On logical hierarchies within FO2-definable languages

Manfred Kufleitner, Pascal Weil

To cite this version:

Manfred Kufleitner, Pascal Weil. On logical hierarchies within FO2-definable languages. 2011. hal00567171v1

HAL Id: hal-00567171
 https://hal.science/hal-00567171v1

Preprint submitted on 18 Feb 2011 (v1), last revised 16 Mar 2012 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON LOGICAL HIERARCHIES WITHIN FO²-DEFINABLE LANGUAGES

MANFRED KUFLEITNER AND PASCAL WEIL

Abstract

We consider the class of languages defined in the 2-variable fragment of the first-order logic of the linear order. Many interesting characterizations of this class are known, as well as the fact that restricting the number of alternations yields an infinite hierarchy. We show that each level of this hierarchy forms a variety of languages and hence, it admits an algebraic characterization. With this tool, we show that the quantifier alternation hierarchy over $\mathrm{FO}^{2}[<]$ is decidable within one unit. For this purpose, we relate each level of the hierarchy with decidable varieties of languages, which can be defined in terms of iterated deterministic and co-deterministic products. A crucial notion in this process is that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle languages of Schwentick, Thérien and Vollmer.

Many important properties of systems are modeled by finite automata. Frequently, the formal languages induced by these systems are definable in first-order logic. Our understanding of its expressive power is of direct relevance for a number of application fields, such as verification.

The first-order logic we are interested in, in this paper, is the first-order logic of the linear order, written $\mathrm{FO}[<]$, interpreted on finite words. It is well-known that the languages that are definable in this logic are exactly the star-free languages, or equivalently the regular languages whose syntactic monoid is aperiodic (that is: satisfies an identity of the form $x^{n+1}=x^{n}$ for some integer n) $[18,14]$ (see also $[15,21,22]$); and that deciding whether a finite automaton accepts such a language is PSPACE-complete [3].

Fragments of first-order logic defined by the limitation of certain resources have been studied in detail. For instance, the quantifier alternation hierarchy, with its close relation with the dot-depth hierarchy of star-free languages, offers one of the oldest open problems in formal language theory: we know that the hierarchy is infinite and that its levels are characterized algebraically (by a property of the syntactic monoids), but we do not know whether these levels (besides levels 0 and 1) are decidable. In contrast, it is known that the quantifier alternation hierarchy for the first-order logic of the successor, $\mathrm{FO}[S]$, collapses at level $2[27,16]$.

Date: February 12, 2011.
1998 ACM Classification F.4.3, F.4.1.
The second author acknowledges support from ANR project 2010 blan 020201 frec. Both authors acknowledge support from the ESF program AutoMathA.

Another natural limitation considers the number of variables in a formula. This limitation has attracted a good deal of attention, as the trade-off between formula size and number of variables is known to be related with the trade-off between parallel time and number of processes, see $[9,1,8]$.

It is well-known that every first-order formula is equivalent to one using at most three variables. On the other hand, the first-order formulas using at most two variables, written $\mathrm{FO}^{2}[<]$ are strictly less expressive. The class of languages defined by such formulas admits many remarkable characterizations [24]. To begin with, a language is $\mathrm{FO}^{2}[<]$-definable if and only if it is recognized by a monoid in the pseudovariety DA [26] (a precise definition will be given in Section 2). As with the characterization of FO $[<]$-definability by aperiodic monoids, this characterization implies decidability. The $\mathrm{FO}^{2}[<]$-definable languages are also characterized in terms of unambiguous products of languages (see Section 6.3) and in terms of the unary fragment of propositional temporal logic [7] (see Section 1.3). For a survey of these properties, the reader is referred to $[24,6]$.

In this paper, we consider the quantifier alternation hierarchy within the two-variable fragment of first-order logic. We denote by $\mathrm{FO}_{m}^{2}[<]$ the fragment of $\mathrm{FO}^{2}[<]$ consisting of formulas using at most 2 variables and at most m alternations of quantifiers. In the sequel, we omit specifying the predicate $<$ and we write simply $\mathrm{FO}, \mathrm{FO}^{2}$ or FO_{m}^{2}.

Schwentick, Thérien and Vollmer introduced the so-called turtle programs to characterize the expressive power of FO^{2} [20]. These programs are sequences of directional instructions of the form go to the next a to the right, go to the next b to the left. More details can be found in Section 1.2 below. Turtle programs were then used, under the name of rankers, by Weis and Immerman [30] (first published in [29]) to characterize FO_{m}^{2} in terms of rankers with m alternations of directions (right vs. left). Their subtle characterization, Theorem 1.7 below, does not yield a decidability result. It forms however the basis of our results.

Our first set of results shows that $\mathcal{F} \mathcal{O}_{m}^{2}$ (the set of $\mathrm{FO}_{m}^{2}[<]$-definable languages) forms a variety of languages, and the same holds for the classes of languages defined by rankers having m alternations of directions. The meaning of this result is that membership of a language L in these classes depends only on the syntactic monoid of L. This justifies using algebraic methods to approach the decidability problem for $\mathcal{F} \mathcal{O}_{m}^{2}$ - a technique that has proved very useful in a number of situations (see for instance [15, 24, $23,6]$).

Our results next show that rankers are actually better suited to the study of a natural hierarchy within the unary fragment of propositional temporal logic, and we introduce the notion of condensed rankers, which turns out to be more adapted to discuss the quantifier alternation within $\mathrm{FO}_{m}^{2}[<]$. Condensed rankers introduce a notion of efficiency in the path they describe in a word, see Section 3. Again, we show that the classes of languages defined by rankers with at most m changes of directions define varieties of languages,
written \mathcal{R}_{m} and \mathcal{L}_{m} depending on whether the initial move is towards the right or towards the left. We show that these classes are decidable, and that they admit a neat characterization in terms of closure under alternated deterministic and co-deterministic products. Moreover, we show that

$$
\mathcal{R}_{m} \cup \mathcal{L}_{m} \subseteq \mathcal{F} \mathcal{O}_{m}^{2} \subseteq \mathcal{R}_{m+1} \cap \mathcal{L}_{m+1}
$$

This shows that one can effectively compute, given a language L in $\mathcal{F} \mathcal{O}^{2}$, an integer m such that L is in $\mathcal{F} \mathcal{O}_{m+1}^{2}$, possibly in $\mathcal{F} \mathcal{O}_{m}^{2}$, but not in $\mathcal{F} \mathcal{O}_{m-1}^{2}$. That is, we can compute the quantifier alternation depth of L within one unit. As indicated above, this is much more precise than the current level of knowledge on the general quantifier alternation hierarchy in $\mathrm{FO}[<]$.

Many of these results were announced in [11], with a few differences. In particular, the definition of the sets $\underline{R}_{m, n}^{X}$ (Section 1.2) in [11] introduced a mistake which is corrected here. And the proof of [11, Proposition 2.9] contained a gap: the correct statement is Proposition 4.3 below.

1. Rankers and logical hierarchies

Let A be a finite alphabet. We denote by A^{*} the set of all words over A (that is, of sequences of elements of A), and by A^{+}the set of non-empty words.If u is a length $n(n>0)$ word over A, we say that an integer $1 \leq$ $i \leq n$ is an a-position of u is the i-th letter of u, written $u[i]$, is an a. If $1 \leq i \leq j \leq n$, we let $u[i ; j]$ be the factor $u[i] \cdots u[j]$ of u.

FO denotes the set of first-order formulas using the unary predicates a $(a \in A)$ and the binary predicate $<$, and FO^{2} denotes the fragment of FO consisting of formulas which use at most two variable symbols.

If u is a length $n(n>0)$ word over A, we identify the word u with the logical structure $\left(\{1, \ldots, n\},(\mathbf{a})_{a \in A}\right)$, where a denotes the set of a-positions in u. Formulas from FO are naturally interpreted over this structure, and we denote by $L(\varphi)$ the language defined by the formula $\varphi \in \mathrm{FO}$, that is, the set of all words which satisfy φ.
1.1. Quantifier-alternation within FO^{2}. We now concentrate on FO^{2} formulas and we define two important parameters concerning such formulas. To simplify matters, we consider only formulas where negation is used only on atomic formulas so that, in particular, no quantifier is negated. This is naturally possible up to logical equivalence. Now, with each formula $\varphi \in \mathrm{FO}^{2}$, we associate in the natural way a parsing tree: each occurence of a quantification, $\exists x$ or $\forall x$, yields a unary node, each occurrence of \vee or \wedge yields a binary node, and the leaves are labeled with atomic or negated atomic formulas. The quantifier depth of φ is the maximum number of quantifiers along a path in its parsing tree.

With each path from root to leaf in this parsing tree, we also associate its quantifier label, which is the sequence of quantifier node labels (\exists or \forall) encountered along this path. A block in this quantifier label is a maximal factor consisting only of \exists or only of \forall, and we define the number of blocks
of φ to be the maximum number of blocks in the quantifier label of a path in its parsing tree. Naturally, the quantifier depth of φ is at least equal to its number of blocks.

We let $\mathrm{FO}_{m, n}^{2}(n \geq m)$ denote the set of first-order formulas with quantifier depth at most n and with at most m blocks and let FO_{m}^{2} denote the union of the $\mathrm{FO}_{m, n}^{2}$ for all n. We also denote by $\mathcal{F} \mathcal{O}^{2}\left(\mathcal{F} \mathcal{O}_{m}^{2}, \mathcal{F} \mathcal{O}_{m, n}^{2}\right)$ the class of $\mathrm{FO}^{2}\left(\mathrm{FO}_{m}^{2}, \mathrm{FO}_{m, n}^{2}\right)$-definable languages.
1.2. Rankers. A ranker is a non-empty word on the alphabet $\left\{\mathrm{X}_{a}, \mathrm{Y}_{a} \mid\right.$ $a \in A\}$. Rankers define positions in words: given a word $u \in A^{+}$and a letter $a \in A$, we denote by $\mathrm{X}_{a}(u)$ (resp. $\mathrm{Y}_{a}(u)$) the least (resp. greatest) integer $1 \leq i \leq|u|$ such that $u[i]=a$. If a does not occur in u, we say that $\mathrm{Y}_{a}(u)$ and $\mathrm{X}_{a}(u)$ are not defined. If in addition q is an integer such that $1 \leq q \leq|u|$, we let

$$
\begin{aligned}
& \mathrm{X}_{a}(u, q)=\mathrm{X}_{a}(u[q+1 ;|u|]) \\
& \mathrm{Y}_{a}(u, q)=\mathrm{Y}_{a}(u[1 ; q-1])
\end{aligned}
$$

These definitions are extended to all rankers: if r^{\prime} is a ranker, $\mathrm{Z} \in\left\{\mathrm{X}_{a}, \mathrm{Y}_{a} \mid\right.$ $a \in A\}$ and $r=r^{\prime} \mathbf{Z}$, we let

$$
r(u, q)=\mathbf{Z}\left(u, r^{\prime}(u, q)\right)
$$

if $r^{\prime}(u, q)$ and $\mathrm{Z}\left(u, r^{\prime}(u, q)\right)$ are defined, and we say that $r(u, q)$ is undefined otherwise. (In particular: rankers are processed from left to right.)

Finally, if r starts with an X - (resp. Y-) letter, we say that r defines the position $r(u)=r(u, 0)($ resp. $r(u)=r(u,|u|+1)$), or that it is undefined on u if this position does not exist.

Remark 1.1. Rankers were first introduced, under the name of turtle programs, by Schwentick, Thérien and Vollmer [20], as sequences of instructions: go to the next a to the right, go to the next b to the left, etc. These authors write (\rightarrow, a) and (\leftarrow, a) instead of X_{a} and Y_{a}. Weis and Immerman [30] write \triangleright_{a} and \triangleleft_{a} instead, and they introduced the term ranker. We rather follow the notation in $[6,10,4]$, where X and Y refer to the future and past operators of PTL.

Example 1.2. The ranker $\mathrm{X}_{a} \mathrm{Y}_{b} \mathrm{X}_{c}$ (go to the first a starting from the left, thence to the first b towards the left, thence to the first c towards the right) is defined on $b a c$ and $b c a$, but not on $a b c$ or $c b a$.

We will encouter $\mathrm{X}_{a} \mathrm{Y}_{b} \mathrm{X}_{c}$ again in Examples 3.3 and 4.2.

By $L(r)$ we denote the language of all words on which r is defined. We say that the words u and v agree on a class R of rankers if exactly the same rankers from R are defined on u and v. And we say that two rankers r and s coincide on a word u if they are both defined on u and $r(u)=s(u)$.

Example 1.3. If $r=\mathrm{X}_{a_{1}} \cdots \mathrm{X}_{a_{k}}$ (resp. $\mathrm{Y}_{a_{k}} \cdots \mathrm{Y}_{a_{1}}$), then $L(r)$ is the set of words that contain $a_{1} \cdots a_{k}$ as a subword, $L(r)=A^{*} a_{1} A^{*} \cdots a_{k} A^{*}$.

The depth of a ranker r is defined to be its length (as a word). A block in r is a maximal factor in $\left\{\mathrm{X}_{a} \mid a \in A\right\}^{+}$(an X-block) or in $\left\{\mathrm{Y}_{a} \mid a \in A\right\}^{+}$ (a Y-block). If $n \geq m$, we denote by $R_{m, n}^{\mathrm{X}}$ (resp. $R_{m, n}^{\mathrm{Y}}$) the set of m block, depth n rankers, starting with an X - (resp. Y-) block, and we let $R_{m, n}=R_{m, n}^{\mathrm{X}} \cup R_{m, n}^{\mathrm{Y}}$ and $\underline{R}_{m, n}^{\mathrm{X}}=\bigcup_{m^{\prime} \leq m, n^{\prime} \leq n} R_{m^{\prime}, n^{\prime}}^{\mathrm{X}} \cup \bigcup_{m^{\prime}<m, n^{\prime}<n} R_{m^{\prime}, n^{\prime}}^{\mathrm{Y}}$. We define $\underline{R}_{m, n}^{\mathrm{Y}}$ dually and we let $\underline{R}_{m}^{\mathrm{X}}=\bigcup_{n \geq m} \underline{R}_{m, n}^{\mathrm{X}}, \underline{R}_{m}^{\mathrm{Y}}=\bigcup_{n \geq m} \underline{R}_{m, n}^{\mathrm{Y}}$ and $\underline{R}_{m}=\underline{R}_{m}^{\mathrm{X}} \cup \underline{R}_{m}^{\mathrm{Y}}$.

Remark 1.4. Readers familiar with [30] will notice differences between our $\underline{R}_{m, n}^{X}$ and their analogous $R_{m \triangleright, n}^{\star}$; introduced for technical reasons, it creates no difference between our $\underline{R}_{m, n}$ and their $R_{m, n}^{\star}$, the classes which intervene in crucial Theorem 1.7 below.
1.3. Rankers and unary temporal logic. Let us depart for a moment from the consideration of FO^{2}-formulas, to observe that rankers are naturally suited to describe the different levels of a natural class of temporal logic. The symbols X_{a} and $\mathrm{Y}_{a}(a \in A)$ can be seen as modal (temporal) operators, with the future and past semantics respectively. We denote the resulting temporal logic (known as unary temporal logic) by TL: its only atomic formula is T, the other formulas are built using Boolean connectives and modal operators. Let $u \in A^{+}$and let $0 \leq i \leq|u|+1$. We say that T holds at every position i, $(u, i) \models \top$; Boolean connectives are interpreted as usual; and $(u, i) \models \mathrm{X}_{a} \varphi$ (resp. $\mathrm{Y}_{a} \varphi$) if and only if $\left(u, \mathrm{X}_{a}(u, i)\right) \models \varphi$ (resp. $\left.\left(u, \mathrm{Y}_{a}(u, i)\right) \models \varphi\right)$. In particular, $(u, i) \notin \mathrm{X}_{a} \varphi$ (resp. $\mathrm{Y}_{a} \varphi$) if there is no a-position greater (resp. less) than i. We also say that $u \models \mathrm{X}_{a} \varphi$ (resp. $\mathrm{Y}_{a} \varphi$) if ($\left.u, 0\right) \models \mathrm{X}_{a} \varphi$ (resp. $(u, 1+|u|) \models Y_{a} \varphi$).

TL is a fragment of propositional temporal logic PTL; the latter is expressively equivalent to FO and TL is expressively equivalent to FO^{2}, see the survey [10].

As in the case of FO^{2}-formulas, one may consider the parsing tree of a TL-formula and define inductively its depth and number of alternations (between past and future operators). If $n \geq m$, the fragment $\mathrm{TL}_{m, n}^{\mathrm{X}}$ (resp. $\mathrm{TL}_{m, n}^{\mathrm{Y}}$) consists of the TL-formulas with depth n and with m alternated blocks, in which every branch (of the parsing tree) with exactly m alternations starts with future (resp. past) operators. Branches with less alternation may start with past (resp. future) operators. The fragments $\mathrm{TL}_{m, n}$, $\underline{\mathrm{TL}}_{m, n}^{\mathrm{X}}, \underline{\mathrm{TL}}_{m, n}^{\mathrm{Y}}, \underline{\mathrm{TL}}_{m}^{\mathrm{X}}, \underline{\mathrm{TL}}_{m}^{\mathrm{Y}}$ and $\underline{\mathrm{TL}}_{m}$ are defined according to the same pattern as in the definition of $R_{m, n}, \underline{R}_{m, n}^{\mathrm{X}}, \underline{R}_{m, n}^{\mathrm{Y}}, \underline{R}_{m}^{\mathrm{X}}, \underline{R}_{m}^{\mathrm{Y}}$ and \underline{R}_{m}. We also denote by $\mathcal{T} \mathcal{L}_{m, n}^{\mathrm{X}}\left(\mathcal{T} \mathcal{L}_{m}^{\mathrm{X}}, \underline{\mathcal{L}}_{m}\right.$, etc) the class of $\mathrm{TL}_{m, n}^{\mathrm{X}}\left(\mathrm{TL}_{m}^{\mathrm{X}}, \underline{\mathcal{L}}_{m}^{\mathrm{X}}\right.$, etc)-definable languages.

Proposition 1.5. Let $1 \leq m \leq n$. Two words satisfy the same $\mathrm{TL}_{m, n}^{\mathrm{X}}$ formulas if and only if they agree on rankers from $R_{m, n}^{\mathrm{X}}$. A language is in $\mathcal{T} \mathcal{L}_{m, n}^{\mathrm{X}}$ if and only if it is a Boolean combination of languages of the form $L(r), r \in R_{m, n}^{\mathrm{X}}$.

Similar statements hold for $\mathrm{TL}_{m, n}^{\mathrm{Y}}, \mathrm{TL}_{m, n}, \underline{\mathrm{TL}}_{m, n}^{\mathrm{X}}, \underline{\mathrm{TL}}_{m, n}^{\mathrm{Y}}, \underline{\mathrm{TL}}_{m}^{\mathrm{X}}, \underline{\mathrm{TL}}_{m}^{\mathrm{Y}}$ and TL_{m}, relative to the corresponding classes of rankers.
Sketch of Proof. Since every ranker can be viewed as a TL-formula, it is easily verified that if u and v satisfy the same $\mathrm{TL}_{m, n}^{X}$-formulas, then they agree on rankers from $R_{m, n}^{X}$. To prove the converse, it suffices to show that a $\mathrm{TL}_{m, n}^{\mathrm{X}}$-formula is equivalent to a Boolean combination of formulas that are expressed by a single ranker. That is: we only need to show that modalities can be brought outside the formula. This follows from the following elementary logical equivalences:

$$
\mathrm{X}_{a}(\varphi \wedge \psi) \equiv \mathrm{X}_{a} \varphi \wedge \mathrm{X}_{a} \psi \quad \text { and } \quad \mathrm{X}_{a}(\neg \varphi) \equiv \mathrm{X}_{a} \wedge \neg \mathrm{X}_{a} \varphi
$$

Remark 1.6. Together with Example 1.3, this proposition confirms the elementary observation that a language is ${\underline{T L_{1}}}_{1}$ (resp. $\underline{T L}_{1}^{X}, \underline{T L}_{1}^{Y}$) definable if and only if it is a Boolean combination of languages of the form $A^{*} a_{1} A^{*} \cdots a_{k} A^{*}$ $\left(a_{i} \in A\right)$, that is, if and only if L is piecewise testable (see [15]). It is well-known that this class of languages is a variety, whose corresponding pseudovarieties of monoids is the class \mathbf{J} of \mathcal{J}-trivial monoids (see Section 2 below), and hence $\underline{T L}_{1}$-definability is decidable.
1.4. Rankers and FO^{2}. The connection established by Weis and Immerman [30, Theorem 4.5] between rankers and formulas in $\mathrm{FO}_{m, n}^{2}$, Theorem 1.7 below, is much deeper. If x, y are integers, we let ord (x, y), the order type of x and y, be one of the symbols $<,>$ or $=$, depending on whether $x<y$, $x>y$ or $x=y$.
Theorem 1.7 (Weis and Immerman [30]). Let $u, v \in A^{*}$ and let $1 \leq m \leq n$. Then u and v satisfy the same formulas in $\mathrm{FO}_{m, n}^{2}$ if and only if
(WI 1) u and v agree on rankers from $\underline{R}_{m, n}$,
(WI 2) if the rankers $r \in \underline{R}_{m, n}$ and $r^{\prime} \in \underline{R}_{m-1, n-1}$ are defined on u and v, then $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.
(WI 3) if $r \in \underline{R}_{m, n}$ and $r^{\prime} \in \underline{R}_{m, n-1}$ are defined on u and v and end with different direction letters, then $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.

Corollary 1.8. For each $n \geq m \geq 1, \underline{\mathcal{T}}_{m, n} \subseteq \mathcal{F} \mathcal{O}_{m, n}^{2}$ and $\underline{\mathcal{T}}_{m} \subseteq \mathcal{F} \mathcal{O}_{m}^{2}$.
Proof. Let L be a $\underline{\mathrm{TL}}_{m, n}$-definable language. For each $u \in L$, let φ_{u} be the conjunction of the $\mathrm{FO}_{m, n}^{2}$-sentences satisfied by u and let φ be the disjunction of the formulas $\varphi_{u}(u \in L)$. Since $\mathrm{FO}_{m, n}^{2}$ is finite (up to logical equivalence), the conjunctions and disjunctions in the definition of φ are all finite.

A word v satisfies φ if and only if it satisfies φ_{u} for some word $u \in L$. Then v satisfies the same $\mathrm{FO}_{m, n}^{2}$-sentences as u and, by comparing the statements in Proposition 1.5 and Theorem 1.7, we see that u and v satisfy the same $\underline{\mathrm{TL}}_{m, n}$-formulas. Since L is defined by such a formula, it follows that $v \in L$. Conversely, every word $v \in L$ satisfies φ since it satisfies φ_{v}, which is logically equivalent to a term in the disjunction defining φ. Thus L is defined by the $\mathrm{FO}_{m, n}^{2}$-sentence φ.
1.5. $\mathcal{F} \mathcal{O}_{m}^{2}$ and $\underline{\mathcal{L}}_{m}$ are varieties of languages. We use the ranker characterizations in Sections 1.3 and 1.4 to prove that TL_{m} - and FO_{m}^{2}-definable languages form varieties of languages. We refer the reader to $[15,23]$ and to Section 2 below for background and discussion on varieties of languages.

Lemma 1.9. Let $n \geq m \geq 1$. The property $\rho_{m, n}$ (resp. $\lambda_{m, n}$), for two words $u, v \in A^{*}$ to agree on rankers in $\underline{R}_{m, n}^{\mathrm{X}}\left(\operatorname{resp} . \underline{R}_{m, n}^{\mathrm{Y}}\right)$, is a finite index congruence on A^{*}.

Proof. It is immediate that $\rho_{m, n}$ and $\lambda_{m, n}$ are equivalence relations, and they have finite index on A^{*} since $\underline{R}_{m, n}^{\mathrm{X}}$ and $\underline{R}_{m, n}^{\mathrm{Y}}$ are finite. We now verify that $\rho_{m, n}$ and $\lambda_{m, n}$ are stable by product.

We proceed by induction on m. The result is elementary if $m=1$, see Example 1.3. Let us assume that $m \geq 2, u \rho_{m, n} v$ and $u^{\prime} \rho_{m, n} v^{\prime}$, and $r \in \underline{R}_{m, n}^{\mathrm{X}}$ is defined on $u u^{\prime}$. We want to show that r is defined on $v v^{\prime}$.

If r starts with a Y-letter, then $r \in \underline{R}_{m-1, n-1}^{\mathrm{Y}}$. Since $\underline{R}_{m-1, n-1}^{\mathrm{Y}} \subseteq \underline{R}_{m, n}^{\mathrm{X}}$, we have $u \lambda_{m-1, n-1} v$ and $u^{\prime} \lambda_{m-1, n-1} v^{\prime}$. Moreover, $\lambda_{m-1, n-1}$ is a congruence by induction. So $u u^{\prime} \lambda_{m-1, n-1} v v^{\prime}$ and hence, r is defined on $v v^{\prime}$.

If r starts with an X -letter, the sequence of positions it defines in $u u^{\prime}$ visits sometimes u and sometimes u^{\prime}. More precisely let r_{1} be the longest prefix of r that is defined on $u\left(r_{1}\right.$ may be empty): then $r=r_{1} r_{1}^{\prime}$ and if r_{1}^{\prime} is non-empty, then r_{1}^{\prime} starts with an X -letter. Let now r_{2} be the longest prefix of r_{1}^{\prime} which is defined on u^{\prime}. Then r_{2} is not empty and if $r_{2} \neq r_{1}^{\prime}$, then $r=r_{1} r_{2} r_{2}^{\prime}$ where r_{2}^{\prime} starts with a Y -letter. Iterating this process, we find a factorization of r as $r=r_{1} r_{2} \cdots r_{k}$, where each r_{i} is the longest prefix of $r_{i} r_{i+1} \cdots r_{k}$ which is defined on u if i is odd, on u^{\prime} if i even: then r_{1} may be empty, $r_{i}(i \geq 1)$ starts with an X -letter if i is even, with a Y -letter if i is odd; and the position in $u u^{\prime}$ defined by $r_{1} \cdots r_{i}$ is the position defined by r_{i} in u if i is odd, in u^{\prime} if i is even.

Since the r_{i} are all in $\underline{R}_{m, n}^{\mathrm{X}}$ and since $u \rho_{m, n} v$ and $u^{\prime} \rho_{m, n} v^{\prime}$, the factorization $r=r_{1} r_{2} \cdots r_{k}$ has exactly the same properties with respect to v and v^{\prime} instead of u and u^{\prime}. In particular, r is defined on $v v^{\prime}$.

The proof that $u \lambda_{m, n} v$ and $u^{\prime} \lambda_{m, n} v^{\prime}$ imply $u u^{\prime} \lambda_{m, n} v v^{\prime}$ is similar.
Lemma 1.10. Let $n \geq m \geq 1$. The property for two words $u, v \in A^{*}$ to satisfy Properties (WI 1), (WI 2) and (WI 3) of Theorem 1.7 (with respect to the pair (m, n)) is a finite index congruence on A^{*}.

Proof. As in Lemma 1.9, the only problem is to verify that if Properties (WI 1), (WI 2) and (WI 3) hold for u and v, and also for u^{\prime} and v^{\prime}, then they hold for $u u^{\prime}$ and $v v^{\prime}$. For Property (WI 1), this is proved by Lemma 1.9.

Let us now consider Property (WI 2), that is, let $r \in \underline{R}_{m, n}$ and $r^{\prime} \in$ $\underline{\underline{R}}_{m-1, n-1}$ be defined on $u u^{\prime}$ and $v v^{\prime}$.

Case 1. r and r^{\prime} start with X-letters. We factor r and r^{\prime} as in the proof of Lemma 1.9, say, $r=r_{1} \cdots r_{k}$ and $r^{\prime}=r_{1}^{\prime} \cdots r_{\ell}^{\prime}$. As discussed in that proof, the position in $u u^{\prime}$ defined by r is the position defined by r_{k} in u if k is odd, in u^{\prime} if k is even. Similarly, the position in $u u^{\prime}$ defined by r^{\prime} is the position defined by r_{ℓ}^{\prime} in u if ℓ is odd, in u^{\prime} if ℓ is even. In view of Property (WI 1), the factorizations $r=r_{1} \cdots r_{k}$ and $r^{\prime}=r_{1}^{\prime} \cdots r_{\ell}^{\prime}$ have the same properties with respect to v and v^{\prime}.

If k is odd and ℓ is even, then r determines a position in u (resp. v) and r^{\prime} determines a position in u^{\prime} (resp. v^{\prime}), so both $\operatorname{ord}\left(r\left(u u^{\prime}\right), r^{\prime}\left(u u^{\prime}\right)\right)$ and $\operatorname{ord}\left(r\left(v v^{\prime}\right), r^{\prime}\left(v v^{\prime}\right)\right)$ are $<$. The situation is equally simple if k is even and ℓ is odd.

If both k and ℓ are odd, then $r\left(u u^{\prime}\right)=r_{k}(u), r^{\prime}\left(u u^{\prime}\right)=r_{\ell}(u), r\left(v v^{\prime}\right)=$ $r_{k}(v)$ and $r^{\prime}\left(v v^{\prime}\right)=r_{\ell}(v)$, so $\operatorname{ord}\left(r\left(u u^{\prime}\right), r^{\prime}\left(u u^{\prime}\right)\right)=\operatorname{ord}\left(r_{k}(u), r_{\ell}^{\prime}(u)\right)$ and $\operatorname{ord}\left(r\left(v v^{\prime}\right), r^{\prime}\left(v v^{\prime}\right)\right)=\operatorname{ord}\left(r_{k}(v), r_{\ell}^{\prime}(v)\right)$. Now $r_{k} \in \underline{R}_{m, n}$ and $r_{\ell}^{\prime} \in \underline{R}_{m-1, n-1}$ so Property (WI 2) shows that ord $\left(r\left(u u^{\prime}\right), r^{\prime}\left(u u^{\prime}\right)\right)=\operatorname{ord}\left(r\left(v v^{\prime}\right), r^{\prime}\left(v v^{\prime}\right)\right)$.

The proof is similar if k and ℓ are both even.
Case 2. r starts with an X-letter and r^{\prime} starts with a Y-letter. We consider again factorizations $r=r_{1} \cdots r_{k}$ and $r^{\prime}=r_{1}^{\prime} \cdots r_{\ell}^{\prime}$ as in the proof of Lemma 1.9. The proof is the same as in Case 1, except that the roles of evenness and oddness are exchanged.

The remaining cases, where r starts with a Y -letter, are right-left duals of the previous cases, and are handled similarly.

This concludes the proof that Property (WI 2) holds for $u u^{\prime}$ and $v v^{\prime}$. The handling of Property (WI 3) is entirely similar.

Corollary 1.11. Let $n \geq m \geq 1$. The classes of $\underline{T L}_{m, n}^{\mathrm{X}}, \underline{\mathrm{TL}}_{m}^{\mathrm{X}}, \underline{\mathrm{TL}}_{m, n}^{\mathrm{Y}}, \underline{\mathrm{TL}}_{m}^{\mathrm{Y}}$, $\mathrm{TL}_{m}, \mathrm{FO}_{m, n}^{2}$ and FO_{m}^{2}-definable languages are varieties of languages.

Proof. Proposition 1.5 states that a language in A^{*} is $\mathrm{TL}_{m, n}^{\mathrm{n}}$-definable if and only if it is a Boolean combination of $\rho_{m, n}$-classes in A^{*}. By Lemma 1.9, this is equivalent to being recognized by the finite monoid $A^{*} / \rho_{m, n}$. In particular, a language is $\underline{T L}_{m, n}^{\mathrm{X}}$-definable if and only if it is recognized by a monoid in the pseudovariety generated by the monoids of the form $A^{*} / \rho_{m, n}(A$, a finite alphabet). And a language is $\underline{L L}_{m}^{X}$-definable if and only if it is recognized by a monoid in the pseudovariety generated by the monoids of the form $A^{*} / \rho_{m, n}(A$, a finite alphabet and $n \geq m)$.

The same reasoning applies to the classes of $\underline{\mathrm{TL}}_{m, n^{-}}^{\mathrm{Y}}, \mathrm{TL}_{m}^{\mathrm{Y}}, \mathrm{TL}_{m^{-}}, \mathrm{FO}_{m, n}^{2}$ and FO_{m}^{2}-definable languages, using Theorem 1.7 and Lemma 1.10 in the last two cases.

This result shows that, for a given regular language $L, \mathrm{TL}_{m}^{\mathrm{X}}$ (resp. TL_{m}, FO_{m}^{2}, etc) definability is characterized algebraically, that is, it depends only on the syntactic monoid of L. This justifies using the algebraic path to tackle decidability of these definability problems. Eilenberg's theory of varieties provides the mathematical framework. A limited working summary of this theory (for the purpose of this paper) is given in Section 2 below.

2. On varieties and pseudovarieties

We summarize in this section the information on monoid and variety theory that will be relevant for our purpose. For more detailed information and proofs, we refer the reader to [15, 2, 24, 25, 23], among other sources.

A semigroup is a set equipped with a binary associative operation. A monoid is a semigroup which contains a unit element. The set A^{*} of all words on alphabet A, equipped with the concatenation product, is the free monoid on A : it has the specific property that, if $\varphi: A \rightarrow M$ is a map into a monoid, then there exists a unique monoid morphism $\psi: A^{*} \rightarrow M$ which extends φ. Apart from free monoids, the semigroups and monoids which we will consider in this paper are finite.

If A is a finite alphabet and M is a finite monoid, we say that a language $L \subseteq A^{*}$ is recognized by M if there exists a morphism $\varphi: A^{*} \rightarrow M$ such that $L=\varphi^{-1}(\varphi(L))$.

Example 2.1. If $u \in A^{*}$ and $B \subseteq A$, let

$$
\begin{aligned}
\operatorname{alph}(u) & =\left\{a \in A \mid u=v a w \text { for some } v, w \in A^{*}\right\}, \\
{[B] } & =\left\{u \in A^{*} \mid \operatorname{alph}(u)=B\right\}
\end{aligned}
$$

Let φ be the following morphism from A^{*} into the direct product of $|A|$ copies of the 2 -element monoid $\{0,1\}$ (multiplicative): for each letter $a \in A, \varphi(a)$ is the A-tuple in which every component is 0 , except for the a-component. It is elementary to show that $[B]=\varphi^{-1}(\varphi([B]))$ and hence, $[B]$ is accepted by a monoid that is idempotent (every element is equal to its own square) and commutative. Conversely, one can show that every language recognized by an idempotent and commutative monoid is a Boolean combination of languages of the form $[B](B \subseteq A)$.

A pseudovariety of monoids (resp. semigroups) is a class of finite monoids (resp. semigroups) which is closed under taking direct products, homomorphic images and submonoids (resp. subsemigroups). A class of languages \mathcal{V} is a collection $\mathcal{V}=(\mathcal{V}(A))_{A}$, indexed by all finite alphabets A, such that $\mathcal{V}(A)$ is a set of languages in A^{*}. If \mathbf{V} is a pseudovariety of monoids, we let $\mathcal{V}(A)$ be the set of all languages of A^{*} which are recognized by a monoid in
\mathbf{V}. The class \mathcal{V} has important closure properties: each $\mathcal{V}(A)$ is closed under Boolean operations and under taking residuals (if $L \in \mathcal{V}(A)$ and $u \in A^{*}$, then $L u^{-1}$ and $u^{-1} L$ are in $\mathcal{V}(A)$); and if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in \mathcal{V}(B)$, then $\varphi^{-1}(L) \in \mathcal{V}(A)$. Classes of recognizable languages with these properties are called varieties of languages, and Eilenberg's theorem (see [15]) states that the correspondence $\mathbf{V} \mapsto \mathcal{V}$, from pseudovarieties of monoids to varieties of languages, is one-to-one and onto. Moreover, the decidability of membership in the pseudovariety \mathbf{V}, implies the decidability of the variety \mathcal{V} : indeed, a language is in \mathcal{V} if and only if its (effectively computable) syntactic monoid is in \mathbf{V}.

For every finite semigroup S, there exists an integer, usually denoted ω, such that every element of the form s^{ω} in S is idempotent. The Green relations are another important concept to describe semigroups and monoids: if S is a semigroup and $s, t \in S$, we say that $s \leq_{\mathcal{J}} t$ (resp. $s \leq_{\mathcal{R}} t, s \leq_{\mathcal{L}} t$) if $s=u t v$ (resp. $s=t v, s=u t$) for some $u, v \in S \cup\{1\}$. We also say that $s \mathcal{J} t$ is $s \leq_{\mathcal{J}} t$ and $t \leq_{\mathcal{J}} s$. The relations \mathcal{R} and \mathcal{L} are defined similarly.

Pseudovarieties that will be important in this paper are the following.

- $\mathbf{J}_{\mathbf{1}}$, the pseudovariety of idempotent and commutative monoids; as discussed in Example 2.1, the corresponding variety of languages consists of the Boolean combinations of languages of the form $[B]$.
- R, L and \mathbf{J}, the pseudovarieties of \mathcal{R}-, \mathcal{L} - and \mathcal{J}-trivial monoids; a monoid is, say, \mathbf{R}-trivial if each of its \mathcal{R}-classes is a singleton. The variety of languages corresponding to \mathbf{J}, called the piecewise testable languages, was described by Simon (see [15]): a language in A^{*} is piecewise testable if and only if it is a Boolean combination of languages of the form $A^{*} a_{1} A^{*} \cdots a_{r} A^{*}$, with $a_{1}, \ldots, a_{r} \in A$. We encountered these languages in Example 1.3.
- A, the variety of aperiodic monoids, i.e., monoids in which $x^{\omega}=x^{\omega+1}$ for each x. Celebrated theorems of Schützenberger, McNaughton and Papert and Kamp show that the corresponding variety of languages consists of the star-free languages, the languages that are definable in FO, and the languages definable in propositional temporal logic, see for instance [15, 25, $5,6,22,23]$.
- DA is the pseudovariety of all monoids in which $(x y)^{\omega} x(x y)^{\omega}=(x y)^{\omega}$ for all x, y. This pseudovariety has many characterizations in combinatorial, algebraic and logical terms. Of particular interest to us are the fact that the corresponding variety of languages consists of the languages that are definable in FO^{2}, and equivalently, of the languages that are defined in unary temporal logic, see $[24,25,6,28]$ among others.
- K (resp. D, LI) is the pseudovariety of semigroups in which $x^{\omega} y=x^{\omega}$ (resp. $y x^{\omega}=x^{\omega}, x^{\omega} y x^{\omega}=x^{\omega}$) for all x, y.

Finally we describe the operations of the Mal'cev product on pseudovarieties. Let \mathbf{V} be a pseudovariety of monoids, \mathbf{W} a pseudovariety of semigroups and M a finite monoid. We say that $M \in \mathbf{W}: \mathbf{V}$ if there exists a finite monoid T and onto morphisms $\alpha: T \rightarrow M$ and $\beta: T \rightarrow N$ such that $N \in \mathbf{V}$ and, for each idempotent e of $N, \beta^{-1}(e) \in \mathbf{W}$. Then $\mathbf{W}: \mathbf{V}$
is a pseudovariety of monoids, see $[15,2,17]$. The following equalities are well-known [15]:
 We denote by $\underline{\mathbf{T}}_{m, n}^{\mathrm{X}} \underline{\mathbf{T L}}_{m, n}^{\mathrm{Y}}, \underline{\mathbf{T L}}_{m}^{\mathrm{Y}}, \underline{\mathbf{T L}}_{m}^{\mathrm{Y}}, \underline{\mathbf{T}}_{m, n}, \underline{\mathbf{T L}}_{m}, \mathbf{F} \mathbf{O}_{m, n}^{2}$ and $\mathbf{F O}_{m}^{2}$ the pseudovarieties corresponding to the language varieties discovered in Corollary 1.11 .

3. Condensed Rankers

Our main tool to approach the decidability of FO_{m}^{2}-definability lies in the notion of condensed rankers, a variant of rankers which was introduced implicitly by Weis and Immerman to prove Proposition 6.4 below (see [30, Theorem 4.7]). Recall that a ranker can be seen as a sequence of directional instructions (see Example 1.2). We say that a ranker r is condensed on u if it is defined on u, and if the sequence of positions visited zooms in on $r(u)$, never crossing over a position already visited. Formally, $r=\mathrm{Z}_{1} \cdots \mathrm{Z}_{n}$ is condensed on u if there exists a chain of open intervals

$$
(0,|u|+1)=\left(i_{0}, j_{0}\right) \supset\left(i_{1}, j_{1}\right) \supset \cdots \supset\left(i_{n-1}, j_{n-1}\right) \ni r(u)
$$

such that for all $1 \leq \ell \leq n-1$ the following properties are satisfied:

- If $Z_{\ell} Z_{\ell+1}=X_{a} X_{b}$ then $\left(i_{\ell}, j_{\ell}\right)=\left(X_{a}\left(u, i_{\ell-1}\right), j_{\ell-1}\right)$.
- If $Z_{\ell} Z_{\ell+1}=Y_{a} Y_{b}$ then $\left(i_{\ell}, j_{\ell}\right)=\left(i_{\ell-1}, Y_{a}\left(u, j_{\ell-1}\right)\right.$.
- If $\mathbf{Z}_{\ell} \mathbf{Z}_{\ell+1}=\mathrm{X}_{a} \mathrm{Y}_{b}$ then $\left(i_{\ell}, j_{\ell}\right)=\left(i_{\ell-1}, \mathrm{X}_{a}\left(u, i_{\ell-1}\right)\right)$.
- If $Z_{\ell} Z_{\ell+1}=Y_{a} \mathrm{X}_{b}$ then $\left(i_{\ell}, j_{\ell}\right)=\left(\mathrm{Y}_{a}\left(u, j_{\ell-1}\right), j_{\ell-1}\right)$.

Remark 3.1. The i_{ℓ} and j_{ℓ} are either 0 or $1+|u|$, or positions of the form $r^{\prime}(u)$ for some prefix of r^{\prime} of r. More precisely, if r_{ℓ} is the depth ℓ prefix of $r(\ell<n)$, then $r_{\ell}(u)=i_{\ell}$ if $\mathbf{Z}_{\ell+1}$ is of the form X_{a}, and $r_{\ell}(u)=j_{\ell}$ if $\mathbf{Z}_{\ell+1}$ is of the form Y_{a}.

Remark 3.2. If $r=r_{1} r_{2}$ is condensed on u, then $r(u)>r_{1}(u)$ if r_{2} starts with an X-letter, and $r(u)<r_{1}(u)$ if r_{2} starts with a Y -letter.

Example 3.3. The ranker $\mathrm{X}_{a} \mathrm{Y}_{b} \mathrm{X}_{c}$ is defined on the words $b a c$ and $b c a$, but it is condensed only on $b c a$.

Rankers in $\underline{R}_{1, n}$ and rankers of the form $\mathrm{X}_{a} \mathrm{Y}_{b_{1}} \cdots \mathrm{Y}_{b_{k}}$ or $\mathrm{Y}_{a} \mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{k}}$ are condensed on all words on which they are defined.

Condensed rankers form a natural notion, which is equally well-suited to the task of describing FO_{m}^{2}-definability (see Theorem 3.15 below). With respect to TL, for which Proposition 1.5 shows a perfect match with the notion of rankers, they can be interpreted as adding a strong notion of unambiguity, see Section 6.3 below and the work of Lodaya, Pandya and Shah [13].

Let us say that two words u and v agree on condensed rankers from a set R of rankers, if the same rankers in R are condensed on u and v. We
write $u \triangleright_{m, n} v$ (resp. $u \triangleleft_{m, n} v$) if u and v agree on condensed rankers in $\underline{R}_{m, n}^{\mathrm{X}}$ (resp. $\left.\underline{R}_{m, n}^{\mathrm{Y}}\right)$. If r is a ranker, let $L_{c}(r)$ be the language of all words on which r is condensed.
3.1. Technical properties of condensed rankers. Lemmas 3.4 and 3.5 admit an elementary verification. A factorization $u=u_{-} a u_{+}$of a word $u \in A^{*}$ is called the a-left factorization of u if $a \notin \operatorname{alph}\left(u_{-}\right)$. Symmetrically, $u=u_{-} a u_{+}$is the a-right factorization of u if $a \notin \operatorname{alph}\left(u_{+}\right)$. Thus, the a-left (resp. a-right) factorization of a identifies the first occurrence of a when reading u from the left (resp. the right).

Lemma 3.4. Let s be a ranker, $a \in A$ and $r=\mathrm{X}_{a}$ s. Let also $u \in A^{+}$and let $u=u_{-} a u_{+}$be its a-left factorization. Then r is condensed on u if and only if

- s is condensed on u_{+}if s starts with an X -block;
- s is condensed on u_{-}if s starts with $a \mathrm{Y}-b l o c k$.

A dual statement holds if r is of the form $r=\mathrm{Y}_{a} s$, with respect to the a-right factorization of u.

Lemma 3.5. Let r be a ranker and $a \in A$. Let also $u \in A^{+}$and let $u=u_{-} a u_{+}$be its a-left factorization.

If r starts with an X -letter, then

- r is defined on u_{-}if and only if r is defined on u, r does not contain X_{a} or Y_{a} and, for every prefix p of r ending with an X -letter, $p \mathrm{Y}_{a}$ is not defined on u.
- r is condensed on u_{-}
- if and only if r is defined on u_{-}and condensed on u,
- if and only if r is condensed on u, r does not contain X_{a} or Y_{a} and, if p is the maximal prefix of r consisting only of X -letters, then $p \mathrm{Y}_{a}$ is not defined on u,
- if and only if r is condensed on u, r does not contain X_{a} or Y_{a} and, if $p=\mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{k}}(k \geq 1)$ is the initial X -block of r, then $\mathrm{X}_{a} \mathrm{Y}_{b_{k}} \cdots \mathrm{Y}_{b_{1}}$ is defined on u.
- r is defined on u_{+}if and only if $\mathrm{X}_{a} r$ is defined on u and, for every prefix p of r ending with a Y -letter, $\mathrm{X}_{a} p \mathrm{Y}_{a}$ is defined on u.
- r is condensed on u_{+}if and only if $\mathrm{X}_{a} r$ is condensed on u.

If r starts with $a \mathrm{Y}$-letter, then

- r is defined on u_{-}if and only if $\mathrm{X}_{a} r$ is defined on u, r does not contain X_{a} or Y_{a} and, for every prefix p of r ending with an X -letter, $\mathrm{X}_{a} p \mathrm{Y}_{a}$ is not defined on u.
- r is condensed on u_{-}if and only if $\mathrm{X}_{a} r$ is condensed on u.
- r is defined on u_{+}if and only if r is defined on u and, for every prefix p of r ending with $a \mathrm{Y}$-letter, $p \mathrm{Y}_{a}$ is defined on u.
- r is condensed on u_{+}
- if and only if r is defined on u_{+}and condensed on u,
- if and only if r is condensed on u and, if $p=\mathrm{Y}_{b_{1}} \cdots \mathrm{Y}_{b_{k}}(k \geq 1)$ is the initial Y -block of r, then $p \mathrm{Y}_{a}$ is defined on u.

We also note the following, very useful characterization of the relations $\triangleright_{m, n}$ and $\triangleleft_{m, n}$.

Proposition 3.6. The families of relations $\triangleright_{m, n}$ and $\triangleleft_{m, n}(n \geq m \geq 1)$ are uniquely determined by the following properties.
(1) $u \triangleright_{1, n} v$ if and only if $u \triangleleft_{1, n} v$, if and only if u and v have the same subwords of length at most n.
(2) If $m \geq 2$, then $u \triangleright_{m, n} v$ if and only if $\operatorname{alph}(u)=\operatorname{alph}(v), u \triangleleft_{m-1, n-1}$ v and for each letter $a \in \operatorname{alph}(u)$, the a-left factorizations $u=$ $u_{-} a u_{+}$and $v=v_{-} a v_{+}$satisfy $u_{-} \triangleleft_{m-1, n-1} v_{-}$and $u_{+} \triangleright_{m, n-1} v_{+}$ $\left(u_{+} \triangleright_{m-1, n-1} v_{+}\right.$if $\left.n=m\right)$.
(3) If $m \geq 2$, then $u \triangleleft_{m, n} v$ if and only if $\operatorname{alph}(u)=\operatorname{alph}(v), u \triangleright_{m-1, n-1}$ v and for each letter $a \in \operatorname{alph}(u)$, the a-right factorizations $u=$ $u_{-} a u_{+}$and $v=v_{-} a v_{+}$satisfy $u_{+} \triangleright_{m-1, n-1} v_{+}$and $u_{-} \triangleleft_{m, n-1} v_{-}$ $\left(u_{-} \triangleleft_{m-1, n-1} v_{-}\right.$if $\left.n=m\right)$.

Proof. Statement (1) follows directly from Examples 1.3 and 3.3. Let us now assume that $m \geq 2$.

Suppose that $\operatorname{alph}(u)=\operatorname{alph}(v), u \triangleleft_{m-1, n-1} v$ and for each $a \in \operatorname{alph}(u)$, the a-left factorizations $u=u_{-} a u_{+}$and $v=v_{-} a v_{+}$satisfy $u_{-} \triangleleft_{m-1, n-1} v_{-}$ and $u_{+} \triangleright_{m, n-1} v_{+}$if $n>m\left(u_{+} \triangleright_{m-1, n-1} v_{+}\right.$if $\left.n=m\right)$. Let $r \in \underline{R}_{m, n}^{\mathrm{X}}$ be condensed on u. If r starts with a Y-letter, then $r \in \underline{R}_{m-1, n-1}^{\mathrm{Y}}$, and hence r is condensed on v since $u \triangleleft_{m-1, n-1} v$. If instead r starts with an X-letter, say $r=\mathrm{X}_{a} s$, we consider the a-left factorizations of u and v. If s starts with a Y-letter, then $s \in \underline{R}_{m-1, n-1}^{Y}, s$ is condensed on u_{-}(Lemma 3.4) and hence s is condensed on v_{-}since $u_{-} \triangleleft_{m-1, n-1} v_{-}$, from which it follows again that r is condensed on v. Finally, if s starts with an X -letter, then s is condensed on u_{+}by Lemma 3.4. Moreover, $s \in \underline{R}_{m, n-1}^{X}$ if $n>m$. If $n=m$, we have in fact $r \in \underline{R}_{m-1, n}^{\mathrm{X}}$ (since r starts with two X-letters) and hence $s \in \underline{R}_{m-1, n-1}^{\mathrm{X}}$. Since $u_{+} \triangleright_{m, n-1} v_{+}$if $n>m$ and $u_{+} \triangleright_{m-1, n-1} v_{+}$if $n=m$, it follows that s is condensed on v_{+}, and hence r is condensed on v.

Conversely, let us assume that $u \triangleright_{m, n} v$, that is, u and v agree on condensed rankers in $\underline{R}_{m, n}^{\mathrm{X}}$. Considering rankers in $R_{1,1}^{\mathrm{X}} \subseteq \underline{R}_{m, n}^{\mathrm{X}}$ shows that $\operatorname{alph}(u)=\operatorname{alph}(v)$. Similarly, considering rankers in $\underline{R}_{m-1, n-1}^{\mathbf{Y}} \subseteq \underline{R}_{m, n}^{\mathrm{X}}$ shows that $u \triangleleft_{m-1, n-1} v$. Finally, let $a \in \operatorname{alph}(u)$ and let $u=u_{-} a u_{+}$ and $v=v_{-} a v_{+}$be a-left factorizations.

Let $s \in \underline{R}_{m-1, n-1}^{Y}$ be condensed on u_{-}. Note that s contains neither X_{a} nor Y_{a}, since $a \notin \operatorname{alph}\left(u_{-}\right)$. If s starts with a Y -letter, then $r=\mathrm{X}_{a} s$ is condensed on u (Lemma 3.4) and since $r \in \underline{R}_{m, n}^{\mathrm{X}}, r$ is condensed on v as well, which implies that s is condensed on v_{-}. If instead s starts with an X -letter, then s is condensed on u and hence on v. Moreover, if $p=\mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{k}}$ is the maximal prefix of s consisting only of X -letters, then $\mathrm{X}_{a} \mathrm{Y}_{b_{k}} \cdots \mathrm{Y}_{b_{1}} \in \underline{R}_{2, n}^{\mathrm{X}}$ is
condensed on u (Lemma 3.5). Since $\underline{R}_{2, n}^{\mathrm{X}} \subseteq \underline{R}_{m, n}^{\mathrm{X}}$, it is condensed on v as well and hence, s is condensed on v_{-}.

Finally, assume that $s \in \underline{R}_{m, n-1}^{\mathrm{X}}\left(\underline{R}_{m-1, n-1}^{\mathrm{X}}\right.$ if $\left.n=m\right)$ is condensed on u_{+}. The reasoning is similar: if s starts with an X -letter, then $\mathrm{X}_{a} s \in \underline{R}_{m, n}^{\mathrm{X}}$ is condensed on u. Therefore $\mathrm{X}_{a} s$ is condensed on v and s is condensed on v_{+}. If instead s starts with a Y -letter, then s is condensed on u and $s \in \underline{R}_{m-1, n-2}^{\mathrm{Y}}\left(\underline{R}_{m-2, n-2}^{\mathrm{X}}\right.$ if $\left.n=m\right)$. In particular $s \in \underline{R}_{m, n}^{\mathrm{X}}$ and hence, s is condensed on v as well. Moreover, if p is the initial Y -block of s, then $p \mathrm{Y}_{a}$ is condensed on u. Note that $p \mathrm{Y}_{a} \in \underline{R}_{1, n-1}^{\mathrm{Y}} \subseteq \underline{R}_{m, n}^{\mathrm{X}}$, so $p \mathrm{Y}_{a}$ is condensed on v and s is condensed on v_{+}.

Lemma 3.7. Let $n \geq m \geq 2, u, v \in A^{*}, a \in A$ and let $u=u_{-} a u_{+}$and $v=$ $v_{-} a v_{+}$be a-left factorizations. If $u \triangleright_{m, n} v$, then $u_{-} \triangleright_{m, n-1} v_{-}\left(u_{-} \triangleright_{m-1, n-1}\right.$ v_{-}if $\left.n=m\right)$. And if $u \triangleleft_{m, n} v$, then $u_{+} \triangleleft_{m, n-1} v_{+}\left(u_{+} \triangleleft_{m-1, n-1} v_{+}\right.$if $n=m$). Dual statements hold for the factors of the a-right factorizations of u and v if $u \triangleleft_{m, n} v$ or $u \triangleright_{m, n} v$.
Proof. We give the proof if $n>m$; it is easily adapted to the case where $n=m$.

Assume that $u \triangleright_{m, n} v$ and $r \in \underline{R}_{m, n-1}^{X}$ is condensed on u_{-}. By Lemma 3.5, we have:

- If r starts with an X -letter, then r is condensed on u, r does not contain occurrences of X_{a} or Y_{a}, and if $p=\mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{k}}$ is the initial X -block of r, then $q=\mathrm{X}_{a} \mathrm{Y}_{b_{k}} \cdots \mathrm{Y}_{b_{1}}$ is condensed on u. Since $q \in R_{2, k+1}^{\mathrm{X}}$ and $k<n$, we have $q \in \underline{R}_{m, n}^{\mathrm{X}}$ and hence r and q are condensed on v. Therefore r is condensed on v_{-}.
- If r starts with a Y -letter, then $\mathrm{X}_{a} r$ is condensed on u. But $r \in \underline{R}_{m-1, n-2}^{\mathrm{Y}}$, so $\mathrm{X}_{a} r \in \underline{R}_{m, n}^{\mathrm{X}}$ and hence $\mathrm{X}_{a} r$ is condensed on v. It follows that r is condensed on v_{-}.

Assume now that $u \triangleleft_{m, n} v$ and $r \in \underline{R}_{m, n-1}^{\mathrm{Y}}$ is condensed on u_{+}. Then

- If r starts with an X-letter (which is possible only if $m \geq 2$), then $r \in \underline{R}_{m-1, n-2}^{\mathrm{X}}$ and $\mathrm{X}{ }_{a} r$ is condensed on u. But $\mathrm{X}_{a} r \in \underline{R}_{m-1, n-1}^{\mathrm{X}} \subseteq \underline{R}_{m, n}^{\mathrm{Y}}$, so $\mathrm{X}_{a} r$ is condensed on v and r is condensed on v_{+}.
- If instead r starts with a Y -letter, then r is condensed on u and if p is the initial Y -block of r, then $p \mathrm{Y}_{a}$ is condensed on u. But $r, p \mathrm{Y}_{a} \in \underline{R}_{m, n}^{\mathrm{Y}}$, so r and $p \mathrm{Y}_{a}$ are condensed on v, and r is condensed on v_{+}.
3.2. Condensed rankers determine a hierarchy of varieties. This section is the condensed ranker analogue of Section 1.5.
Lemma 3.8. The relations $\triangleright_{m, n}$ and $\triangleleft_{m, n}$ are finite-index congruences.
Proof. The relations $\triangleright_{m, n}$ and $\triangleleft_{m, n}$ are clearly equivalence relations, of finite index since $\underline{R}_{m, n}$ is finite. We now verify that if u and v on one hand, and u^{\prime} and v^{\prime} on the other hand, are $\triangleright_{m, n}$ equivalent, then so are $u u^{\prime}$ and $v v^{\prime}$. (The proof regarding $\triangleleft_{m, n}$ is dual.)

The proof is by induction on $m+n$. The property of having the same subwords of length n is easily seen to be a congruence (and the proof of this fact can be found in [15] as it is related to Simon's theorem on piecewise testable languages). In view of Proposition 3.6 (1), this shows that $\triangleright_{1, n}$ and $\triangleleft_{1, n}$ are congruences.

Let us now assume that $n \geq m \geq 2, u \triangleright_{m, n} v$ and $u^{\prime} \triangleright_{m, n} v^{\prime}$. By Proposition 3.6 (2), we have $\operatorname{alph}(u)=\operatorname{alph}(v), \operatorname{alph}\left(u^{\prime}\right)=\operatorname{alph}\left(v^{\prime}\right), u \triangleleft_{m-1, n-1} v$ and $u^{\prime} \triangleleft_{m-1, n-1} v^{\prime}$. It follows that alph $\left(u u^{\prime}\right)=\operatorname{alph}\left(v v^{\prime}\right)$ and $u u^{\prime} \triangleleft_{m-1, n-1} v v^{\prime}$ by induction.

Let now $a \in \operatorname{alph}\left(u u^{\prime}\right)$. If $a \in \operatorname{alph}(u)=\operatorname{alph}(v)$ and $u=u_{-} a u_{+}$and $v=$ $v_{-} a v_{+}$are a-left factorizations, then the a-left factorizations of $u u^{\prime}$ and $v v^{\prime}$ are $u_{-} a\left(u_{+} u^{\prime}\right)$ and $v_{-} a\left(v_{+} v^{\prime}\right)$. By Proposition 3.6 (2) we have $u_{-} \triangleleft_{m-1, n-1}$ v_{-}and $u_{+} \triangleright_{m, n-1} v_{+}\left(u_{+} \triangleright_{m-1, n-1} v_{+}\right.$if $\left.n=m\right)$. By induction, the latter equivalence implies $u_{+} u^{\prime} \triangleright_{m, n-1} v_{+} v^{\prime}\left(u_{+} u^{\prime} \triangleright_{m-1, n-1} v_{+} v^{\prime}\right.$ if $\left.n=m\right)$.

If instead $a \notin \operatorname{alph}(u)=\operatorname{alph}(v)$ and $u^{\prime}=u_{-}^{\prime} a u_{+}^{\prime}$ and $v^{\prime}=v_{-}^{\prime} a v_{+}^{\prime}$ are a-left factorizations, then the a-left factorizations of $u u^{\prime}$ and $v v^{\prime}$ are ($u u_{-}^{\prime}$) a u_{+}^{\prime} and $\left(v v_{-}^{\prime}\right) a v_{+}^{\prime}$. Again by Proposition 3.6 (2) we have $u_{-}^{\prime} \triangleleft_{m-1, n-1} v_{-}^{\prime}$ and $u_{+}^{\prime} \triangleright_{m, n-1} v_{+}^{\prime}\left(u_{+}^{\prime} \triangleright_{m-1, n-1} v_{+}^{\prime}\right.$ if $\left.n=m\right)$. By induction, the first equivalence implies $u u_{-}^{\prime} \triangleleft_{m-1, n-1} v v_{-}^{\prime}$.

It now follows (Proposition 3.6 (2) again) that $u u^{\prime} \triangleright_{m, n} v v^{\prime}$.
Now let \mathcal{R}_{m} (resp. \mathcal{L}_{m}) be the Boolean algebra generated by the languages of the form $L_{c}(r), r \in \underline{R}_{m, n}^{\mathrm{X}}\left(\operatorname{resp} . \underline{R}_{m, n}^{\mathrm{Y}}\right), n \geq m$. Let also \mathbf{R}_{m} and \mathbf{L}_{m} be the pseudovarieties of monoids generated respectively by the $A^{*} / \triangleright_{m, n}$ and by the $A^{*} / \triangleleft_{m, n}, n \geq m$.

Corollary 3.9. For each $m \geq 1, \mathcal{R}_{m}$ and \mathcal{L}_{m} are varieties of languages and the corresponding pseudovarieties of monoids are \mathbf{R}_{m} and \mathbf{L}_{m}.

Proof. By definition, a $\triangleright_{m, n}$-class is a Boolean combination of languages of the form $L_{c}(r), r \in \underline{R}_{m, n}^{X}$. Therefore every language recognized by $A^{*} / \triangleright_{m, n}$ is in \mathcal{R}_{m}, and hence so is every language recognized by a monoid in \mathbf{R}_{m}.

Conversely, every $L_{c}(r)\left(r \in \underline{R}_{m, n}^{\mathrm{X}}\right)$ is a union of $\triangleright_{m, n}$-classes, and hence it is recognized by $A^{*} / \triangleright_{m, n}$. Therefore every language in \mathcal{R}_{m} is recognized by a monoid in \mathbf{R}_{m} (and indeed, by $A^{*} / \triangleright_{m, n}$ for n large enough).

Example 3.10. It follows from Proposition 3.6 (i) that $\mathcal{R}_{1}=\mathcal{L}_{1}$ is the variety of piecewise testable languages, and $\mathbf{R}_{1}=\mathbf{L}_{1}=\mathbf{J}$, the pseudovariety of \mathcal{J}-trivial monoids.

Remark 3.11. It follows from the definition of the \mathcal{R}_{m} and \mathcal{L}_{m} that for each m, \mathcal{R}_{m} and \mathcal{L}_{m} are contained in both \mathcal{R}_{m+1} and \mathcal{L}_{m+1}.
3.3. Condensed rankers, rankers and FO^{2}. We now show that, in the characterization of $\mathcal{F} \mathcal{O}_{m, n}^{2}$ in Theorem 1.7, condensed rankers can be used just as well. This is done in Theorem 3.15. The first step is to relate
agreement on rankers and agreement on condensed rankers. We start with a technical lemma.
Lemma 3.12. If a ranker $r \in \underline{R}_{m, n}^{Z}(Z=X$ or $Y)$ is defined but not condensed on u, and if s is the maximal prefix of r which is condensed on u, then one of the following holds, for some $\ell \geq 1$:

$$
\begin{aligned}
& \text { - } r=s \mathrm{X}_{b} t, s=s_{0} \mathrm{Y}_{a} \mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{\ell-1}} \text { and } s_{0} \mathrm{Y}_{a}(u) \leq s(u)<s_{0}(u) \leq \\
& \\
& s \mathrm{X}_{b}(u) ; \\
& \text { - } r=s \mathrm{Y}_{b} t, s=s_{0} \mathrm{X}_{a} \mathrm{Y}_{b_{1}} \cdots \mathrm{Y}_{b_{\ell-1}} \text { and } s_{0} \mathrm{X}_{a}(u) \geq s(u)>s_{0}(u)> \\
& \\
& s \mathrm{Y}_{b}(u)=s_{0} \mathrm{Y}_{b}(u)
\end{aligned}
$$

Moreover s_{0} is not empty, $s_{0} \in \underline{R}_{m-1, n-\ell}^{Z} ; s \mathrm{X}_{b}(u)=s_{0}(u)$ (resp. $s \mathrm{Y}_{b}(u)=$ $s_{0}(u)$) if the last letter of s_{0} is in $\left\{\mathrm{X}_{b}, \mathrm{Y}_{b}\right\}$; and $s \mathrm{X}_{b}(u)=s_{0} \mathrm{X}_{b}(u)$ (resp. $\left.s \mathrm{Y}_{b}(u)=s_{0} \mathrm{Y}_{b}(u)\right)$ otherwise.

Proof. Rankers in $R_{1, n}$ are condensed on each word on which they are defined (Example 3.3). Therefore we have $m \geq 2$.

By hypothesis, $s \neq r$. We consider the case where the first letter after s is an X -letter, the other case is dual. Then r is of the form $r=s \mathrm{X}_{b} t$, where t may be empty. In view of Example 3.3, $s=s_{0} \mathrm{Y}_{a} \mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{\ell-1}}$ for some non-empty s_{0} and $\ell \geq 1$. Since s is condensed on u but $s \mathrm{X}_{b}$ is not, we have the following (see Remark 3.2):

$$
s_{0} \mathrm{Y}_{a}(u)<s_{0} \mathrm{Y}_{a} \mathrm{X}_{b_{1}}(u) \cdots<s_{0} \mathrm{Y}_{a} \mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{\ell-1}}(u)=s(u)<s_{0}(u)
$$

and $s \mathrm{X}_{b}(u) \geq s_{0}(u)$. More precisely, $s \mathrm{X}_{b}(u)$ is the first b-position to the right of $s(u)$, so $s \mathrm{X}_{b}(u)=s_{0}(u)$ if $s_{0}(u)$ is a b-position (i.e., if s_{0} ends with X_{b} or $\left.\mathrm{Y}_{b}\right)$, and $s \mathrm{X}_{b}(u)=s_{0} \mathrm{X}_{b}(u)$ otherwise.

Proposition 3.13. Let $n \geq m \geq 1, u, v \in A^{+}$and $\mathrm{Z} \in\{\mathrm{X}, \mathrm{Y}\}$. If u and v agree on condensed rankers in $\underline{R}_{m, n}^{\mathrm{Z}}$ and if $r \in \underline{R}_{m, n}^{\mathrm{Z}}$ is defined on both u and v, then there exists $r^{\prime} \in \underline{R}_{m, n}^{Z}$ which is condensed on u and v and coincides with r on both words.
Proof. The result is trivial if $m=1$, since rankers in $R_{1, n}$ are condensed on each word on which they are defined (Example 3.3). We now assume that $m \geq 2$.

Let p and q be positions in u and v and let $r \in \underline{R}_{m, n}^{Z}$ such that $r(u)=p$ and $r(v)=q$. If r is not condensed on u, then r is not condensed on v (since the two words agree on condensed rankers). With the notation of Lemma 3.12, r coincides on both u and v with $r^{\prime}=s_{0} t, s_{0} \mathrm{X}_{b} t$ or $s_{0} \mathrm{Y}_{b} t$ (depending on the last letter of s_{0} and on the letter following s in r), which starts with the same letter as r. If r^{\prime} is not condensed on u and v, we repeat the reasoning. This process must terminate since each iteration reduces the depth of r^{\prime}.

Proposition 3.14. Let $n \geq m \geq 1, u, v \in A^{+}$and $\mathrm{Z} \in\{\mathrm{X}, \mathrm{Y}\}$. If u and v agree on condensed rankers in $\underline{R}_{m, n}^{Z}$, then they agree on rankers from the same class.

Proof. If u and v do not agree on rankers from $\underline{R}_{m, n}^{Z}$, let $r \in \underline{R}_{m, n}^{Z}$ be a minimum depth ranker on which u and v disagree. Without loss of generality, we may assume that $u \in L(r)$ and $v \notin L(r)$. In particular, r is not condensed on u.

Let s, s_{0} and t be as in Lemma 3.12. Without loss of generality again, we may assume that the letter following s in r is X_{b}. Since s is condensed on u and $s \mathrm{X}_{b}$ is not, the ranker s is condensed on v and $s \mathrm{X}_{b}$ is not. Moreover, $s \mathrm{X}_{b}$ coincides on u with $s^{\prime}=s_{0}$, or $s_{0} \mathrm{X}_{b}$, depending on the last letter of s_{0}. Observe that s^{\prime} is shorter than r, so s^{\prime} is defined on v. In particular, there exists a b-position in v to the right of s, which is not to the left of s_{0} (since $s \mathrm{X}_{b}$ is not condensed on v). It follows that $s \mathrm{X}_{b}(v)=s^{\prime}(v)$. Let now $r^{\prime}=s^{\prime} t$: then r^{\prime} is shorter than r, it coincides with r on u, and it is not defined on v since s^{\prime} coincides with s on that word. This contradicts the minimality of r.

We can now prove the following variant of Theorem 1.7.
Theorem 3.15. Let $u, v \in A^{*}$ and let $1 \leq m \leq n$. Then u and v satisfy the same formulas in $\mathrm{FO}_{m, n}^{2}$ if and only if
(WI 1c) u and v agree on condensed rankers from $\underline{R}_{m, n}$,
(WI 2c) if the rankers $r \in \underline{R}_{m, n}$ and $r^{\prime} \in \underline{R}_{m-1, n-1}$ are condensed on u and v, then $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.
(WI 3c) if $r \in \underline{R}_{m, n}$ and $r^{\prime} \in \underline{R}_{m, n-1}$ are condensed on u and v and end with different direction letters, then $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$

Proof. We need to prove that together, Properties (WI 1), (WI 2) and (WI 3) are equivalent to Properties (WI 1c), (WI 2c) and (WI 3c).

Let us first assume that (WI 1), (WI 2) and (WI 3) hold. It is immediate that (WI 2c) and (WI 3c) hold. If (WI 1c) does not hold, let r be a ranker in $\underline{R}_{m, n}$ which is condensed on v and not on u. Since (WI 1) holds, r is defined on u. Let s_{0}, s and t be as in Lemma 3.12 and let us assume, without loss of generality, that the letter following s in r is X_{b}. Then s_{0} and $s \mathrm{X}_{b}$ are defined on both u and v, with $s_{0} \in \underline{R}_{m-1, n-1}$ and $s \mathrm{X}_{b} \in \underline{R}_{m, n}$. Since r is condensed on v, we have $s \mathrm{X}_{b}(v)<s_{0}(v)$, and since $s \mathrm{X}_{b}$ is not condensed on u, we have $s_{0}(v) \leq s \mathbf{X}_{b}(v)$, contradicting Property (WI 2). Thus (WI 1c) holds.

Conversely, let us assume that (WI 1c), (WI 2c) and (WI 3c) hold. Then (WI 1) holds by Proposition 3.14. Let us verify Property (WI 2): suppose that $r \in \underline{R}_{m, n}$ and $r^{\prime} \in \underline{R}_{m-1, n-1}$ are defined on u and v. In view of (WI 1c), Proposition 3.13 shows that there exist rankers $s \in \underline{R}_{m, n}$ and $s^{\prime} \in \underline{R}_{m-1, n-1}$ which are condensed on u and v, and which coincide with r and r^{\prime}, respectively, on both words. By (WI 2c), we have ord $\left(s(u), s^{\prime}(u)\right)=$ $\operatorname{ord}\left(s(v), s^{\prime}(v)\right)$, and hence $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$. Thus Property (WI 2) holds. The verification of (WI 3) is identical.

These results imply the following statement, which refines Corollary 1.8 and can be proved like that Corollary, using Propositions 1.5 and 3.14, and Theorem 3.15.

Corollary 3.16. For each $m \geq 1$, we have $\underline{\mathcal{T}}_{m}^{\mathrm{X}} \subseteq \mathcal{R}_{m} \subseteq \mathcal{F} \mathcal{O}_{m}^{2}$ and $\underline{\mathcal{T}}_{m}^{\mathrm{Y}} \subseteq$ $\mathcal{L}_{m} \subseteq \mathcal{F} \mathcal{O}_{m}^{2}$.

Since $\mathcal{F} \mathcal{O}^{2}$ is the variety of languages corresponding to DA, this yields the following containments.
Corollary 3.17. For each $m \geq 1, \mathbf{R}_{m}$ and \mathbf{L}_{m} are contained in $\mathbf{D A}$.
3.4. Condensed rankers and deterministic products. Recall that a product of languages $L=L_{0} a_{1} L_{1} \cdots a_{k} L_{k}\left(k \geq 1, a_{i} \in A, L_{i} \subseteq A^{*}\right)$ is deterministic if, for $0 \leq i \leq k$, each word $u \in L$ has a unique prefix in $L_{0} a_{1} L_{1} \cdots L_{i-1} a_{i}$. If for each i, the letter a_{i} does not occur in L_{i-1}, the product $L_{0} a_{1} L_{1} \cdots a_{k} L_{k}$ is called visibly deterministic: this is obviously a particular case of a deterministic product.

The definition of a co-deterministic or visibly co-deterministic product is dual, in terms of suffixes instead of prefixes. If \mathcal{V} is a class of languages and A is a finite alphabet, let $\mathcal{V}^{\text {det }}(A)$ (resp. $\mathcal{V}^{\text {vdet }}(A), \mathcal{V}^{\text {codet }}(A), \mathcal{V}^{\text {vcodet }}(A)$) be the set of all Boolean combinations of languages of $\mathcal{V}(A)$ and of deterministic (resp. visibly deterministic, co-deterministic, visibly co-deterministic) products of languages of $\mathcal{V}(A)$.

Schützenberger gave algebraic characterizations of the operations $\mathcal{V} \longmapsto$ $\mathcal{V}^{\text {det }}$ and $\mathcal{V} \longmapsto \mathcal{V}^{\text {codet }}$, see [15].
Proposition 3.18. If \mathcal{V} is a variety of languages and if \mathbf{V} is the corresponding pseudovariety of monoids, then $\mathcal{V}^{\text {det }}$ and $\mathcal{V}^{\text {codet }}$ are varieties of languages and the corresponding pseudovarieties are, respectively, $\mathbf{K} m \mathbf{V}$ and $\mathbf{D}: \mathbf{V}$.

This leads to the following statement.
Theorem 3.19. For each $m \geq 1$, we have $\mathcal{R}_{m+1}=\mathcal{L}_{m}^{\text {vdet }}=\mathcal{L}_{m}^{\text {det }}, \mathcal{L}_{m+1}=$ $\mathcal{R}_{m}^{\text {vcodet }}=\mathcal{R}_{m}^{\text {codet }}, \mathbf{R}_{m+1}=\mathbf{K}: \mathbf{L}_{m}$ and $\mathbf{L}_{m+1}=\mathbf{D}: \mathbf{R}_{m}$. In particular, $\mathbf{R}_{2}=\mathbf{R}$ and $\mathbf{L}_{2}=\mathbf{L}$.

The proof uses the following technical property of monoids in DA, whose proof can be found for instance in [6, Lemma 4.2].

Fact 3.20. Let $\sigma: A^{*} \rightarrow S$ be a morphism into a monoid $S \in \mathbf{D A}$. If $u, v \in A^{*}, a \in \operatorname{alph}(v)$ and $\sigma(u) \mathcal{R} \sigma(u v)$, then $\sigma(u v a) \mathcal{R} \sigma(u)$.
Proof of Theorem 3.19. It is immediate from the definition that $\mathcal{L}_{m}^{v d e t} \subseteq$ $\mathcal{L}_{m}^{\text {det }}$.

Let $u \in A^{*}$ and let $B=\operatorname{alph}(u)$. For each $a \in B$, let $u=u_{-}^{(a)} a u_{+}^{(a)}$ be the a-left factorization of u. Let $[B]$ be the language of all strings with alphabet $B,[B]=\left\{u \in A^{*} \mid \operatorname{alph}(u)=B\right\}$. Observe that

$$
[B]=\bigcap_{a \in B} L_{c}\left(\mathrm{X}_{a}\right) \backslash \bigcup_{a \notin B} L_{c}\left(\mathrm{X}_{a}\right)=\bigcap_{a \in B} L_{c}\left(\mathrm{Y}_{a}\right) \backslash \bigcup_{a \notin B} L_{c}\left(\mathrm{Y}_{a}\right)
$$

Figure 1. $M \in \mathbf{K} \cap \mathbf{L}_{m}$
This shows that $[B] \in \mathcal{R}_{1}=\mathcal{L}_{1}$. (It is also well-known that $[B]$ is piecewise testable, and hence $[B] \in \mathcal{R}_{1}=\mathcal{L}_{1}$.)

Now let $n>m \geq 1$. It follows from Proposition 3.6 that the $\triangleright_{m+1, n}$-class of u is the intersection of $[B]$, the $\triangleleft_{m, n-1}$-class of u and the products $K a L$ $(a \in B)$ where K is the $\triangleleft_{m, n-1}$-class of $u_{-}^{(a)}$ and L is the $\triangleright_{m+1, n-1}$-class of $u_{+}^{(a)}$ if $n>m+1$, the $\triangleright_{m, n-1}$-class of $u_{+}^{(a)}$ if $n=m+1$.

By definition of an a-left factorization, each of these products is visibly deterministic and, since every $\triangleleft_{m, n-1}$-class is a language in \mathcal{L}_{m}, we have shown that the $\triangleright_{m+1, n}$-class of u is in $\mathcal{L}_{m}^{v d e t}$. Thus $\mathcal{R}_{m+1} \subseteq \mathcal{L}_{m}^{v d e t}$.

To establish the last inclusion, namely the fact that $\mathcal{L}_{m}^{\text {det }} \subseteq \mathcal{R}_{m+1}$, we show rather that $\mathbf{K}: \mathbf{L}_{m} \subseteq \mathbf{R}_{m+1}$.

Let $\gamma: A^{*} \rightarrow M$ be a surjective morphism, onto a monoid $M \in \mathbf{K}\left(m \mathbf{L}_{m}\right.$: we want to show that there exists a morphism from $A^{*} / \triangleright_{m+1, n}$ onto M for some $n>m$. Since $M \in \mathbf{K}: \mathbf{L}_{m}$, there exists a monoid T and onto morphisms $\alpha: T \rightarrow M$ and $\beta: T \rightarrow N$ such that $N \in \mathbf{L}_{m}$ and $\beta^{-1}(e) \in \mathbf{K}$ for each idempotent $e \in T$. Using a classical property of free monoids, we can choose a morphism $\tau: A^{*} \rightarrow T$ such that $\gamma=\alpha \circ \tau$. Moreover, by replacing T by $\tau\left(A^{*}\right)$ and N by $\beta\left(\tau\left(A^{*}\right)\right)$, we may assume that α, β and τ are onto.

By definition of \mathbf{L}_{m}, there exists an integer n and a morphism δ^{\prime} from $A^{*} / \triangleleft_{m, n}$ onto N such that $\beta \circ \tau=\delta^{\prime} \circ \delta$, where δ is the natural projection morphism from A^{*} onto $A^{*} / \triangleleft_{m, n}$, see Figure 1 .

Let ℓ be the maximal length of a strict \mathcal{R}-chain in M, that is: if $x_{n}<\mathcal{R}$ $\ldots<_{\mathcal{R}} x_{1}$ in M, then $n \leq \ell$. We show that, for any $u, v \in A^{*}$,

$$
\begin{equation*}
u \triangleright_{m+1, \ell|A|+n+1} v \Longrightarrow \gamma(u)=\gamma(v) . \tag{1}
\end{equation*}
$$

If $n^{\prime}=\ell|A|+n+1$, this implies the existence of a morphism from $A^{*} / \triangleright_{m+1, n^{\prime}}$ onto M, as announced.

To prove implication (1), it suffices to show that we have

$$
\begin{equation*}
u \triangleright_{m+1, \ell|a| \operatorname{lph}(u) \mid+n+1} v \Longrightarrow \gamma(u)=\gamma(v), \tag{2}
\end{equation*}
$$

which we prove by induction on $|\operatorname{alph}(u)|$. If $|\operatorname{alph}(u)|=0$, then $u=\varepsilon$, $\operatorname{alph}(v)=\emptyset$ and $v=\varepsilon$ as well, so that $\gamma(u)=\gamma(v)$.

Now suppose that $u \neq \varepsilon$ and assume that $u \triangleright_{m+1, \ell|a \operatorname{lph}(u)|+n+1} v$. Let $u=u_{1} a_{1} \cdots a_{k} u_{k+1}$ be the factorization of u such that each u_{i} is a word, each a_{i} is a letter and

$$
1 \mathcal{R} \gamma\left(u_{1}\right)>_{\mathcal{R}} \gamma\left(u_{1} a_{1}\right) \cdots>_{\mathcal{R}} \gamma\left(u_{1} a_{1} \cdots u_{k} a_{k}\right) \mathcal{R} \gamma\left(u_{1} a_{1} \cdots a_{k} u_{k+1}\right) .
$$

Then $k+1 \leq \ell$, so $k<\ell$. Moreover, by Fact 3.20 (and Corollary 3.17), for each $1 \leq i \leq k, a_{i} \notin u_{i}$, so that each product $u_{i} a_{i}\left(u_{i+1} \cdots a_{k} u_{k+1}\right)$ is an a_{i}-left factorization $(1 \leq i \leq k)$.

An easy induction on k, using Lemma 3.7, shows that v can then be factored as

$$
v=v_{1} a_{1} v_{2} \cdots a_{k} v_{k+1}
$$

where $u_{i} \triangleright_{m+1, \ell|\operatorname{alph}(u)|+n-i+1} v_{i}$ for each $1 \leq i \leq k+1$. Moreover, for $1 \leq i \leq k,\left|\operatorname{alph}\left(u_{i}\right)\right|<|\operatorname{alph}(u)|$. Since $i \leq k<\ell$, we have $\ell|a \operatorname{lph}(u)|+n-i \geq$ $\ell\left|\operatorname{alph}\left(u_{i}\right)\right|+n+1$, and by induction, we have $\gamma\left(u_{i}\right)=\gamma\left(v_{i}\right)$. However, it is possible that alph $\left(u_{k+1}\right)=\operatorname{alph}(u)$, so we cannot conclude that $\gamma\left(u_{k+1}\right)=$ $\gamma\left(v_{k+1}\right)$.

But we do have the following:

$$
u_{k+1} \triangleright_{m+1, \ell|\operatorname{alph}(u)|+n-k} v_{k+1} \text { and } \gamma\left(u^{\prime}\right)=\gamma\left(v^{\prime}\right)
$$

where $u^{\prime}=u_{1} a_{1} \cdots u_{k} a_{k}$ and $v^{\prime}=v_{1} a_{1} \cdots v_{k} a_{k}$. The first relation implies that $u_{k+1} \triangleleft_{m, \ell|\mathrm{alph}(u)|+n-k-1} v_{k+1}$. Since $k<\ell$, we have $\ell|\operatorname{alph}(u)|+n-k-$ $1 \geq n$, and hence $u_{k+1} \triangleleft_{m, n} v_{k+1}$.

Moreover, there exists a string $x \in A^{*}$ such that $\gamma\left(u^{\prime} u_{k+1} x\right)=\gamma\left(u^{\prime}\right)$. Let ω be an integer such that every ω-power is idempotent in M and N and let $y=\left(x u_{k+1}\right)^{\omega-1} x$. Then we have

$$
\left(x u_{k+1}\right)^{\omega}=y u_{k+1} \triangleleft_{m, n} y v_{k+1} .
$$

By the induction hypothesis, this implies that

$$
\begin{aligned}
& \delta^{\prime}\left(\delta\left(y u_{k+1}\right)\right)=\delta^{\prime}\left(\delta\left(x u_{k+1}\right)^{\omega}\right)=\delta^{\prime}\left(\delta\left(y v_{k+1}\right)\right), \text { so } \\
& \beta\left(\tau\left(y u_{k+1}\right)\right)=\beta\left(\tau\left(x u_{k+1}\right)^{\omega}\right)=\beta\left(\tau\left(x v_{k+1}\right)^{\omega}\right) .
\end{aligned}
$$

Since $\alpha\left(\beta^{-1}(e)\right) \in \mathbf{K}$ for each idempotent e of N, we have

$$
\begin{aligned}
\alpha\left(\tau\left(x u_{k+1}\right)^{\omega}\right) \alpha\left(\tau\left(y v_{k+1}\right)\right) & =\alpha\left(\tau\left(x u_{k+1}\right)^{\omega}\right), \text { that is, } \\
\gamma\left(\left(x u_{k+1}\right)^{\omega} y v_{k+1}\right) & =\gamma\left(x u_{k+1}\right)^{\omega} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\gamma(u)=\gamma\left(u^{\prime} u_{k+1}\right) & =\gamma\left(u^{\prime} u_{k+1} x u_{k+1}\right) \\
& =\gamma\left(u^{\prime} u_{k+1}\left(x u_{k+1}\right)^{\omega}\right) \\
& =\gamma\left(u^{\prime} u_{k+1}\left(x u_{k+1}\right)^{\omega} y v_{k+1}\right) \\
& =\gamma\left(u^{\prime} u_{k+1}\left(x u_{k+1}\right)^{\omega}\left(x u_{k+1}\right)^{\omega-1} x v_{k+1}\right) \\
& =\gamma\left(u^{\prime}\left(u_{k+1} x\right)^{2 \omega} v_{k+1}\right) \\
& =\gamma\left(u^{\prime} v_{k+1}\right)=\gamma\left(v^{\prime} v_{k+1}\right)=\gamma(v) .
\end{aligned}
$$

This concludes the proof of Formula (2), and therefore of Theorem 3.19.
3.5. Structure of the \mathbf{R}_{m} and \mathbf{L}_{m} hierarchies. It turns out that the hierarchies of pseudovarieties given by the \mathbf{R}_{m} and the \mathbf{L}_{m} were studied in the semigroup-theoretic literature (Trotter and Weil [28], Kufleitner and Weil [12]). In [12], they are defined as the hierarchies of pseudovarieties obtained from \mathbf{J} by alternated applications of the operations $\mathbf{X} \mapsto \mathbf{K} m \mathbf{X}$ and $\mathbf{X} \mapsto \mathbf{D}(\mathrm{m} \mathbf{X}$. Theorem 3.19 shows that these are the same hierarchies as those considered in this paper ${ }^{1}$. The following results are proved in [12, Section 4].
Proposition 3.21. The hierarchies $\left(\mathbf{R}_{m}\right)_{m}$ and $\left(\mathbf{L}_{m}\right)_{m}$ are infinite chains of decidable pseudovarieties, and their unions are equal to DA. Moreover, every m-generated monoid in DA lies in $\mathbf{R}_{m+1} \cap \mathbf{L}_{m+1}$.

The results in $[28,12]$ go actually further, and give defining pseudoidentities for the pseudovarieties \mathbf{R}_{m} and \mathbf{L}_{m}.

4. The \mathbf{R}_{m} hierarchy and unary temporal logic

We have seen in Corollary 3.16 that $\underline{\mathcal{T}}_{m}^{\mathrm{X}} \subseteq \mathcal{R}_{m}$ and $\underline{\mathcal{L}}_{m}^{Y} \subseteq \mathcal{L}_{m}$. In Proposition 4.3 below, we prove a weak converse. Let us however make the following observation.

Proposition 4.1. We have

$$
\begin{aligned}
& \underline{\mathcal{T}}_{1}^{\mathrm{X}}=\underline{\mathcal{T}}_{1}^{\mathrm{Y}}=\mathcal{R}_{1}=\mathcal{L}_{1} \\
& \underline{\mathcal{T}}_{2}^{\mathrm{X}}=\mathcal{R}_{2}, \quad{\underline{\mathcal{T}} \mathcal{L}_{2}^{\mathrm{Y}}}_{2}=\mathcal{L}_{2}
\end{aligned}
$$

Proof. The statement concerning \mathcal{T}_{1} was already proved in Remark 1.6. Let us now establish that $\mathcal{R}_{2} \subseteq \frac{\mathcal{T} \mathcal{L}_{2}^{X}}{\mathcal{X}}$. We show, by induction on $n \geq 2$, that if u and v agree on rankers in $\underline{R}_{2,2 n}^{X}$, then they agree on condensed rankers in $\underline{R}_{2, n}^{X}: u \triangleright_{2, n} v$. We use the characterization of $\triangleright_{2, n}$ in Proposition 3.6.

The consideration of 1-letter rankers shows that alph $(u)=\operatorname{alph}(v)$. Moreover, since $\underline{R}_{1, n-1}^{\mathrm{Y}}$ is contained in $\underline{R}_{2,2 n}^{\mathrm{X}}$, and since these rankers are condensed where they are defined, we find that $u \triangleleft_{1, n-1} v$. Similarly, if $u=$ $u_{-} a u_{+}$and $v=v_{-} a v_{+}$are a-left factorizations, let $s \in \underline{R}_{1, n-1}^{Y}$. Then s is condensed on u_{-}if and only if s is defined on u_{-}, if and only if $\mathrm{X}_{a} s$ is defined on u (Lemma 3.5). Since $\mathrm{X}_{a} s \in \underline{R}_{2,2 n}^{\mathrm{X}}$ and u and v agree on such rankers, it follows that $\mathrm{X}_{a} s$ is defined on v, and s is condensed on v_{-}. Thus $u_{-} \triangleleft_{1, n-1} v_{-}$.

Now we need to show that $u_{+} \triangleright_{2, n-1} v_{+}$if $n \geq 3, u_{+} \triangleright_{1,1} v_{+}$if $n=2$. Suppose first that $n=2$ and consider $s \in \underline{R}_{1,1}^{\mathrm{X}}$, condensed on u_{+}. Then $s=\mathrm{X}_{b}$ for some $b \in A$ and the consideration of $r=\mathrm{X}_{a} \mathrm{X}_{b}$ (in $\underline{R}_{2,2}^{\mathrm{X}}$) shows that s is condensed on v_{+}as well. This settles the case $n=2$.

[^0]Let us now assume that $n \geq 3$ and let us show that $u_{+} \triangleright_{2, n-1} v_{+}$. By induction, it suffices to show that u_{+}and v_{+}agree on rankers in $\underline{R}_{2,2 n-2}^{X}$. So let $s \in \underline{R}_{2,2 n-2}^{\mathrm{X}}$ be defined on u_{+}. Then for every prefix p of s ending with a Y -letter, $\mathrm{X}_{a} p \mathrm{Y}_{a}$ is defined on u (Lemma 3.5). Since $\mathrm{X}_{a} p \mathrm{Y}_{a} \in \underline{R}_{2,2 n}^{\mathrm{X}}$, it follows that $\mathrm{X}_{a} p \mathrm{Y}_{a}$ is defined on v, and hence s is defined on v_{+}. This concludes the proof.

Example 4.2 below shows that the statement of Proposition 4.1 cannot be extended to the higher levels of the hierarchy.

Example 4.2. We show in this example that $\mathcal{T \mathcal { L }}_{3}^{X}$ is properly contained in \mathcal{R}_{3}. More precisely, let $r_{0}=\mathrm{X}_{a} \mathrm{Y}_{b} \mathrm{X}_{c} \in R_{3,3}^{\mathrm{X}}$. We show that $L_{c}\left(r_{0}\right)$, a language in \mathcal{R}_{3}, is not $\mathrm{TL}_{3}^{\mathrm{X}}$-definable.

Let $u_{n}=(b c)^{n}\left(a(b c)^{n}\right)^{n}$ and $v_{n}=(b c)^{n} b\left(a(b c)^{n}\right)^{n}(n \geq 1)$. It is easily verified that r_{0} is condensed on u_{n}, and that it is defined and not condensed on v_{n} : that is, for each $n, u_{n} \in L_{c}\left(r_{0}\right)$ and $v_{n} \notin L_{c}\left(r_{0}\right)$.

We now show that u_{n} and v_{n} agree on all rankers in $\underline{R}_{3, n}^{X}$, so that any $\mathrm{TL}_{3}^{\mathrm{X}}$-definable language contains either both u_{n} and v_{n}, or neither - and hence $L_{c}\left(r_{0}\right)$ is not $\mathrm{TL}_{3}^{\mathrm{X}}$-definable.

Let $r \in \underline{R}_{3, n}^{\mathrm{X}}$. If r starts with a Y-letter, then any two words ending with $\left(a(b c)^{n}\right)^{n}$ agree on r. In particular, u_{n} and v_{n} agree on r. Similarly, if r starts with an X -letter and does not contain the letters X_{a} or Y_{a}, then any two words starting with $(b c)^{n}$ agree on r, so u_{n} and v_{n} agree on r.

Finally, assume that r starts with an X -letter and that $r=s_{0} \mathrm{Z}_{a}^{(1)} s_{1} \cdots \mathrm{Z}_{a}^{(k)} s_{h}$ with $k>0$, each $\mathrm{Z}^{(i)} \in\{\mathrm{X}, \mathrm{Y}\}$ and each s_{i} a (possibly empty) ranker avoiding the letters X_{a} and Y_{a}. We denote by p_{i} the prefix $p_{i}=s_{0} \mathrm{Z}_{a}^{(1)} s_{1} \cdots \mathrm{Z}_{a}^{(i)}$.

Suppose first that $r \in R_{1, n}^{\mathrm{X}}$. Then p_{i} coincides with X_{a}^{i} on u_{n} as well as on v_{n}. Therefore r is defined and coincides with $\mathrm{X}_{a}^{k} s_{k}$ on both words.

Suppose now that $r \in R_{2, n}^{\mathrm{X}}$, say $r=r^{\prime} r^{\prime \prime}$ with r^{\prime} a non-empty string of X-letters and $r^{\prime \prime}$ a non-empty string of Y -letters. If r^{\prime} is shorter than p_{1}, then $\mathbf{Z}^{(1)}=\mathrm{Y}$ and r is not defined on either u_{n} or v_{n}. If $\mathbf{Z}^{(1)}=\mathrm{X}$, let i be maximal such that p_{i} is a prefix of r^{\prime}, say $r^{\prime}=p_{i} s_{i}^{\prime}$. Then $i>0$ and p_{i} coincides with X_{a}^{i} on u_{n}, as well as on v_{n}.

If $i=k$, then r is defined on u_{n} and v_{n}, and it coincides with $\mathrm{X}_{a}^{k} s_{k}$ on both words.

If $1 \leq i<k, s_{i}^{\prime}$ is non-empty and s_{i} is defined on $(b c)^{n}$, then p_{i+1} coincides with X_{a}^{i} on u_{n} and v_{n}. Thus r is defined on u_{n} (resp. v_{n}) if and only $i \geq k-i$, and in that case, it coincides with $X_{a}^{k-2 i} s_{k}$.

If $1<i<k, s_{i}^{\prime}$ is non-empty and s_{i} is not defined on $(b c)^{n}$, or if s_{i}^{\prime} is empty, then p_{i+1} coincides with X_{a}^{i-1} on u_{n} and v_{n}. Thus r is defined on u_{n} (resp. v_{n}) if and only $i>k-i$, and in that case, it coincides with $\mathrm{X}_{a}^{k-2 i-1} s_{k}$.

Finally, if $1=i<k, s_{i}^{\prime}$ is non-empty and s_{i} is not defined on $(b c)^{n}$, or if s_{i}^{\prime} is empty, then r (and even p_{i+1}) is not defined on either u_{n} or v_{n}.

Finally, let us assume that $r \in R_{3, n}^{\mathrm{X}}$, say $r=r^{\prime} r^{\prime \prime} r^{\prime \prime \prime}$ with r^{\prime} and $r^{\prime \prime \prime}$ nonempty strings of X -letters and $r^{\prime \prime}$ a non-empty string of Y-letters. Again, let i be maximal such that p_{i} is a prefix of $r^{\prime}\left(i=0\right.$ if p_{1} is not a prefix of r^{\prime}) and let j be maximal such that p_{j} is a prefix of $r^{\prime} r^{\prime \prime}$. Then $r^{\prime} r^{\prime \prime}=p_{j} s_{j}^{\prime}$ for some prefix s_{j}^{\prime} of s_{j}. By the previous analysis, if $i \leq 1<j$, then $r^{\prime} r^{\prime \prime}$ is not defined on u_{n} nor on v_{n}, and hence neither is r. In all other cases, $r^{\prime} r^{\prime \prime}$ is defined on both words and coincides with $\mathrm{X}_{a}^{2 i-j} s_{j}^{\prime}$ or $\mathrm{X}_{a}^{2 i-j-1} s_{j}^{\prime}$. Since $(k-j)+(2 i-j) \leq k, r$ is defined on u_{n} and v_{n}, and coincides on these words with $\mathrm{X}_{a}^{k-j+2 i-j} s_{k}$ or $\mathrm{X}_{a}^{k-j+2 i-j-1} s_{k}$.

To conclude this example, note that u_{n} and v_{n} disagree on rankers in \underline{R}_{4}^{X}. More precisely, the ranker $\mathrm{X}_{a} \mathrm{Y}_{c} \mathrm{X}_{b} \mathrm{Y}_{a}$ is defined on v_{n} but not on u_{n}. Further getting ahead of ourselves, we note that this example also shows (in view of Theorem 5.1) that $\underline{\mathcal{T} \mathcal{L}_{3}}$ is properly contained in $\mathcal{F} \mathcal{O}_{3}^{2}$.

Finally we prove a result on the containment of the \mathcal{R}_{m} and \mathcal{L}_{m} hierarchies in the $\underline{\mathcal{T}}_{m}$ hierarchy.

Proposition 4.3. Let $m \geq 1$. Then $\mathcal{R}_{m} \subseteq \underline{\mathcal{L}}_{2 m-1}^{\mathrm{X}}$ and $\mathcal{L}_{m} \subseteq \underline{\mathcal{T}}_{2 m-1}^{\mathrm{Y}}$.
More precisely, for all $n \geq m, \mathrm{Z} \in\{\mathrm{X}, \mathrm{Y}\}$ and $u, v \in A^{*}$, if u and v agree on rankers in $\underline{R}_{2 m-1,2 n-1}^{\mathrm{Z}}$, then they agree on condensed rankers in $\underline{R}_{m, n}^{\mathrm{Z}}$.

Proof. Without loss of generality, we may assume $Z=X$. The proof is by induction on m. The result is trivial if $m=1$, since $2 m-1=1$ and $2 n-1 \geq n$. We now assume that $m \geq 2$ and u, v agree on rankers in $\underline{R}_{2 m-1,2 n-1}^{\mathrm{X}}$.

We use the characterization of $\triangleright_{m, n}$ in Proposition 3.6: the consideration of length 1 rankers shows that $\operatorname{alph}(u)=\operatorname{alph}(v)$. Since $\underline{R}_{2 m-3,2 n-3}^{Y}$ is contained in $\underline{R}_{2 m-1,2 n-1}^{X}$, we have $u \triangleleft_{m-1, n-1} v$ by induction. Now, for each letter $a \in \operatorname{alph}(u)$, let $u=u_{-} a u_{+}$and $v=v_{-} a v_{+}$be the a-left factorizations. We want to show that $u_{-} \triangleleft_{m-1, n-1} v_{-}$and $u_{+} \triangleright_{m, n-1} v_{+}\left(u_{+} \triangleright_{m-1, n-1} v_{+}\right.$if $m=n$). By induction, it suffices to show that u_{-}and v_{-}agree on rankers in $\underline{R}_{2 m-3,2 n-3}^{\mathrm{Y}}$, and u_{+}and v_{+}agree on rankers in $\underline{R}_{2 m-1,2 n-3}^{\mathrm{X}}\left(\underline{R}_{2 m-3,2 n-3}^{\mathrm{X}}\right.$ if $m=n$). In the rest of the proof we silently rely on the results of Lemma 3.5.

Let $s \in \underline{R}_{2 m-3,2 n-3}^{Y}$ be defined on u_{-}. If s starts with a Y-block, then $\mathrm{X}_{a} s \in \underline{R}_{2 m-2,2 n-2}^{\mathrm{X}}$ and $\mathrm{X}_{a} s$ is defined on u. Moreover, if p is any prefix of s, then $\mathrm{X}_{a} p \mathrm{Y}_{a} \in \underline{R}_{2 m-1,2 n-1}^{\mathrm{X}}$ is not defined on u. It follows that s is defined on v_{-}.

If instead s starts with an X-block, then $s \in \underline{R}_{2 m-4,2 n-4}^{\mathrm{X}}$ and s is defined on u. If p is any prefix of s, then $p \mathrm{Y}_{a} \in \underline{R}_{2 m-3,2 n-3}^{\mathrm{X}}$ and $p \mathrm{Y}_{a}$ is not defined on u. As all these rankers are in $\underline{R}_{2 m-1,2 n-1}^{X}$, the same holds on v and s is defined on v_{-}.

Let now $s \in \underline{R}_{2 m-1,2 n-3}^{\mathrm{X}}\left(s \in \underline{R}_{2 m-3,2 n-3}^{\mathrm{X}}\right.$ if $\left.n=m\right)$ be defined on u_{+}. If s starts with an X -block, then $\mathrm{X}_{a} s \in \underline{R}_{2 m-1,2 n-2}^{\mathrm{X}}\left(\mathrm{X}_{a} s \in \underline{R}_{2 m-3,2 n-2}^{\mathrm{X}}\right.$ if $n=m)$ and $\mathrm{X}_{a} s$ is defined on u. Moreover, for each prefix p of s ending with
a Y -letter, $\mathrm{X}_{a} p \mathrm{Y}_{a} \in \underline{R}_{2 m-1,2 n-1}^{\mathrm{X}}\left(\mathrm{X}_{a} p \mathrm{Y}_{a} \in \underline{R}_{2 m-3,2 n-1}^{\mathrm{X}}\right.$ if $\left.n=m\right)$ and $\mathrm{X}_{a} p \mathrm{Y}_{a}$ is defined on u. As all these rankers are in $\underline{R}_{2 m-1,2 n-1}^{X}$, the same holds on v and s is defined on v_{+}.

If instead s starts with a Y-block, then $s \in \underline{R}_{2 m-2,2 n-4}^{\mathrm{Y}}\left(s \in \underline{R}_{2 m-4,2 n-4}^{\mathrm{Y}}\right.$ if $n=m$) and s is defined on u. Moreover, if p is any prefix of s ending with a Y-letter, $p \mathrm{Y}_{a} \in \underline{R}_{2 m-2,2 n-3}^{\mathrm{Y}}\left(p \mathrm{Y}_{a} \in \underline{R}_{2 m-4,2 n-3}^{\mathrm{Y}}\right.$ if $\left.n=m\right)$ and $p \mathrm{Y}_{a}$ is defined on u. As all these rankers are in $\underline{R}_{2 m-1,2 n-1}^{\mathrm{X}}$, the same holds on v and s is defined on v_{+}.

The containment of \mathcal{R}_{m} and \mathcal{L}_{m} into ${\underline{\mathcal{T}} \mathcal{L}_{2 m-1}^{\mathrm{X}}}$ and $\underline{\mathcal{T}}_{2 m-1}^{Y}$, respectively, is not very precise, unfortunately, especially in view of Proposition 6.4 below.

$$
\text { 5. The } \mathbf{R}_{m} \text { HIERARChy and } \mathrm{FO}_{m}^{2}
$$

The objective of this section is to prove the following theorem.
Theorem 5.1. Let $m \geq 1$. Every language in \mathcal{R}_{m} or \mathcal{L}_{m} is FO_{m}^{2}-definable, and every FO_{m}^{2}-definable language is in $\mathcal{R}_{m+1} \cap \mathcal{L}_{m+1}$. Equivalently, we have

$$
\mathbf{R}_{m} \vee \mathbf{L}_{m} \subseteq \mathbf{F O}_{m}^{2} \subseteq \mathbf{R}_{m+1} \cap \mathbf{L}_{m+1}
$$

where $\mathbf{V} \vee \mathbf{W}$ denotes the least pseudovariety containing \mathbf{V} and \mathbf{W}.
5.1. Are the containments in Theorem $\mathbf{5 . 1}$ strict? In the particular case where $m=1$, we know that $\mathbf{R}_{2} \cap \mathbf{L}_{2}=\mathbf{R} \cap \mathbf{L}=\mathbf{J}=\mathbf{R}_{1} \vee \mathbf{L}_{1}$: this reflects the elementary observation that FO_{1}^{2}-definable languages, like FO_{1}-definable languages, are the piecewise testable languages. However, for $m \geq 2$, we conjecture that $\mathbf{R}_{m} \vee \mathbf{L}_{m}$ is properly contained in $\mathbf{R}_{m+1} \cap \mathbf{L}_{m+1}$. The following example proves the conjecture for $m=2$.
Example 5.2. $L=\{b, c\}^{*} c a\{a, b\}^{*}$ is FO_{2}^{2}-definable, by the following formula:

$$
\begin{aligned}
\exists i & (\mathbf{c}(i) \wedge(\forall j(j<i \rightarrow \neg \mathbf{a}(j))) \wedge(\forall j(j>i \rightarrow \neg \mathbf{c}(j)))) \\
\wedge \exists i & (\mathbf{a}(i) \wedge(\forall j(j<i \rightarrow \neg \mathbf{a}(j))) \wedge(\forall j(j>i \rightarrow \neg \mathbf{c}(j)))) \\
\wedge \forall i & (\mathbf{b}(i) \rightarrow(\exists j(j<i \wedge \mathbf{a}(j)) \vee(\exists j(j>i \wedge \mathbf{c}(j)))) .
\end{aligned}
$$

The words $u_{n}=(b c)^{n}(a b)^{n}$ are in L, while the words $v_{n}=(b c)^{n} b(c a)^{n}$ are not. Almeida and Azevedo showed that $\mathbf{R}_{2} \vee \mathbf{L}_{2}$ is defined by the pseudoidentity $(b c)^{\omega}(a b)^{\omega}=(b c)^{\omega} b(a b)^{\omega}$ [2, Theorem 9.2.13 and Exercise 9.2.15]). In particular, for each language K recognized by a monoid in $\mathbf{R}_{2} \vee \mathbf{L}_{2}$, the words u_{n} and v_{n} (for n large enough) are all in K, or all in the complement of K. Therefore L is not recognized by such a monoid, which proves that $\mathbf{R}_{2} \vee \mathbf{L}_{2}$ is strictly contained in $\mathbf{F O}_{2}^{2}$, and hence also in $\mathbf{R}_{3} \cap \mathbf{L}_{3}$. It also shows that $\underline{\mathcal{T} \mathcal{L}_{2}}$ is properly contained in $\mathcal{F} \mathcal{O}_{2}^{2}$.

Finally, we formulate the following conjecture.
Conjecture 5.3. For each $m \geq 1, \mathbf{F O}_{m}^{2}=\mathbf{R}_{m+1} \cap \mathbf{L}_{m+1}$.
5.2. Proof of Theorem 5.1. Corollary 3.16 already established that every language in \mathcal{R}_{m} or \mathcal{L}_{m} is FO_{m}^{2}-definable ${ }^{2}$.

In view of Theorem 3.15, to establish that $\mathcal{F} \mathcal{O}_{m}^{2}$ is contained in $\mathcal{R}_{m+1} \cap$ \mathcal{L}_{m+1}, it suffices to prove the following result.

For each $n \geq m \geq 1$, if $u \triangleright_{m+1,2 n} v$ or $u \triangleleft_{m+1,2 n} v$, then
Properties (WI 1c), (WI 2c) and (WI 3c) hold for m, n.
The result is trivial if $m=1$, since in that case, only Property (WI 1c) is non-vacuous.

So we now assume that $m \geq 2, u \triangleright_{m+1,2 n} v$ or $u \triangleleft_{m+1,2 n} v$. Property (WI 1c) holds trivially, by definition of the $\triangleright_{m+1,2 n}$ and $\triangleleft_{m+1,2 n}$ relations. We now concentrate on proving that Properties (WI 2c) and (WI 3c) also hold for m, n, a task that will be completed in Section 5.2.3.

5.2.1. The case where r and r^{\prime} start with opposite directions.

Proposition 5.4. Let $n \geq m \geq 1, r=\mathrm{Y}_{a_{1}} s \in \underline{R}_{m, n}^{\mathrm{Y}}$ and $r^{\prime}=\mathrm{X}_{c}$. If $u, v \in A^{*}, r$ is condensed on u and v and $u \triangleright_{m, n+1} v$ or $u \triangleleft_{m+1, n+1} v$, then $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$. The dual statement (involving $r=$ $\mathrm{X}_{a_{1}} s \in \underline{R}_{m, n}^{\mathrm{X}}$ and $r^{\prime}=\mathrm{Y}_{c}$) holds as well.
Proof. First suppose that $u \triangleleft_{m+1, n+1} v$, that is, u and v agree on condensed rankers in $\underline{R}_{m+1, n+1}^{\mathrm{Y}}$. We are in exactly one of the following three situations:
$-r \mathrm{Y}_{c}$ is defined on u, in which case $r^{\prime}(u)<r(u)$;

- $r \mathrm{Y}_{c}$ is undefined on u and c is the last letter to occur in r, in which case $r^{\prime}(u)=r(u)$;
- $r \mathrm{Y}_{c}$ is undefined on u and c is not the last letter to occur in r, in which case $r(u)<r^{\prime}(u)$.

The same trichotomy holds for v. Since $r \mathrm{Y}_{c} \in \underline{R}_{m+1, n+1}^{Y}, u$ and v agree on $r \mathrm{Y}_{c}\left(\operatorname{Proposition~3.14)}\right.$, and hence ord $\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.
Let us now assume that $u \triangleright_{m, n+1} v$, so that u and v agree on condensed rankers in $\underline{R}_{m, n+1}^{\mathrm{X}}$. If $m=1$ then r is of the form $r=\mathrm{Y}_{a_{1}} \cdots \mathrm{Y}_{a_{k}}$ and we observe again that

- either $\mathrm{X}_{c} \mathrm{X}_{a_{k}} \cdots \mathrm{X}_{a_{1}} \in R_{1, n+1}^{\mathrm{X}}$ is defined on u, and we have $r^{\prime}(u)<r(u)$;
- or $\mathrm{X}_{c} \mathrm{X}_{a_{k}} \cdots \mathrm{X}_{a_{1}}$ is undefined on u and $c=a_{k}$, and we have $r^{\prime}(u)=r(u)$;
- or $\mathrm{X}_{c} \mathrm{X}_{a_{k}} \cdots \mathrm{X}_{a_{1}}$ is undefined on u and $c \neq a_{k}$, and we have $r^{\prime}(u)>r(u)$.

The same holds for v since $\mathrm{X}_{c} \mathrm{X}_{a_{k}} \cdots \mathrm{X}_{a_{1}} \in \underline{R}_{1, n+1}^{\mathrm{X}}$ and such rankers are
condensed where they are defined. Therefore we have $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=$ $\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.

We now assume that $m \geq 2$. Let $u=u_{-} c u_{+}$and $v=v_{-} c v_{+}$be c-left factorizations. We distinguish two cases depending on the direction of the second letter of r.

First suppose that $r=\mathrm{Y}_{a_{1}} \mathrm{Y}_{a_{2}} s^{\prime}$. If $a_{1} \notin \operatorname{alph}\left(u_{+}\right)$, then $r(u)<r^{\prime}(u)$ (because r is condensed on u). Since $u_{+} \triangleright_{m, n} v_{+}$, we have alph $\left(u_{+}\right)=$

[^1]$\operatorname{alph}\left(v_{+}\right)$, so $r(v)<r^{\prime}(v)$ as well. If instead $a_{1} \in \operatorname{alph}\left(u_{+}\right)=\operatorname{alph}\left(v_{+}\right)$, let $u_{+}=u_{0} a_{1} u_{1}$ and $v_{+}=v_{0} a_{1} v_{1}$ be the a_{1}-right factorizations. Then
\[

$$
\begin{aligned}
\operatorname{ord}\left(r(u), r^{\prime}(u)\right) & =\operatorname{ord}\left(\mathrm{Y}_{a_{2}} s^{\prime}\left(u_{-} c u_{0}\right), r^{\prime}\left(u_{-} c u_{0}\right)\right) \text { and } \\
\operatorname{ord}\left(r(v), r^{\prime}(v)\right) & =\operatorname{ord}\left(\mathrm{Y}_{a_{2}} s^{\prime}\left(v_{-} c v_{0}\right), r^{\prime}\left(v_{-} c v_{0}\right)\right)
\end{aligned}
$$
\]

Since $\left(u_{-} c u_{0}\right) a_{1} u_{1}$ and $\left(v_{-} c v_{0}\right) a_{1} u_{1}$ are a_{1}-right factorizations as well, we deduce from Lemma 3.7 that $u_{-} c u_{0} \triangleright_{m, n} v_{-} c v_{0}$ and it follows by induction on the length of r that

$$
\operatorname{ord}\left(\mathrm{Y}_{a_{2}} s^{\prime}\left(u_{-} c u_{0}\right), r^{\prime}\left(u_{-} c u_{0}\right)\right)=\operatorname{ord}\left(\mathrm{Y}_{a_{2}} s^{\prime}\left(v_{-} c v_{0}\right), r^{\prime}\left(v_{-} c v_{0}\right)\right)
$$

The other case is $r=\mathrm{Y}_{a_{1}} \mathrm{X}_{b_{1}} s^{\prime}$. If $a_{1} \in \operatorname{alph}\left(c u_{+}\right)=\operatorname{alph}\left(c v_{+}\right)$then $r^{\prime}(u)<r(u)$ and $r^{\prime}(v)<r(v)$. If instead $a_{1} \notin \operatorname{alph}\left(c u_{+}\right)=\operatorname{alph}\left(c v_{+}\right)$, we first consider the case where r has a single alternation, i.e., $r=\mathrm{Y}_{a_{1}} \mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{k}}$. We have $r(u)<r^{\prime}(u)$ if and only if r is defined on u_{-}, and hence condensed (Example 3.3). Since $u_{-} \triangleright_{m, n} v_{-}$(Lemma 3.7), this is the case if and only if r is defined on v_{-}. Hence, if r is defined on u_{-}, we have $r(u)<r^{\prime}(u)$ and $r(v)<r^{\prime}(v)$. If r is not defined on u_{-}, but $\mathrm{Y}_{a_{1}} \mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{k-1}}$ is defined on u_{-}and $b_{k}=c$, then the same holds for v and we have $r(u)=r^{\prime}(u)$ and $r(v)=r^{\prime}(v)$. Otherwise, we have $r(u)>r^{\prime}(u)$ and $r(v)>r^{\prime}(v)$.

The last situation arises if r is of the form $r=\mathrm{Y}_{a_{1}} \mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{k}} \mathrm{Y}_{d} s^{\prime \prime}$. In particular, $m \geq 3$. If $\mathrm{Y}_{a_{1}} \mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{k}}$ is defined on $u_{-} c$, then it is defined on $v_{-} c$ as well (by the same reasoning as in the previous paragraph) and we have $r(u)<r^{\prime}(u)$ and $r(v)<r^{\prime}(v)$.

Similarly, if $\mathrm{Y}_{a_{1}} \mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{k-1}}$ is not defined on u_{-}and v_{-}, then we have $r^{\prime}(u)<r(u)$ and $r^{\prime}(v)<r(v)$.

Finally, let us assume that $\mathrm{Y}_{a_{1}} \mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{k}}$ is not defined on $u_{-} c$ or $v_{-} c$, but $\mathrm{Y}_{a_{1}} \mathrm{X}_{b_{1}} \cdots \mathrm{X}_{b_{k-1}}$ is defined on u_{-}and v_{-}. Let $u_{+}=u_{0} b_{k} u_{1}$ and $v_{+}=v_{0} b_{k} v_{1}$ be b_{k}-left factorizations. Then

$$
\begin{aligned}
\operatorname{ord}\left(r(u), r^{\prime}(u)\right) & =\operatorname{ord}\left(\mathrm{Y}_{d} s^{\prime \prime}\left(u_{-} c u_{0}\right), r^{\prime}\left(u_{-} c u_{0}\right)\right) \text { and } \\
\operatorname{ord}\left(r(v), r^{\prime}(v)\right) & =\operatorname{ord}\left(\mathrm{Y}_{d} s^{\prime \prime}\left(v_{-} c v_{0}\right), r^{\prime}\left(v_{-} c v_{0}\right)\right)
\end{aligned}
$$

Since $u \triangleright_{m, n+1} v$, we have $u_{+} \triangleright_{m, n} v_{+}$, and by Lemma $3.7, u_{-} \triangleright_{m, n} v_{-}$ and $u_{0} \triangleright_{m, n-1} v_{0}$. Therefore $u_{-} c u_{0} \triangleright_{m, n-1} v_{-} c v_{0}$. Since $\mathrm{Y}_{d} s^{\prime \prime} \in \underline{R}_{m-2, n-2}^{Y}$ is condensed on both $u_{-} c u_{0}$ and $v_{-} c v_{0}$, we conclude by induction on the length of r that $\operatorname{ord}\left(\mathrm{Y}_{d} s^{\prime \prime}\left(u_{-} c u_{0}\right), r^{\prime}\left(u_{-} c u_{0}\right)\right)=\operatorname{ord}\left(\mathrm{Y}_{d} s^{\prime \prime}\left(v_{-} c v_{0}\right), r^{\prime}\left(v_{-} c v_{0}\right)\right)$ and hence $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.

This concludes the proof.
Proposition 5.5. Let $n>m \geq 1$, let $r=\mathrm{X}_{a} s \in \underline{R}_{m}^{\mathrm{X}}$ and $r^{\prime}=\mathrm{Y}_{b} s^{\prime} \in \underline{R}_{m}^{\mathrm{Y}}$ such that $|r|+\left|r^{\prime}\right| \leq n$, and let $u, v \in A^{*}$ such that r and r^{\prime} are condensed on u and v. If $u \triangleright_{m+1, n} v$ or $u \triangleleft_{m+1, n} v$, then $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.

Proof. Without loss of generality, we assume that $u \triangleright_{m+1, n} v$. We proceed by induction, first on m. If $m=1$, then $r=\mathrm{X}_{a_{1}} \cdots \mathrm{X}_{a_{k}}$ and $r^{\prime}=\mathrm{Y}_{b_{1}} \cdots \mathrm{Y}_{b_{\ell}}$ with $k+l \leq n$. We observe that if $p=r \mathrm{X}_{b_{\ell}} \cdots \mathrm{X}_{b_{1}}$ is defined on u, then $r(u)<r^{\prime}(u)$; if p is not defined on u, but $a_{k}=b_{\ell}$ and $r \mathrm{X}_{b_{\ell-1}} \cdots \mathrm{X}_{b_{1}}$ is defined
on u, then $r(u)=r^{\prime}(u)$; and in all other cases, $r(u)>r^{\prime}(u)$. The same holds for v, and this completes the proof in case $m=1$.

We now assume that $m \geq 2$ and proceed by induction on n. We first note that if one of r, r^{\prime} has length 1 , then the result was established in Proposition 5.4. We now assume that $|r|,\left|r^{\prime}\right| \geq 2$ (so $|r|,\left|r^{\prime}\right| \leq n-2$).

Suppose that $n=m+1$ and let $\beta(r)$ the number of alternating blocks in r : then $\beta(r) \leq|r| \leq n-\left|r^{\prime}\right| \leq n-2=m-1$. The same inequality holds for r^{\prime} and we conclude by induction on m.

We must now consider the case where $n>m+1>2$. In particular, we have $r \in \underline{R}_{m, n-2}^{\mathrm{X}}$ and $r^{\prime} \in \underline{R}_{m+1, n-1}^{\mathrm{X}}$.

First case: s starts with an $\mathrm{X}_{-b l o c k . ~ L e t ~} u=u_{-} a u_{+}$and $v=v_{-} a v_{+}$be $a-$ left-factorizations. Then s is condensed on u_{+}and v_{+}and $u_{+} \triangleright_{m+1, n-1} v_{+}$, so u_{+}and v_{+}agree on rankers in $\underline{R}_{m+1, n-1}^{\mathrm{X}}$ (Proposition 3.14). In particular, u_{+}and v_{+}agree on r^{\prime}. If r^{\prime} is defined on u_{+}, then $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=$ $\operatorname{ord}\left(s\left(u_{+}\right), r^{\prime}\left(u_{+}\right)\right)$. Moreover, r^{\prime} is defined on v_{+}as well and ord $\left(r(v), r^{\prime}(v)\right)=$ $\operatorname{ord}\left(s\left(v_{+}\right), r^{\prime}\left(v_{+}\right)\right)$, so we conclude by induction. If instead r^{\prime} is not defined on u_{+}or v_{+}, then $r^{\prime}(u) \leq \mathrm{X}_{a}(u)<r(u)$ and $r^{\prime}(v) \leq \mathrm{X}_{a}(v)<r(v)$.

Second case: s^{\prime} starts with $a \mathrm{Y}$-block. Let $u=u_{-} b u_{+}$and $v=v_{-} b v_{+}$be b-right factorizations. Then $u_{-} \triangleright_{m+1, n-1} v_{-}$by Lemma 3.7 and this case can be handled exactly like the previous one.

Third case: s starts with $a \mathrm{Y}$-block and s^{\prime} starts with an X -block. If $\mathrm{X}_{a}(u) \leq$ $\mathrm{Y}_{b}(u)$, then $\mathrm{X}_{a}(v) \leq \mathrm{Y}_{b}(v)$ (by Proposition 5.4), we have $r(u)<\mathrm{X}_{a}(u) \leq$ $\mathrm{Y}_{b}(u)<r^{\prime}(u)$, and the same inequalities hold for v.

We now assume that $\mathrm{X}_{a}(u)>\mathrm{Y}_{b}(u)$ and $\mathrm{X}_{a}(v)>\mathrm{Y}_{b}(v)$. In particular, $a \neq b$. Identifying the first a and the last b in u and v, we get factorizations $u=u_{-} b u_{0} a u_{+}$and $v=v_{-} b v_{0} a v_{+}$such that $a \notin \operatorname{alph}\left(u_{-} b u_{0}\right) \cup \operatorname{alph}\left(v_{-} b v_{0}\right)$ and $b \notin \operatorname{alph}\left(u_{0} a u_{+}\right) \cup \operatorname{alph}\left(v_{0} a v_{+}\right)$. In particular, $r(u)=s\left(u_{-} b u_{0}\right), r^{\prime}(u)$ is the position $s^{\prime}\left(u_{0} a u_{+}\right)$in the suffix $u_{0} a u_{+}$of u, and the same holds in v. Moreover, $u=\left(u_{-} b u_{0}\right) a u_{+}$is an a-left factorization, $u=u_{-} b\left(u_{0} a u_{+}\right)$ is a b-right factorization, and the same holds in v. Therefore, and since $u \triangleright_{m+1, n} v$, we have $u_{-} b u_{0} \triangleleft_{m, n-1} v_{-} b v_{0}$ by definition and $u_{0} \triangleleft_{m, n-2} v_{0}$ by Lemma 3.7.

Since $s \in \underline{R}_{m-1, n-3}^{\curlyvee}$ and $s^{\prime} \in \underline{R}_{m-1, n-3}^{\mathrm{X}} \subseteq \underline{R}_{m, n-2}^{\mathrm{Y}}$, Proposition 3.14 shows that, if s is not defined on u_{0}, then it is not defined on v_{0} either, and $r(u) \leq \mathrm{Y}_{b}(u)<r^{\prime}(u)$ and similarly, $r(v)<r^{\prime}(v)$. Symmetrically, if s^{\prime} is not defined on u_{0}, then $r(u)<\mathrm{X}_{a}(u) \leq r^{\prime}(u)$ and $r(v)<r^{\prime}(v)$.

Finally, if s and s^{\prime} are defined on u_{0}, then

$$
\begin{aligned}
\operatorname{ord}\left(r(u), r^{\prime}(u)\right) & =\operatorname{ord}\left(s\left(u_{0}\right), s^{\prime}\left(u_{0}\right)\right) \text { and } \\
\operatorname{ord}\left(r(v), r^{\prime}(v)\right) & =\operatorname{ord}\left(s\left(v_{0}\right), s^{\prime}\left(v_{0}\right)\right),
\end{aligned}
$$

and we conclude by induction.
5.2.2. The case where r and r^{\prime} start with the same direction.

Proposition 5.6. Let $n \geq m \geq 2, r \in \underline{R}_{m, n}^{X}$ starting with an X -letter, and $r^{\prime}=\mathrm{X}_{c}$. If $u, v \in A^{*}, r$ is condensed on u and v and $u \triangleright_{m, n+1} v$, then $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$. The dual statement (involving $r \in \underline{R}_{m, n}^{\mathrm{Y}}$, $r^{\prime}=\mathrm{Y}_{c}$ starting with a Y -letter, and $u \triangleleft_{m, n+1} v$) holds as well.

Proof. We proceed by induction, first on m. If $m=2$, then either $r=$ $\mathrm{X}_{a_{1}} \cdots \mathrm{X}_{a_{k}}$ or $r=\mathrm{X}_{a_{1}} \cdots \mathrm{X}_{a_{k}} \mathrm{Y}_{b_{1}} \cdots \mathrm{Y}_{b_{\ell}}$. In the first case, the order type $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)$ depends, as in the proof of Proposition 5.5, on whether $\mathrm{X}_{c} \mathrm{Y}_{a_{k}} \cdots \mathrm{Y}_{a_{1}}$ is defined on u, or if it is not defined, whether $a_{k}=c$ and $\mathrm{X}_{c} \mathrm{Y}_{a_{k-1}} \cdots \mathrm{Y}_{a_{1}}$ is defined. Since these rankers are in $\underline{R}_{2, n+1}^{\mathrm{X}}$ and are condensed where they are defined (Example 3.3), we have $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=$ $\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.

In the second case, where $r=\mathrm{X}_{a_{1}} \cdots \mathrm{X}_{a_{k}} \mathrm{Y}_{b_{1}} \cdots \mathrm{Y}_{b_{\ell}}$, three cases arise: if $r \mathrm{Y}_{c}$ is defined on u, then $\mathrm{X}_{c}(u)<r(u)$; if $r \mathrm{Y}_{c}$ is not defined and $c=b_{\ell}$, then $\mathrm{X}_{c}(u)=r(u)$; in all other cases, $r(u)<\mathrm{X}_{c}(u)$. Since $u \triangleright_{2, n+1} v$ and $r \mathrm{Y}_{c} \in \underline{R}_{2, n+1}^{\mathrm{X}}$, Proposition 3.14 shows that $r \mathrm{Y}_{c}$ is defined on u if and only if it is defined on v, and $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.

We now assume that $m \geq 3$. If r has less than m alternating blocks, we conclude by induction on m. Let us suppose now that r has m alternating blocks and let us proceed by induction on $|r| \geq m$.

Let $r=\mathrm{X}_{a} s$. If s starts with a Y -letter (which includes the base case where $|r|=m$), then $s \in \underline{R}_{m-1, n-1}^{Y}$ is condensed on u_{-}and v_{-}. If $c \notin$ $\operatorname{alph}\left(u_{-}\right)=\operatorname{alph}\left(v_{-}\right)$, then $r(u)<r^{\prime}(u)$ and $r(v)<r^{\prime}(v)$. In all other cases,

$$
\begin{aligned}
\operatorname{ord}\left(r(u), r^{\prime}(u)\right) & =\operatorname{ord}\left(s\left(u_{-}\right), r^{\prime}\left(u_{-}\right)\right) \text {and } \\
\operatorname{ord}\left(r(v), r^{\prime}(v)\right) & =\operatorname{ord}\left(s\left(v_{-}\right), r^{\prime}\left(v_{-}\right)\right)
\end{aligned}
$$

Since $u_{-} \triangleright_{m, n} v_{-}$by Lemma 3.7, these two order types are equal by Proposition 5.4.

If instead s starts with an X-letter, then $|r|>m, s \in \underline{R}_{m, n-1}^{\mathrm{X}}$ is condensed on u_{+}and $v_{+}\left(\right.$Lemma 3.4) and we distinguish two cases. If $c \in \operatorname{alph}\left(u_{-} a\right)=$ $\operatorname{alph}\left(v_{-} a\right)$, then $r^{\prime}(u)<r(u)$ and $r^{\prime}(v)<r(v)$. Otherwise

$$
\begin{aligned}
\operatorname{ord}\left(r(u), r^{\prime}(u)\right) & =\operatorname{ord}\left(s\left(u_{+}\right), r^{\prime}\left(u_{+}\right)\right) \text {and } \\
\operatorname{ord}\left(r(v), r^{\prime}(v)\right) & =\operatorname{ord}\left(s\left(v_{+}\right), r^{\prime}\left(v_{+}\right)\right)
\end{aligned}
$$

Since $u_{+} \triangleright_{m, n} v_{+}$, these two order types are equal by induction on n.
Proposition 5.7. Let $n \geq m \geq 2$, let $r=\mathrm{X}_{a} s \in \underline{R}_{m}^{\mathrm{X}}$ and $r^{\prime}=\mathrm{X}_{b} s^{\prime} \in \underline{R}_{m-1}^{\mathrm{X}}$ such that $|r|+\left|r^{\prime}\right| \leq n$, and let $u, v \in A^{*}$ such that r and r^{\prime} are condensed on u and v. If $u \triangleright_{m, n} v$, then $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$. The dual statement (where r, r^{\prime} start with Y -blocks and $u \triangleleft_{m, n} v$) holds as well.

Proof. The proof is by induction on m, and then on n. If one of r and r^{\prime} has length 1, then the result was established in Proposition 5.6. This takes
care of the cases where $n \leq 3$, including the base case $m=n=2$. We now assume that $|r|,\left|r^{\prime}\right| \geq 2$.

Let us observe that under this assumption, if $n=m$, then the number of alternating blocks in r is less than or equal to $m-2$: indeed it is at most equal to $|r| \leq n-2=m-2$. The same inequality holds for r^{\prime}, so this situation is handled by induction on m. We can now assume that $n>m$.

Let $u=u_{-} a u_{+}=u_{-}^{\prime} b u_{+}^{\prime}$ and $v=v_{-} a v_{+}=v_{-}^{\prime} b v_{+}^{\prime}$ be a-left and b-left factorizations.

First case: $a=b$. If s starts with an X-block and s^{\prime} starts with a Y-block, then $r^{\prime}(u)<r(u)$ and $r^{\prime}(v)<r(v)$. Dually, if s starts with a Y-block and s^{\prime} starts with an X-block, then $r^{\prime}(u)>r(u)$ and $r^{\prime}(v)>r(v)$.

If s and s^{\prime} both start with a Y -block (which can happen only if $m-1 \geq 2$), then $s \in \underline{R}_{m-1}^{\mathrm{Y}}$ and $s^{\prime} \in \underline{R}_{m-2}^{\mathrm{Y}}$ are condensed on u_{-}and v_{-}and

$$
\begin{aligned}
\operatorname{ord}\left(r(u), r^{\prime}(u)\right) & =\operatorname{ord}\left(s\left(u_{-}\right), s^{\prime}\left(u_{-}\right)\right) \text {and } \\
\operatorname{ord}\left(r(v), r^{\prime}(v)\right) & =\operatorname{ord}\left(s\left(v_{-}\right), s^{\prime}\left(v_{-}\right)\right) .
\end{aligned}
$$

Since $u_{-} \triangleleft_{m-1, n-1} v_{-}$and $|s|+\left|s^{\prime}\right| \leq n-2$, we have $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=$ $\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$ by induction on m.

If instead s and s^{\prime} both start with an X-block, then $s \in \underline{R}_{m}^{\mathrm{X}}$ and $s^{\prime} \in \underline{R}_{m-1}^{\mathrm{X}}$ are condensed on u_{+}and v_{+}, and we have

$$
\begin{aligned}
\operatorname{ord}\left(r(u), r^{\prime}(u)\right) & =\operatorname{ord}\left(s\left(u_{+}\right), s^{\prime}\left(u_{+}\right)\right) \text {and } \\
\operatorname{ord}\left(r(v), r^{\prime}(v)\right) & =\operatorname{ord}\left(s\left(v_{+}\right), s^{\prime}\left(v_{+}\right)\right) .
\end{aligned}
$$

Since $u_{+} \triangleright_{m, n-1} v_{+}$and $|s|+\left|s^{\prime}\right| \leq n-2$, we have $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=$ $\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$ by induction on n.

Second case: $a \neq b$, s and s^{\prime} start with X -blocks. Then $s \in \underline{R}_{m}^{\mathrm{X}}$ and $s^{\prime} \in \underline{R}_{m-1}^{\mathrm{X}}$ are condensed on u_{+}and v_{+}. Without loss of generality, $\mathrm{X}_{b}(u)<$ $\mathrm{X}_{a}(u)$, so we have $r(u)=\mathrm{X}_{a} s(u)=\mathrm{X}_{b} \mathrm{X}_{a} s(u)=\mathrm{X}_{b} r(u)$. In particular, $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r\left(u_{+}^{\prime}\right), s^{\prime}\left(u_{+}^{\prime}\right)\right)$. By Proposition 5.6, we also have $\mathrm{X}_{b}(v)<\mathrm{X}_{a}(v)$, and hence ord $\left(r(v), r^{\prime}(v)\right)=\operatorname{ord}\left(r\left(v_{+}^{\prime}\right), s^{\prime}\left(v_{+}^{\prime}\right)\right)$. Since $u \triangleright_{m, n}$ v, we have $u_{+}^{\prime} \triangleright_{m, n-1} v_{+}^{\prime}$ and we conclude by induction on n since $|r|+\left|s^{\prime}\right| \leq$ $n-1$.

Third case: $a \neq b, s$ and s^{\prime} start with Y -blocks. This can occur only if $m-1 \geq 2$. Then $s \in \underline{R}_{m-1}^{\curlyvee}$ and $s^{\prime} \in \underline{R}_{m-2}^{\curlyvee}$ are condensed on u_{-}and $v_{-}, r(u)=s\left(u_{-}\right)$and $r^{\prime}(u)=s^{\prime}\left(u_{-}^{\prime}\right)$, and the same equalities hold for v. Without loss of generality, we may assume that $\mathrm{X}_{b}(u)<\mathrm{X}_{a}(u)$, and hence $\mathrm{X}_{b}(v)<\mathrm{X}_{a}(v)$ (Proposition 5.6). Let u_{0} and v_{0} be such that $u=u_{-}^{\prime} b u_{0} a u_{+}$ and $v=v_{-}^{\prime} b v_{0} a v_{+}$: then u_{0} is the left factor in the a-left decomposition of u_{+}^{\prime} and the right factor in the b-left decomposition of u_{-}. An analogous statement is true for v_{0}. There are two cases, depending on whether s is defined on $b u_{0}$. If this is the case, then $r^{\prime}(u)<r(u)$. Moreover, we have $u_{+}^{\prime} \triangleright_{m, n-1} v_{+}^{\prime}$ and $u_{0} \triangleleft_{m-1, n-2} v_{0}$, so s is defined on $b v_{0}$ as well, by Proposition 3.14.

If instead, s is not defined on $b u_{0}$ or $b v_{0}$, let p be the longest prefix of s which is defined on $b u_{0}$ (and hence on $b v_{0}$): then p is either empty or a Y -block and $s=p \mathrm{Y}_{c} t$, where c has no occurrence in $u\left[\mathrm{X}_{b}(u) ; \mathrm{X}_{a} p(u)-1\right]$ (so Y_{c} is defined on u_{-}^{\prime}).

If $\mathrm{Y}_{c} t$ is defined on u_{-}^{\prime}, then $r(u)=s\left(u_{-}\right)=\mathrm{Y}_{c} t\left(u_{-}^{\prime}\right)$, so that

$$
\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(\mathrm{Y}_{c} t\left(u_{-}\right), s^{\prime}\left(u_{-}\right)\right)
$$

Now $u \triangleright_{m, n} v$ implies $u_{-}^{\prime} \triangleright_{m, n-1} v_{-}^{\prime}$ by Proposition 3.7, so $\mathrm{Y}_{c} t$ is defined on v_{-}^{\prime} and hence we have $\operatorname{ord}\left(r(v), r^{\prime}(v)\right)=\operatorname{ord}\left(\mathrm{Y}_{c} t\left(v_{-}^{\prime}\right), s^{\prime}\left(v_{-}^{\prime}\right)\right)$ as well. Since $\left|\mathrm{Y}_{c} t\right| \leq|s|<|r|$, we conclude by induction that $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=$ $\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.

If $\mathrm{Y}_{c} t$ is not defined on u_{-}^{\prime}, then let $\mathrm{Y}_{c} q$ be the longest prefix of $\mathrm{Y}_{c} t$ which is defined on u_{-}^{\prime} (and hence on v_{-}^{\prime}). Then q is either empty or an X-block and $\mathrm{Y}_{c} t=\mathrm{Y}_{c} q \mathrm{X}_{d} t^{\prime}$. If $d=b$, then $q \mathrm{X}_{d}\left(u_{-}^{\prime} b\right)=\mathrm{X}_{b}(u)$, so $r(u)=$ $\mathrm{X}_{b} t^{\prime}(u)$ and similarly, $r(v)=\mathrm{X}_{b} t^{\prime}(v)$. We conclude by induction on m that $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$ since $\mathrm{X}_{b} t^{\prime}$ has 2 blocks less than r.

If $d \neq b$, then we have $\mathrm{X}_{b}(u)<\mathrm{X}_{a} p \mathrm{Y}_{c} q \mathrm{X}_{d}(u)$. If $\mathrm{X}_{d} t^{\prime}$ is defined on $b u_{0}$, then $r(u)$ lies in u_{0} and $r^{\prime}(u)$ lies in u_{-}^{\prime}, so $r(u)>r^{\prime}(u)$. Similarly $r(v)>r^{\prime}(v)$, and we are done. If instead $\mathrm{X}_{d} t^{\prime}$ is not defined on $b u_{0}$, then $\mathrm{X}_{a} p \mathrm{Y}_{c} q(u)<$ $\mathrm{X}_{b}(u)$ and $\mathrm{X}_{a} p \mathrm{Y}_{c} q \mathrm{X}_{d}(u)=\mathrm{X}_{b} \mathrm{X}_{d}(u)$, so the condensedness of $r=\mathrm{X}_{a} p \mathrm{Y}_{c} q \mathrm{X}_{d} t^{\prime}$ on u implies that $\mathrm{X}_{b} \mathrm{X}_{d} t^{\prime}$ is condensed on u as well. The same holds for v, and we have

$$
\begin{aligned}
& \operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(\mathrm{X}_{b} \mathrm{X}_{d} t^{\prime}(u), r^{\prime}(u)\right) \text { and similarly } \\
& \operatorname{ord}\left(r(v), r^{\prime}(v)\right)=\operatorname{ord}\left(\mathrm{X}_{b} \mathrm{X}_{d} t^{\prime}(v), r^{\prime}(v)\right)
\end{aligned}
$$

We conclude by induction on m since $\mathrm{X}_{b} \mathrm{X}_{d} t^{\prime}$ has 2 blocks less than r.
Fourth case: $a \neq b, s$ and s^{\prime} start with different directions. Without loss of generality, we may assume that s starts with an X -block and s^{\prime} starts with a Y-block. Since r starts with 2 X -letters, the number of alternating blocks of r is less than $|r|-1 \leq n-3$. Therefore if $n=m+1, r \in \underline{R}_{m-2}^{\mathrm{X}}$ and $r^{\prime} \in \underline{R}_{m-1}^{\mathrm{X}}$, a case that can be decided by induction on m. So we now assume that $n \geq m-2$.

If $\mathrm{X}_{b}(u)<\mathrm{X}_{a}(u)$, then the same inequality holds in v (by Proposition 5.6) and we have $r^{\prime}(u)<r(u)$ and $r^{\prime}(v)<r(v)$. If instead $\mathrm{X}_{a}(u)<\mathrm{X}_{b}(u)$ and $\mathrm{X}_{a}(v)<\mathrm{X}_{b}(v)$, then the b-left factorizations of u_{+}and v_{+}are of the form $u_{+}=u_{0} b u_{+}^{\prime}$ and $v_{+}=v_{0} b v_{+}^{\prime}$.

Several cases arise, according to whether s and s^{\prime} are defined (and condensed) on u_{0} or not. We have $u_{+} \triangleright_{m, n-1} v_{+}$and $u_{0} \triangleright_{m, n-2} v_{0}$ by Lemma 3.7. It follows as usual that s and s^{\prime} are defined on v_{0} if and only if they are defined on u_{0}. If s is not defined on u_{0} then the order types $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)$ and ord $\left(r(v), r^{\prime}(v)\right)$ are both $>$. Therefore, from now on we can assume that s is defined on u_{0} and v_{0}.

If s^{\prime} is defined on u_{0} then we can chop off $u_{-} a$ from $u, v_{-} a$ from v, and X_{a} from $r: \operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(s\left(u_{+}\right), r^{\prime}\left(u_{+}\right)\right)$and $\operatorname{ord}\left(r(v), r^{\prime}(v)\right)=$
$\operatorname{ord}\left(s\left(v_{+}\right), r^{\prime}\left(v_{+}\right)\right)$. Since $u_{+} \triangleright_{m, n-1} v_{+}, \operatorname{ord}\left(s\left(u_{+}\right), r^{\prime}\left(u_{+}\right)\right)$and $\operatorname{ord}\left(s\left(v_{+}\right), r^{\prime}\left(v_{+}\right)\right)$ are equal by induction on n, and hence ord $\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.

If s^{\prime} is not defined on u_{0}, then, as in the third case, we have to split the ranker s^{\prime} at those points at which it crosses the position $\mathrm{X}_{a}(u)$. Let $\mathrm{X}_{b} s^{\prime}=p_{1} q_{1} \cdots p_{k} q_{k}$ such that all p_{i} are defined on u_{0} and all p_{i} are starting with an X-letter followed by a (possibly empty) Y-block. The sole exception is p_{k} which might contain further blocks. Moreover, each p_{i} is the maximal prefix of $p_{i} q_{i} \cdots p_{k} q_{k}$ which is defined on u_{0}. All q_{i} are defined on $u_{-} a$ and all q_{i} are starting with a Y-letter followed by a (possibly empty) X-block. The sole exception is q_{k} which might be empty or which might contain further blocks. Each q_{i} is the maximal prefix of $q_{i} p_{i+1} \cdots p_{k} q_{k}$ which is defined on $u_{-} a$. Since $u_{-} a \triangleright_{m, n-1} v_{-} a$ (Lemma 3.7) and $u_{0} \triangleleft_{m-1, n-2} v_{0}$, the same definedness and maximality properties hold on $v_{-} a$ and v_{0}.

If q_{k} is empty, then $k \geq 2$ and p_{1} and q_{1} are non-empty. We see that $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(s\left(u_{0}\right), p_{k}\left(u_{0}\right)\right)$ and $\operatorname{ord}\left(r(v), r^{\prime}(v)\right)=\operatorname{ord}\left(s\left(v_{0}\right), p_{k}\left(v_{0}\right)\right)$. By induction on n, we have $\operatorname{ord}\left(s\left(u_{0}\right), p_{k}\left(u_{0}\right)\right)=\operatorname{ord}\left(s\left(v_{0}\right), p_{k}\left(v_{0}\right)\right)$, and hence $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$.

Finally, if q_{k} is non-empty, then we have $r(u)>r^{\prime}(u)$ and $r(v)>r^{\prime}(v)$.
5.2.3. Completing the proof. Let us (at last!) verify that, if $u \triangleright_{m+1,2 n} v$ or $u \triangleright_{m+1,2 n} v$, then Properties (WI 2c) and (WI 3c) hold for m, n. By symmetry, we simply handle the case where $u \triangleright_{m+1,2 n} v$.

To verify Property (WI 2c), we consider rankers $r \in \underline{R}_{m, n}$ and $r^{\prime} \in$ $\underline{R}_{m-1, n-1}$ that are condensed on u and v. If both start with X-blocks, Proposition 5.7 shows that $\operatorname{ord}\left(r(u), r^{\prime}(u)\right)=\operatorname{ord}\left(r(v), r^{\prime}(v)\right)$. If both start with Y-blocks, the same proposition allows us to conclude, after observing that we have $u \triangleleft_{m, 2 n-1} v$. And if r and r^{\prime} start with different direction blocks, we conclude by Proposition 5.5.

To verify Property (WI 3c), we consider rankers $r \in \underline{R}_{m, n}$ and $r^{\prime} \in$ $\underline{R}_{m, n-1}$ that end with different directions, and that are condensed on u and v. If r and r^{\prime} start with different direction blocks, we again conclude by Proposition 5.5. If both start with X -blocks, then they must have different number of alternations, so we have $r \in R_{m_{1}, n_{1}}^{\mathrm{X}}$ and $r^{\prime} \in R_{m_{2}, n_{2}}^{\mathrm{X}}$ for some $n_{1} \leq n, n_{2} \leq n-1$ and for distinct values $m_{1}, m_{2} \leq m$. In particular, one of m_{1} and m_{2} is less than or equal to $m-1$, and we can apply Proposition 5.7.

We proceed similarly if r and r^{\prime} both start with Y-blocks, after observing that $u \triangleleft_{m, 2 n-1} v$.

6. Consequences

6.1. Decidability results. The main consequence we draw of Theorem 5.1 and of the decidability of the pseudovarieties \mathbf{R}_{m} and \mathbf{L}_{m} is summarized in the next statement.

Theorem 6.1. Given an FO^{2}-definable language L, one can compute an integer m such that L is FO_{m}^{2}-definable, possibly FO_{m+1}^{2}-definable, but not
FO_{m-1}^{2}-definable. That is: we can decide the quantifier alternation level of L within one unit.
Proof. Let $L \in \mathcal{F} \mathcal{O}^{2}$ and let M be its syntactic monoid. Since each pseudovariety $\mathbf{R}_{m} \cap \mathbf{L}_{m}$ is decidable (Proposition 3.21), we can compute the largest m such that $M \notin \mathbf{R}_{m} \cap \mathbf{L}_{m}$. By Theorem 5.1, $M \in \mathbf{R}_{m+1} \cap \mathbf{L}_{m+1} \subseteq$ $\mathbf{F O}{ }_{m+1}^{2}$ and hence L is FO_{m+1}^{2}-definable. On the other hand, $M \notin \mathbf{F O} \mathbf{O}_{m-1}^{2} \subseteq$ $\mathbf{R}_{m} \cap \mathbf{L}_{m}$.

Let us also record the following consequences of Proposition 3.21, Proposition 4.1 and the decidability of $\mathbf{R}_{2} \vee \mathbf{L}_{2}$ (discussed in Example 5.2).
Proposition 6.2. The classes $\underline{\mathcal{T}}_{1}^{\mathrm{X}}=\underline{\mathcal{T}}_{1}^{\mathrm{Y}}=\underline{\mathcal{T}}_{1}=\mathcal{F} \mathcal{O}_{1}^{2}, \underline{\mathcal{L}}_{2}^{\mathrm{X}}, \underline{\mathcal{T}}_{2}^{\mathrm{Y}}$ and $\underline{\mathcal{T}}_{2}$ are decidable.
6.2. Infinite and collapsing hierarchies. The fact that the \mathbf{R}_{m} and \mathbf{L}_{m} form strict hierarchies (Proposition 3.21), together with Theorem 5.1, proves that the $\mathcal{F} \mathcal{O}_{m}^{2}$ hierarchy is infinite. Weis and Immerman had already proved this result by combinatorial means [30, Theorem 4.11], whereas our proof is algebraic. From that result on the $\mathcal{F} \mathcal{O}_{m}^{2}$, it is also possible to recover the strict hierarchy result on the \mathbf{R}_{m} and \mathbf{L}_{m} and the fact that their union is equal to DA.

By the same token, Corollary 3.16 and Proposition 4.3 show that the $\mathcal{T \mathcal { L }}_{m}$ (resp. $\mathbf{T L}_{m}$) hierarchy is infinite and that its union is all of $\mathcal{F} \mathcal{O}^{2}$ (resp. DA).

Proposition 6.3. The hierarchies $\mathcal{F} \mathcal{O}_{m}^{2}$ and $\underline{\mathcal{L}}_{m}$ are infinite, and their union is all of $\mathcal{F} \mathcal{O}^{2}$.

Similarly, the fact (stated in Proposition 3.21) that an m-generated element of DA lies in $\mathbf{R}_{m+1} \cap \mathbf{L}_{m+1}$, shows that an FO^{2}-definable language in A^{*} lies in $\mathcal{R}_{|A|+1} \cap \mathcal{L}_{|A|+1}$, and hence in $\mathcal{F} \mathcal{O}_{|A|+1}^{2}$ - a fact that was already established by combinatorial means by Weis and Immerman [30, Theorem 4.7]. It also shows that such a language is in $\underline{\mathcal{T}}_{2|A|+1}$ by Proposition 4.3.

Proposition 6.4. A language $L \subseteq A^{*}$ is FO^{2}-definable if and only if it is $\mathrm{FO}_{|A|+1^{2}}^{2}$-definable. And it is TL -definable if and only if it is both $\underline{\mathrm{TL}}_{2|A|+1}^{\mathrm{X}}$ and $\underline{\mathrm{TL}}_{2|A|+1}^{\mathrm{Y}}$-definable.

Even though we arrived at Proposition 6.4 by algebraic means, it is interesting to note that its statement reflects the following combinatorial property (an idea that was already used by Weis and Immerman [30, Theorem 4.7]).

Lemma 6.5. A ranker that is condensed on a word on alphabet A, has at most $|A|$ alternating blocks.
Proof. Let u be a word and let r be a ranker that is condensed on u. Without loss of generality, we may assume that $r \in R_{m, n}^{\mathrm{X}}$, say

$$
r=\mathrm{X}_{a_{1}} \cdots \mathrm{X}_{a_{k_{1}}} \mathrm{Y}_{a_{k_{1}+1}} \cdots \mathrm{Y}_{a_{k_{2}}} \cdots \mathrm{Z}_{a_{k_{m-1}+1}} \cdots \mathrm{Z}_{a_{k_{m}}}
$$

with $0<k_{1}<k_{2}<\cdots<k_{m}=n$ and $\mathbf{Z}=\mathrm{X}$ (resp. Y) if m is odd (resp. even). By definition of condensed rankers (and with the notation in that definition, see Section 3), the interval $I_{k_{h}}$ is of the form $\left(i_{k_{h}-1}, \mathrm{X}_{a_{k_{h}}}\left(u, i_{k_{h}-1}\right)\right)$ if h is odd, of the form $\left(\mathrm{Y}_{a_{k_{h}}}\left(u, j_{k_{h}-1}\right), j_{k_{h}-1}\right)$ if h is even. In either case, $a_{k_{h+1}}$ occurs in u within the interval $I_{k_{h}}$ but $a_{k_{h}}$ does not. Since the intervals $I_{k_{h}}$ are nested, it follows that the letters $a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{m}}$ are pairwise distinct, and hence $m \leq|A|$.
6.3. Infinite hierarchies and unambiguous polynomials. Finally we note the following refinement on [12, Proposition 4.6]. One of the classical (and one of the earliest) results concerning the languages recognized by monoids in DA (namely $\mathcal{F} \mathcal{O}^{2}$) is the following: they are exactly the disjoint unions of unambiguous products of the form $B_{0}^{*} a_{1} B_{1}^{*} \cdots a_{k} B_{k}^{*}$, where each B_{i} is a subset of A (Schützenberger [19], see also [24, 25]). Deterministic and codeterministic products (see Section 3.4) are easily seen to be particular cases of unambiguous products. Propositions 3.19 and 3.21 imply the following statement.

Proposition 6.6. The least variety of languages containing the languages of the form $B^{*}(B \subseteq A)$ and closed under visibly deterministic and visibly co-deterministic products, is $\mathcal{F} \mathcal{O}^{2}$.

More precisely, every unambiguous product of the form $B_{0}^{*} a_{1} B_{1}^{*} \cdots a_{k} B_{k}^{*}$, where each B_{i} is a subset of A, can be expressed in terms of the B_{i}^{*} and the a_{i} using only Boolean operations and at most $|A|+1$ alternated applications of visibly deterministic and visibly co-deterministic products - starting with a visibly deterministic (resp. co-deterministic) product.

The analogous, but weaker statement with the word visibly deleted was proved in [12] by algebraic means, and independently by Lodaya, Pandya and Shah using logical and combinatorial arguments [13].

References

[1] M. Adler and N. Immerman. An n ! lower bound on formula size. ACM Transactions on Computational Logic, 4:296-314, 2003.
[2] Jorge Almeida. Finite Semigroups and Universal Algebra. World Scientific, Singapore, 1994.
[3] Sung Cho and Dung T. Huynh. Finite automaton aperiodicity is PSPACE-complete. Theoretical Computer Science, 88:96-116, 1991.
[4] Volker Diekert and Paul Gastin. Pure future local temporal logics are expressively complete for Mazurkiewicz traces. Ic, 204:1597-1619, 2006. Conference version in LATIN 2004, LNCS 2976, 170-182, 2004.
[5] Volker Diekert and Paul Gastin. First-order definable languages. In J. Flum, E. Grädel, and Th. Wilke, editors, Logic and Automata: History and Perspectives, Texts in Logic and Games, pages 261-306. Amsterdam University Press, 2008.
[6] Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small fragments of first-order logic over finite words. International Journal of Foundations of Computer Science, 19:513-548, 2008.
[7] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables and unary temporal logic. Information and Computation, 179(2):279-295, 2002.
[8] M. Grohe and N. Schweikardt. The succinctness of first-order logic on linear orders. Logical Methods in Computer Science, 1, 2005.
[9] Neil Immerman. Descriptive Complexity. Springer, 1999.
[10] Manfred Kufleitner. Polynomials, fragments of temporal logic and the variety DA over traces. Tcs, 376:89-100, 2007. Special issue DLT 2006.
[11] Manfred Kufleitner and Pascal Weil. On FO ${ }^{2}$ quantifier alternation over words. In Mathematical Foundations of Computer Science (MFCS 2009), number 5734 in Lecture Notes in Computer Science, pages 513-524. Springer-Verlag, 2009.
[12] Manfred Kufleitner and Pascal Weil. On the lattice of sub-pseudovarieties of DA. Semigroup Forum, 81:243-254, 2010.
[13] Kamal Lodaya, Paritosh K. Pandya, and Simoni S. Shah. Marking the chops: an unambiguous temporal logic. In IFIP TCS 2008, pages 461-476, 2008.
[14] Robert McNaughton and Seymour Papert. Counter-Free Automata. The MIT Press, Cambridge, Mass., 1971.
[15] Jean-Éric Pin. Varieties of Formal Languages. North Oxford Academic, London, 1986.
[16] Jean-Éric Pin. Expressive power of existential first-order sentences of Büchi's sequential calculus. Discrete Mathematics, 291(1-3):155-174, 2005.
[17] Jean-Éric Pin and Pascal Weil. Profinite semigroups, Mal'cev products and identities. Journal of Algebra, 182:604-626, 1996.
[18] Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information and Control, 8:190-194, 1965.
[19] Marcel Paul Schützenberger. Sur le produit de concaténation non ambigu. Semigroup Forum, 13:47-75, 1976.
[20] Thomas Schwentick, Denis Thérien, and Heribert Vollmer. Partially-ordered two-way automata: A new characterization of DA. In Werner Kuich, Grzegorz Rozenberg, and Arto Salomaa, editors, Proc. of the 5th Int. Conf. on Developments in Language Theory (DLT), volume 2295 of Lecture Notes in Computer Science, pages 239-250. Springer, 2001.
[21] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston, Basel and Berlin, 1994.
[22] Howard Straubing and Pascal Weil. An introduction to automata theory. In Deepak D'Souza, editor, Modern applications of automata theory, volume 2 of I.I.Sc. Monographs. World Scientific, to appear.
[23] Howard Straubing and Pascal Weil. Varieties. In Jean-Eric Pin, editor, Handbook of Finite Automata. European Math. Society, to appear.
[24] Pascal Tesson and Denis Thérien. Diamonds are forever: The variety DA. In Gracinda Maria Dos Gomes Moreira Da Cunha, Pedro Ventura Alves Da Silva, and Jean-Éric Pin, editors, Semigroups, Algorithms, Automata and Languages, Coimbra (Portugal) 2001, pages 475-500. World Scientific, 2002.
[25] Pascal Tesson and Denis Thérien. Logic meets algebra: the case of regular languages. Logical Methods in Computer Science, 3(1):1-37, 2007.
[26] Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one quantifier alternation. In STOC, pages 234-240, 1998.
[27] Wolfgang Thomas. Classifying regular events in symbolic logic. Journal of Computing Systems and Science, 25:360-376, 1982.
[28] Peter Trotter and Pascal Weil. The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue. Algebra Universalis, 37:491-526, 1997.
[29] Philipp Weis and Neil Immerman. Structure theorem and strict alternation hierarchy for FO^{2} on words. In Jacques Duparc and Thomas A. Henzinger, editors, Computer

Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in Computer Science, pages 343-357. Springer, 2007.
[30] Philipp Weis and Neil Immerman. Structure theorem and strict alternation hierarchy for FO^{2} on words. Logical Methods in Computer Science, 5:1-23, 2009.

[^0]: ${ }^{1}$ More precisely, the pseudovarieties \mathbf{R}_{m} and \mathbf{L}_{m} in [12] are pseudovarieties of semigroups, and the \mathbf{R}_{m} and \mathbf{L}_{m} considered in this paper are the classes of monoids in these pseudovarieties.

[^1]: ${ }^{2}$ Of course, the same fact can be proved by the direct construction of an FO_{m}^{2}-formula for each $\triangleright_{m, n}$-class (by induction on m and using Proposition 3.6).

