! 

"2(x,B) /"(x,y) =
Cov

2
(#,B)

$#

2 $B

2
= "2(#,B),    (12) 

which is just the squared correlation between the predictive variable 

! 

B and the hidden 

behavioral variable 

! 

" . Note that this quantity is independent of the noise and of the number 

of participants, which makes it of special interest for various purposes, and in particular for 

removing the effect of missing data from model goodness of fit statistics. The case of (12) is 

what normally occurs if the predictive variable 

! 

B does not over-fit the data. 

 

 However, if 

! 

Cov(",B)Cov(#(n ),B) > 0 then (11) implies that 

! 

"2(x,B) /"(x,y) > "2(#,B) . This case typically corresponds to an over-fitting, that is, the 
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predictive variable 

! 

B is correlated with the data noise (with the same sign as its correlation 

with 

! 

" ), generally due to the use of too many free parameters in the model to fit the data. 

 

 Now, if 

! 

Cov(",B)Cov(#(n ),B) < 0 then (11) implies that 

! 

"2(x,B) /"(x,y) < "2(#,B) , 

however, one can hardly imagine a mechanism generating such a situation (negative over-

fitting?), except hazard. 

 

 In order to illustrate (12), we considered two behavioral databases previously used in 

Courrieu et al. (2011), and in Rey, Brand-d'Abrescia, Peereman, Spieler, and Courrieu (2010). 

These databases are an English word naming RTs table of size 770 items by 94 participants, 

with 3.61% missing data, and a French word naming RTs table of size 615 items by 100 

participants, with 3.94% missing data. For each database, we considered two well-known 

predictors, that is, the word log-frequency of use, and the word length (number of letters). We 

used a permutation resampling procedure with various participant group sizes, similar to the 

procedure used in the ECVT test. However, in addition to the computation of the correlation 

between item means of two groups, at each resampling step, we also computed the correlation 

between item means of one group and each of the two predictors. At the end, we obtained, for 

each participant group size, an estimate of the ICC, and estimates of the correlations between 

item means and the two predictors. Then, for each group size and for each predictor, we 

computed the ratio 

! 

r
2
/ICC  and we plotted the obtained ratios as functions of the participant 

group size in Figure 10, for the two databases. We know that the ICC is a monotonic 

increasing function of the number of participants, however, (12) predicts that 

! 

r
2  increases in 

the same way as the ICC, in such a way that the ratio 

! 

r
2
/ICC  remains constant. This is just 

what we can observe in Figure 10 for the two databases and the two predictors. Incidentally, 

we can also observe that the word frequency effect is stronger than the word length effect in 

English, while the converse is true in French. 

 

Figure 10 

 

7.3. Corrected 

! 

r
2  goodness of fit statistic 

 

 Here, we exploit the fact that (12) is independent of the noise and of the number of 

participants. Let 

! 

rp  be the correlation coefficient of a predictive variable 

! 

B with a behavioral 
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measure, averaged over 

! 

n  participants with a proportion 

! 

p  of missing values, and let 

! 

"p  

denote the corresponding ICC. If there is no over-fitting, then one has after (12): 

     

! 

rp
2
/"p = r

2
(#,B) ,     (13) 

and in particular for 

! 

p = 0, one has: 

    

! 

r
0

2
/"

0
= r

2
(#,B) $ r

0

2
= "

0
r
2
(#,B) .   (14) 

Combining (13) and (14) one obtains: 

     

! 

r
0

2
= "

0
rp
2
/"p .      (15) 

Now, in cases where 

! 

"
cor

 is a suitable estimate of 

! 

"
0
 (e.g. Z-score type data), we have: 

     

! 

r
0

2 " #cor rp
2
/#p ,     (16) 

that is, multiplying the observed ratio 

! 

r
2
/ICC  by the ICC corrected for missing data 

(

! 

"
cor

defined by (7)), we obtain an estimate of the squared correlation of the predictive 

variable 

! 

B with the behavioral measure averaged over 

! 

n  participants without missing data. 

So, using (16), we define the 

! 

r
2  statistic corrected for missing data as: 

     

! 

rcor
2

= "cor rp
2
/"p .     (17) 

 Note that the reference ICC for the goodness of fit statistic 

! 

r
cor

2  is 

! 

"
cor

, whose 

confidence intervals can be computed on a data table under CRARI imputation with 

! 

"
cor

 as 

the target ICC, or can be directly approximated using (7) on the ICC confidence limits. The 

Matlab program ICCR2 listed in Appendix B takes as arguments a data table and a set of 

predictors, and it provides as outputs the ICC statistics of the data table and the goodness of 

fit statistics of the predictors (

! 

r
2 , 

! 

r
2
/ICC , and 

! 

r
cor

2 ). An example of use of the program is also 

provided. The goodness of fit statistics can also be used as complementary information in 

multiple regression analyses, remembering that 

! 

R
2 is equal to the squared correlation 

coefficient of the data with the optimal composite predictor computed by multiple regression 

analysis (Cohen, Cohen, West, & Aiken, 2003). 

 

 In order to illustrate the behavior of the 

! 

r
cor

2  estimate, we built artificial data tables as 

in Section 7.1, and an artificial predictor with known 

! 

r
2  goodness of fit. Then we increased 

the proportion of missing data up to 90%, and we plotted 

! 

r
0

2  ("exact" curve), 

! 

rp
2  ("observed" 

curve), and 

! 

r
cor

2  ("estimate" curve), as functions of the percentage of missing data, in Figure 

11. As one can see, 

! 

r
cor

2  behaves as a near unbiased estimator of 

! 

r
0

2 , however, the estimator 

variance increases as the proportion of missing data increases. Nevertheless, the estimator 
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variance remains small enough for practical use with commonly observed percentages of 

missing data. Thus, we can conclude that 

! 

r
cor

2  is a suitable estimate for practical applications, 

while the bias of the observed 

! 

rp
2  is visibly substantial and dramatically increasing as the 

proportion of missing data increases. So, we can be sure that 

! 

r
cor

2  is at least a much better 

estimate than the usual 

! 

r
2  in cases where there are missing data, provided that one uses Z-

score type data. 

Figure 11 

 

 In summary, after observing that missing data degrade the accuracy of the averages 

used as item performance measures, in the same way as they degrade the data consistency, we 

proposed two useful goodness-of-fit statistics to test models: the ratio 

! 

r
2
/ICC , which is 

approximately independent of the data accuracy and consistency, and the 

! 

r
cor

2  statistic, which 

is a version of the usual 

! 

r
2  statistic corrected for missing data. The 

! 

r
cor

2  statistic can be 

compared to 

! 

"
cor

 in the same way as the usual 

! 

r
2  statistic can be compared to the low ICC. 

 

8. Conclusion 

 

 This study is in the continuation of the work recently published by Courrieu et al. 

(2011), which addressed the problem of the amount of variance that item level performance 

models should account for in large-scale behavioral databases. In the previous study, it was 

shown that the reproducible proportion of item related variance in such databases is suitably 

measured by a particular intraclass correlation coefficient (ICC) computed on the data table, 

provided that the considered behavioral measure fulfills a usual additive decomposition 

model. Then a powerful test, named ECVT, was proposed to detect discrepancies of the 

considered data from this model, and it was shown that commonly used behavioral measures 

suitably fulfill the model, making the ICC approach relevant. However, the ECVT test is 

based on a permutation resampling procedure that cannot correctly work when there are too 

many missing data in the considered data table. Unfortunately, the proportion of missing data 

is commonly quite large in large-scale databases, due to response errors, outliers, and 

technical failures. So, in the present study, we addressed the problem of missing data and we 

proposed ways of overcoming this problem. We noted that the Z-score transformation of raw 

data (Faust et al., 1999) is a general solution for suitably formatting large-scale behavioral 

databases, so the present study mainly focused on Z-score type data. 
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 The first idea that one can have to solve the problem of missing data is to replace the 

missing data with suitable estimates that preserve the essential statistical properties of the 

whole data set, without introducing biases. We first described the Adjusted Random 

Imputation (ARI) method of Chen et al. (2000), and using artificial data, we observed some 

drawbacks of this method for an application to large-scale item level behavioral databases. 

Then, we showed that the ICC of data tables with missing data is biased, and we described a 

suitable estimate of the exact ICC of any Z-score type data table with missing data. We 

described a new missing data imputation method, called "Column and Row Adjusted Random 

Imputation" (CRARI), which is a suitable extension of the ARI method that allows adjusting 

the data ICC. A Matlab program implementing the CRARI method is listed in Appendix A, 

together with an example of application to real data.  

 Then, we demonstrated, using artificial data, that the ECVT test proposed by Courrieu 

et al. (2011) provides the same results on data tables without missing data than on similar data 

tables where a substantial proportion of data has been removed and imputed by the CRARI 

method. We applied the CRARI imputation method to the DLP database (Keuleers et al., 

2010), which then allowed us to apply the ECVT test to this database under imputation of 

missing data, and to conclude that the ICC approach is relevant for this database. This is the 

first time that the approach of Courrieu et al. (2011) is validated on lexical decision times, 

which is an important result since lexical decision is the most widely used experimental 

paradigm in visual word recognition studies. The ICC statistics of the DLP database were 

provided for practical use in model testing on these data.  

 However, we observed that missing data not only degrade the data table ICC, but they 

also degrade the average values used as item performance measures. So, we proposed 

corrected correlation statistics suitable to solve this problem when one tests models and 

predictors on data sets with missing data. A Matlab program computing these statistics is 

listed in Appendix B, together with an example of application to real data. Note that users 

having difficulties for using the provided Matlab programs can directly contact the authors 

(pierre.courrieu@univ-provence.fr). 

 We conclude that this study provides effective and reasonably robust methods to solve 

the problem of missing data that always occurs in large-scale studies, and to test item 

performance models and predictors on the large-scale behavioral databases recently made 

available to the community of researchers. 
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Appendix A. CRARI program (Matlab 7.5 code) for missing data imputation. Texts at right 
of "%" are comments. 
 
---------------------------------------------------------------------------------------------------------------- 
function [IX,c,iccX,iccCor,iccIX] = CRARI(X,MissCode,LowICC) 
% ------------ Column and Row Adjusted Random Imputation ------------------ 
%                             Input: 
% X: (m x n) data table; MissCode: code for missing data (default: Inf); 
% If LowICC=0 (default), then impute using the corrected ICC (iccCor), 
%    else impute using the ICC of the data table (iccX). 
%                             Output: 
% IX: (m x n) imputed data table 
% c: c coefficient computed by the CRARI algorithm 
% iccX: ICC of X; iccCor: ICC corrected for missing data; iccIX: ICC of IX 
%                             Note: 
% There must be at least one data per row and column, and if LowICC=0, then 
% X columns must have approximately equal means, as with (mixed) Z-scores. 
% ------------------------------------------------------------------------- 
  
if nargin<3, LowICC=0; end, if nargin<2, MissCode=inf; end        % Default 
  
[m,n]=size(X);                                                 % ANOVA of X 
ti = zeros(m,1); ni = ti; tj = zeros(1,n); nj = tj; 
sx2 = 0; 
for i = 1:m 
    for j = 1:n 
        if X(i,j) ~= MissCode 
            ti(i,1) = ti(i,1)+X(i,j); 
            ni(i,1) = ni(i,1)+1; 
            tj(1,j) = tj(1,j)+X(i,j); 
            nj(1,j) = nj(1,j)+1; 
            sx2 = sx2 + X(i,j)^2; 
        end 
    end 
end 
if ~isempty(find(ni==0,1)), error('Error in CRARI: empty row(s)'), end; 
if ~isempty(find(nj==0,1)), error('Error in CRARI: empty column(s)'), end; 
mitemX = ti./ni; maxmiss=max(n-ni); 
N = sum(ni); pmiss=(m*n-N)/(m*n);         % Proportion of missing data in X 
t = sum(ti); ss = sx2 - t^2/N; 
ssi = sum(ti.^2./ni) - t^2/N; 
ssj = sum((tj.^2./nj),2) - t^2/N; 
ssij = ss - ssi - ssj; 
dfi = m-1; dfj = n-1; dfij = N-1-dfi-dfj; 
msi = ssi/dfi; msj=ssj/dfj; 
vij = ssij/dfij; vi = max(0,(msi-vij)/n); vj=max(0,(msj-vij)/m); 
if (vj>min(vij,vi)) && (pmiss>0.05) && (LowICC==0) % Test the column effect 
    warning('Non-negligible column effect: target ICC possibly biased') 
end 
iccX = vi/(vi+vij/n);                               % ICC of the data table 
iccCor = iccX/(1-pmiss*(1-iccX));          % ICC corrected for missing data 
if LowICC>0                                            % Set the target ICC 
    iccTar=iccX; 
else 
    iccTar=iccCor; 
end 
  
  
% ------------------------- Imputation procedure -------------------------- 
if pmiss>eps 
     
  IX=zeros(m,n); 



Pierre Courrieu & Arnaud Rey / Missing Data                              26/47 

  if maxmiss<2                              % Deterministic imputation case 
    for i=1:m 
      x=X(i,:); ix=IX(i,:); 
      miss=find(x==MissCode); 
      if ~isempty(miss) 
        resp=find(x~=MissCode); 
        mresp=mean(ix(resp),2); 
        ix(miss)=mresp; 
      end 
    IX(i,:)=ix; 
    end                                      % End deterministic imputation 
  else                                             % Random imputation case 
    CIX=IX;  
    for j=1:n                                          % ARI on the columns 
      x=X(:,j); 
      miss=find(x==MissCode); 
      if ~isempty(miss) 
        resp=find(x~=MissCode); 
        r=fix(rand(length(miss),1)*length(resp))+1; 
        don=resp(r); 
        mdon=mean(x(don)); 
        mresp=mean(x(resp)); 
        x(miss)=mresp+(x(don)-mdon); 
      end 
      CIX(:,j)=x; 
    end                                         % End of ARI on the columns 
  cmin=0; cmax=10; ctol=0.0001;                    % Dichotomic search of c 
  todo=true; 
  while todo                            
    c=(cmin+cmax)/2; 
    for i=1:m                             % Adjust the rows using current c 
      x=X(i,:); ix=CIX(i,:); 
      miss=find(x==MissCode); 
      if ~isempty(miss) 
        resp=find(x~=MissCode); 
        mdon=mean(ix(miss),2); 
        mresp=mean(ix(resp),2); 
        ix(miss)=mresp+c*(ix(miss)-mdon); 
      end 
      IX(i,:)=ix; 
    end                                            % End of adjust the rows 
    ti = zeros(m,1); ni = ti;                                 % ANOVA of IX 
    tj = zeros(1,n); nj = tj; 
    sx2 = 0;                              
    for i = 1:m 
      for j = 1:n 
            ti(i,1) = ti(i,1)+IX(i,j); 
            ni(i,1) = ni(i,1)+1; 
            tj(1,j) = tj(1,j)+IX(i,j); 
            nj(1,j) = nj(1,j)+1; 
            sx2 = sx2 + IX(i,j)^2; 
      end 
    end 
    mitemIX = ti./ni;  
    N = sum(ni); 
    t = sum(ti); ss = sx2 - t^2/N; 
    ssi = sum(ti.^2./ni) - t^2/N; 
    ssj = sum((tj.^2./nj),2) - t^2/N; 
    ssij = ss - ssi - ssj; 
    dfi = m-1; dfj = n-1; dfij = N-1-dfi-dfj; 
    msi = ssi/dfi; 
    vij = ssij/dfij; vi = max(0,(msi-vij)/n);  
    iccIX = vi/(vi+vij/n);                                   % Obtained ICC 
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    if iccIX>iccTar            % Compare the obtained ICC to the target ICC 
      cmin=c; 
    else 
      cmax=c; 
    end 
    if (cmax-cmin)<ctol 
      todo=false; 
    end 
  end                                   % End of the dichotomic search of c 
  end 
else 
    IX=X;                                            % No missing data case 
end 
difmit=max(abs(mitemX-mitemIX));               % Verification of item means 
if difmit>1e-9 
    message=['Item mean inaccuracy: ',num2str(difmit)]; 
    warning(message) 
end 
end 
----------------------------------------------------------------------------------------------------------------- 
 

Commented example of use of the CRARI program 
 
>> load DLP.mat 
 
% Load DLP raw data (RTs) 
 
>> ZDLP=zscore(DLP,0); 
 
% Transform DLP raw data in Z-scores (the argument "0" is the code for missing data in 
DLP, but the code for missing data in ZDLP is "inf", since 0 is a possible Z-score value) 
 
>> [m,n]=size(ZDLP); pmiss=sum(sum(ZDLP==inf))/(m*n) 
 
pmiss = 0.1568 
 
% This is the proportion of missing data in ZDLP (and in DLP) 
 
>> [IZDLP,cIZDLP,iccZDLP,iccCorZDLP,iccIZDLP] = CRARI(ZDLP,inf,0); 
 
% CRARI imputation of the missing data in ZDLP, using ZDLP ICC corrected for missing 
data (iccCorZDLP) as target ICC (i.e. setting LowICC=0 as third input argument). If one set 
LowICC=1 as third input argument, then the target ICC is the observed one (iccZDLP). 
 
>> cIZDLP,iccZDLP,iccCorZDLP,iccIZDLP 
 
cIZDLP = 2.1349              % Obtained c coefficient 
 
iccZDLP = 0.8626             % ICC of the input data table (ZDLP) 
 
iccCorZDLP = 0.8816       % ICC corrected for missing data 
 
iccIZDLP = 0.8816            % ICC of the output data table (IZDLP) 
----------------------------------------------------------------------------------------------------------------- 
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Appendix B. ICCR2 program (Matlab 7.5 code). Texts at right of "%" are comments. 
 
---------------------------------------------------------------------------------------------------------------- 
function [q,icc,conf,pmiss,iccCor,mitem,r2,r2onICC,r2Cor] = ... 

ICCR2(X,MissCode,pconf,predictor) 
% ---- X ICC, predictor r2, and statistics corrected for missing data ----- 
%                             Input: 
% X:  (m items) x (n participants) data table 
% MissCode:  numerical code for missing data in table X (default = inf) 
% pconf: probabilities of ICC confidence intervals (def. [.95 .99 .999]) 
% predictor: (m items) x (k predictors) table of predictions (optional) 
%                             Output: 
% q,icc: q ratio and intraclass correlation (ICC) of table X by ANOVA 
% conf:  ICC confidence intervals ([prob lower upper]) 
% pmiss: proportion of missing data in X 
% iccCor: ICC corrected for missing data 
% mitem: (m x 1) column vector of mean performance for each item 
% r2: (1 x k) vector of squared correlations of mitem with the k predictors 
% r2onICC: r2/icc (1 x k) vector 
% r2Cor: iccCor * r2onICC, squared correlations corrected for missing data 
%                              Note: 
% Statistics corrected for missing data (*Cor) are reliable only if the 
% columns of X have approximately equal means, as with (mixed) Z-scores. 
% ------------------------------------------------------------------------- 
  
  
pred=true; if nargin<4, pred=false; end                  % Default settings 
if nargin<3, pconf=[0.95 0.99 0.999]; end 
if nargin<2, MissCode=inf; end 
  
[m,n] = size(X);                                               % ANOVA of X 
ti = zeros(m,1); ni = ti; tj = zeros(1,n); nj = tj; 
sx2 = 0; 
for i = 1:m 
    for j = 1:n 
        if X(i,j) ~= MissCode 
            ti(i,1) = ti(i,1)+X(i,j); 
            ni(i,1) = ni(i,1)+1; 
            tj(1,j) = tj(1,j)+X(i,j); 
            nj(1,j) = nj(1,j)+1; 
            sx2 = sx2 + X(i,j)^2; 
        end 
    end 
end 
if ~isempty(find(ni==0,1)), error('Error in ICCR2: empty row(s)'), end; 
if ~isempty(find(nj==0,1)), error('Error in ICCR2: empty column(s)'), end; 
mitem = ti./ni; 
N = sum(ni);  
pmiss=(m*n-N)/(m*n);                      % Proportion of missing data in X 
t = sum(ti); ss = sx2 - t^2/N; 
ssi = sum(ti.^2./ni) - t^2/N; 
ssj = sum((tj.^2./nj),2) - t^2/N; 
ssij = ss - ssi - ssj; 
dfi = m-1; dfj = n-1; dfij = N-1-dfi-dfj; 
msi = ssi/dfi; msj=ssj/dfj; 
vij = ssij/dfij; vi = max(0,(msi-vij)/n); vj=max(0,(msj-vij)/m); 
if (vj>min(vij,vi)) && (pmiss>0.05)             % Test of the column effect 
    warning('Non-negligible column effect: *Cor statistics not reliable') 
end 
q = vi/vij; icc = vi/(vi+vij/n); Fobs=msi/vij;             % ICC statistics 
Q1f=quantF(1-(1-pconf)/2,dfi,dfij);  % Compute the ICC confidence intervals 
Q2f=quantF(1-(1-pconf)/2,dfij,dfi); 
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conf=zeros(length(pconf),3); 
for i=1:length(pconf) 
    conf(i,1)=pconf(i); 
    conf(i,2)=1-Q1f(i)/Fobs; 
    conf(i,3)=1-1./(Q2f(i)*Fobs); 
end 
iccCor = icc/(1-pmiss*(1-icc));            % ICC corrected for missing data 
if pred                                         % Predictor(s) statitistics 
    r2=corrcoef([mitem,predictor]); r2=r2(1,2:end).^2; 
    r2onICC=r2/icc; 
    r2Cor=iccCor*r2onICC; 
else 
    r2=[]; r2onICC=[]; r2Cor=[]; 
end 
end 
  
function x = quantF(p,d1,d2) 
% F distribution quantiles 
x = quantbeta(p,d1/2,d2/2); 
x = x.*d2./((1-x).*d1); 
end 
  
function x = quantbeta(p,a,b) 
% Beta distribution quantiles 
tol=1e-6; 
x0=zeros(size(p)); x1=ones(size(p)); 
x=0.5*(x0+x1); dp=betainc(x,a,b)-p; 
while max(abs(dp(:)))>tol 
    x0(dp<=0)=x(dp<=0); x1(dp>=0)=x(dp>=0); 
    x=0.5*(x0+x1); dp=betainc(x,a,b)-p; 
end 
end 
----------------------------------------------------------------------------------------------------------------- 
 

Commented example of use of the ICCR2 program 
 
>> [q, icc, conf, pmiss, iccCor, mitem, r2, r2onICC, r2Cor] = ... 

ICCR2(EnglishRT, 0, 0.99, [EnglishLogFreq, EnglishLength]); 
 

% The "EnglishRT" input argument is a (770 x 94) table of English printed word naming 
times (raw data from Courrieu et al., 2011) with 3.61% missing data, "0" is the code for 
missing data, we request a 99% confidence interval for the ICC, and we test two predictors: 
word log-frequency of use (EnglishLogFreq), and word length in letters (EnglishLength). 
 
>> q, icc, conf, pmiss, iccCor 
 
q = 0.1333                                           % q ratio of the data table 
 
icc = 0.9261                                        % ICC of the data table 
 
conf = 0.9900    0.9160    0.9355        % 99% confidence interval of the ICC 
 
pmiss = 0.0361                                    % Proportion of missing data in the data table 
 
iccCor = 0.9286                                   % ICC corrected for missing data 
 
>> r2, r2onICC, r2Cor 
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r2 = 0.1337    0.0592                % Squared correlations of the predictors with item mean RTs 
 
r2onICC = 0.1443    0.0639     % Squared correlations on ICC ratios 
 
r2Cor = 0.1340    0.0593          % Squared correlations corrected for missing data 
 
----------------------------------------------------------------------------------------------------------------- 
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Legends and captions 

 

Table 1: Illustration of the ARI method. In this example, the original dataset for a given item i 

is composed of five RTs and two missing values (from Participants 3 and 6). During Step 1 of 

the ARI method, each missing value is replaced by a randomly selected valid data (with 

replacement). During Step 2, the average of these two replaced RTs (560) is subtracted to 

each replaced RT. During Step 3, the average of the valid data is added to the previous 

replaced values. One can verify that the mean RT for the final set of values is equal to the 

mean RT for the original dataset.  

 

Table 2. ICCs with confidence intervals (95%, 99%, and 99.9%) for four versions of the DLP 

response time database (Keuleers et al., 2010): the raw data (RTs), the Z-scores, Z-scores with 

imputation of missing data (16%) by CRARI with the low ICC as target, and Z-scores with 

imputation of missing data by CRARI with the 

! 

"
cor

 ICC as target. The table also provides the 

estimate of the q ratio (

! 

q ="#

2
/"$

2) corresponding to each ICC. The c coefficients computed 

by the CRARI algorithm were 

! 

c = 2.472 , for the low ICC target, and 

! 

c = 2.1349 , for the 

corrected ICC target. 

 

Figure 1. Plot of the number of items as a function of the number of valid observations (RTs) 

per item in the DLP database (Keuleers et al., 2010). 

 

Figure 2. ICCs computed from artificial 1400-by-80 Z-score data tables, from an initial 

complete data table whose ICC was known, and gradually degraded by increasing the 

proportion of randomly missing data (up to 30%). The "exact" curve corresponds to the ICC 

of the initial table, the "missing" curve corresponds to the ICCs of the degraded tables, and 

the "imputed" curve corresponds to the ICCs obtained under imputation of missing data by 

the ARI method (Chen et al., 2000). The "estimate" curve corresponds to the 

! 

"
cor

 ICCs 

defined by (7). 

 

Figure 3. Experiments on artificial data similar to those of Figure 2, but before applying Z-

score transformations. The "Non-centered columns" plot corresponds to raw data, the 

"Centered columns" plot corresponds to the same data with zeroed column means, the "Z-

scores" plot correspond to full Z-scores, and the "mixed Z-scores" plot corresponds to Z-
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scores randomly mixed in each row. The "exact" curve corresponds to the ICC of the initial 

table, the "missing" curve to the ICCs of degraded tables, and the "estimate" curve to the 

! 

"
cor

 

ICCs defined by (7). Note that all plots, except the first one, are identical. 

 

Figure 4. Similar to Figure 2, except that the imputation of missing data was performed by the 

CRARI method with the 

! 

"
cor

 ICCs defined by (7) as target ICCs. 

 

Figure 5. ECVT test (Courrieu et al., 2011) applied to artificial data that fulfill model (1), with 

s=0, or that do not fulfill model (1), with s=2. In each case, we tested the original data table, 

and a degraded version with 16% randomly missing data that were imputed by the CRARI 

algorithm with the 

! 

"
cor

 ICC defined by (7) as target ICC. Note that the ECVT test provided 

the correct conclusions in all cases, on imputed data tables as well as on original tables. 

 

Figure 6. ECVT test in an experiment with artificial data as in Figure 5, but using the same 

table size and the same distribution of missing data as the DLP database (Keuleers et al., 

2010). Once again, the ECVT test provided the correct conclusions in all cases, on imputed 

data tables as well as on original tables. 

 

Figure 7. ECVT test of the DLP database (Keuleers et al., 2010), after Z-score transformation 

of the data, and imputation of the 16% missing data by the CRARI algorithm with the 

! 

"
cor

 

ICC defined by (7) as target ICC. The "predicted" and "observed" curves are 

undistinguishable, and the 

! 

" 2 test is clearly non significant, so the Z-scores of the DLP 

database fulfill model (1), and the ICC approach is relevant for these data. 

 

Figure 8. Similar to Figure 7, but using the low ICC as target ICC of the CRARI imputation 

for missing data. The conclusion of the ECVT test is unchanged. 

 

Figure 9. An experiment on artificial data similar to the experiment of Figure 4, but with 

degraded data tables up to 90% missing data, and the evolution of the correlation between the 

original item means and the item means of degraded data tables. 

 

Figure 10. Evolution of the 

! 

r
2
/ICC  ratio, as a function of the number of participants taken 

into account, for two predictors (word log-frequency of use, and word length in letters) of 
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word naming times in two languages (English and French), using two empirical databases 

from Courrieu et al. (2011). 

 

Figure 11. An experiment using artificial data similar to those of Figure 9, and an artificial 

predictor with know 

! 

r
2  with the original data. The figure plots the observed 

! 

r
2  goodness of 

fit statistics and the 

! 

r
cor

2  estimates as functions of the percentage of missing data in the 

degraded data tables. 
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Table 1 

 

 

 

 
Participant 1 2 3 4 5 6 7 means 

Item i data 

Step 1 

Step 2 

Step 3 

500 

500 

500 

500 

570 

570 

570 

570 

Missing 

620 

620-560 = 60 

60+568 = 628 

630 

630 

630 

630 

520 

520 

520 

520 

Missing 

500 

500-560 = -60 

-60+568 = 508 

620 

620 

620 

620 

568 

560 

 

568 
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Table 2 

 

 

 
DLP data ICC   (q ratio) 95% confidence 99% confidence 99.9% confidence 

Raw data (RTs) 
16% missing 

Z-scores 
16% missing 

Z-scores, low ICC 
imputation 

Z-scores, corrected 
ICC imputation 

 
0.845 (0.1396) 

 
0.863 (0.1610) 

 
0.863 (0.1610) 

 
0.882 (0.1909) 

 
[0.841, 0.849] 

 
[0.859, 0.866] 

 
[0.859, 0.866] 

 
[0.879, 0.884] 

 
[0.840, 0.850] 

 
[0.858, 0.867] 

 
[0.858, 0.867] 

 
[0.878, 0.885] 

 
[0.839, 0.851] 

 
[0.857, 0.868] 

 
[0.857, 0.868] 

 
[0.877, 0.886] 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 

 

 

 

 
 

 

 


