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In order to characterize the mechanical behavior of grain piles, we investigate the response of
a non-cohesive two-dimensional packing of cylinders submitted to a localized force. By means of
image processing, we obtain an accurate measurement of the individual grain displacements in the
reversible regime of deformation. The measured displacement field deviates unambiguously from
the predictions of linear elasticity and of other theoretical descriptions commonly used to model the
behavior of cohesionless soils in civil engineering or in soil mechanics. Surprisingly, the analysis of

the deformation field reveals a tendency to localization in the reversible regime.

PACS numbers: 45.70-n, 45.70-cc, 83.10Gr, 83.80Fg

Non-cohesiveness is an essential feature distinguish-
ing grain packings from continuous media, because the
former cannot resist tensile stresses. In such packings,
grains interact via elastic contact forces and by solid fric-
tion. The relationship between contact forces and in-
dividual grain deformations is essentially nonlinear, as
exemplified by the Hertz—Mindlin law valid for spher-
ical grains [1-3]. It is worth noting that the number
of contact forces between neighboring grains is generally
larger than the number of equilibrium mechanical equa-
tions: this leads to multi-valued equilibrium solutions
[4-6]. These equilibrium equations have to be supple-
mented by a set of inequalities, stating that the contact
forces exist in the Coulomb cone. This set of inequalities
precludes any variational formulation to determine the
contact forces, unlike the case of elasticity [7]. Moreover,
for a loose packing, new contacts are created as the con-
fining pressure is increased. All these considerations cast
doubt on the applicability of the linear elasticity theory
for modeling the behavior of dry grain packings. Never-
theless, according to classical civil engineering textbooks
[8], grain piles or soils submitted to a purely compres-
sive external load are considered to obey linear elasticity
below the Mohr-Coulomb plastic yield criterion. In the
elastic equilibrium state, the stress field obeys the Bel-
trami biharmonic equation, which is of elliptic nature.
This description implies therefore the uniqueness of the
solution for the internal stress field and for the deforma-
tion field, for a given set of boundary conditions. The
existence of multiple equilibrium states for the ensemble
of contact forces in the microscopic description calls into
question the uniqueness expected from the elastic mod-
eling in the continuous limit. Note moreover that for a
grain pile there is a memory effect, that is, a dependence
of the internal state of stress on the preparation process.

Published in Phys. Rev. E 83, 021304 (2011)

This memory effect was first recognized by Darwin more
than one century ago [9], and then reassessed by Geng
et al. [10]. The memory effect implies the existence of
multiple equilibrium states for identical boundary condi-
tions, which obviously opposes the elastic description.

In order to gain insight into the nature of the stress
equilibrium equations, we performed a point-punch test
onto a two-dimensional packing. The point-punch test
represents the Green function of the mechanical response
for the discrete medium, provided it is linear (note that
this last assumption is also questionable [11]). The sam-
ple studied is prepared by cutting a 10-mm-thick elas-
tomeric plate into grains that are identical cylinders (8
mm diameter, 10 mm long). The two-dimensional col-
lection of grains is then packed into contact according
to a triangular compact lattice (i.e., centered hexago-
nal) and bounded by a rigid hexagonal metal frame. The
frame ensures zero normal displacement boundary condi-
tions. The Young’s modulus and the Poisson ratio of the
polyurethane elastomer are respectively E = 4 - 10° Pa
and v = 0.46. The punch consists of a steel blade of 10
mm long, 3 mm thick and a Young’s modulus of 2 - 10!
Pa. The elastomeric material has been chosen because
the small Young’s modulus allows a high relative preci-
sion in the measurement of the deformations induced by
a gentle point load. Note that the 2D triangular packing
(in-plane strain) can be considered as isotropic from the
viewpoint of linear elasticity [12].

Previous experimental studies probing the response of
a granular piling submitted to a point load have led to
controversial analyses. Using a photo-elastic visualiza-
tion method and a piling consisting of square tiles, Da
Silva and Rajchenbach [13] concluded that their obser-
vations cannot be interpreted in the framework of lin-
ear elastic modeling, and rather supported a hierarchical



process for the stress transmission, consistently with the
models of Harr [14] and of Coppersmith et al. [15]. In-
deed, in two dimensions, the elastic response of a semi-
infinite medium to a point normal force can be described
as follows [16]. If the origin (of polar coordinates r, ) is
taken as the point of application of the load P (defined as
a force per unit of length), the stress is everywhere radial,
and its magnitude is given by o(r,0) = (2P/7r) cos6.
Hence the contours of constant stress magnitude are a set
of circles passing through the point of application of the
force. This result holds for a semi-infinite elastic medium
and the iso-stress contours are slightly modified in the
presence of rigid boundary conditions, as discussed be-
low. By means of the same photo-elastic method, but us-
ing pentagonal grains, Geng et al. [17] observed a wedge-
shaped brightened domain (with a wedge angle close to
60°), which does not correspond to the circular iso-stress
contours expected from isotropic linear elasticity. An-
other interesting study is that of Goldenberg et al. [18]
who probed the response of a 2D triangular packing by
means of numerical simulations. Unilateral (i.e., nonco-
hesive) normal contact forces were modeled by one-sided
linear springs, and the tangential friction between grains
was disregarded. In the limit of large systems, this model
was shown to obey linear elasticity, which was consistent
with the fact that the elastic solution as a response to
a compressive load involves no tensile stress. In our
experimental procedure, a sequence of pictures is taken
as the external load is increased. Then successive pic-
tures are processed in order to access the displacement
field. For the sake of accuracy, the bulk of the grains has
been seeded with fine tracer particles (0.2 mm in diame-
ter) which allow a precise tracking of local displacements.
The measurement accuracy is of the order of 2 pixels,
which corresponds to 2/100 particle diameter. The ex-
perimental load cell is sketched in Fig. 1.

Figure 2 depicts a 3D representation of the local dis-
placement amplitude as a function of the position (z,y),
resulting from a punch indentation of 2 mm. Note that
the observed fluctuations should not be attributed to
limitations on the measurement accuracy, but to the in-
homogeneities in the displacements on the scale of one
grain. Indeed, the tracers located in the vicinity of con-
tacts experience a displacement much larger than that
undergone by the tracers located near the center of the
same grain. It is of interest to compare the displacement
field to that obtained in the case of a continuous elas-
tic material. With that aim, we submitted a continuous
plate of the same elastomeric material, of identical thick-
ness (10 mm), positioned in the same hexagonal frame
to the same punching test. In Fig. 3, we show the dis-
placements plotted as a function of the distance from the
punch, measured along the direction of loading Oy, both
for the discrete packing and for the continuous plate.
Moreover, in order to compare the actual measured re-
sponse and the theoretical elastic predictions, we show in

vy

FIG. 1: Sketch of the load cell. The collection of cylinders is
packed into a triangular (centered hexagonal) compact lattice,
and confined into a rigid hexagonal frame. Cylinders are 8
mm in diameter. Grains are seeded with tracer particles.
The displacements of the tracers are tracked as the punch is
progressively moved inwards.
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FIG. 2: 3D representation of the local displacement field ob-
tained in the 2D packing of cylinders for a punch indentation
of 2 mm.
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FIG. 3: Displacement amplitude, measured along the load
axis Oy (e discrete piling, o continuous plate) and elastic pre-
dictions for various Poisson moduli in a plane strain modeling
(continuous line: v = -0.9, dashed line ¥ = 0.5). In inset,
semi-log plot of the displacement amplitude as a function of

Y.

the same figure the displacement curves obtained by solv-
ing analytically the Navier-Lamé equation (with Poisson
ratios v = —0.9 and v = 0.5) with the same boundary
conditions, and in the planar strain configuration. Note
that a variation in the Young’s modulus would be ineffec-
tive on displacements along the punching axis, since the
present boundaries impose conditions on displacements,
not on stresses. The experimental points obtained for
the continuous plate compare well with the theoretical
elastic description, and thus clearly indicates an elastic
response of the polymeric material. On the other hand,
the displacement field corresponding to the 2D discrete
packing deviates unambiguously from the predictions of
the linear elasticity of continuous media. Instead, it fol-
lows roughly an exponential-like decay with the distance
along the direction of loading (see inset, Fig. 3). The
exponential-like decay along Oy suggests a localization
process.

To sharpen our comparison of the mechanical response
of a 2D granular packing to a punch, with that of a con-
tinuous elastic medium, it is interesting to examine the
displacement field in locations off the axis of loading. In
Fig. 4, we show the map of the displacement amplitude
as a function of the position (z,y), coded in gray levels.
Apart from the fluctuations originating in the position
of the tracers, according to their distance relative to
grain centers or to contacts (as indicated above), it is
clear that the iso-displacement contours resemble closely
a family of ellipses.

From an assumed exponential-like decay of the dis-
placements according to the punching axis direction, and
of the elliptic-like shape of the iso-displacement contours
in the (x,y) plane, elementary geometrical considerations

FIG. 4: Same data as Fig. 2. Displacement amplitude as
a function of the position (z,y), coded in color-levels. The
contours corresponding to displacements of equal amplitude
are approximately elliptic.

lead to the following form for the displacement magnitude
in the discrete medium:

| displacement | oc exp(—y/a) exp(—z?/by) (1)

where the lengths a and b are here of comparable
magnitude, typically 3 to 4 grain diameters. To confirm
the validity of relation (1), we have plotted in Fig. 5 the
displacement amplitude as a function of the transverse
position x, for various ordinates y. It is clear that the set
of experimental data can reasonably be fitted by a family
of Gaussian curves, with standard deviation varying as
vy Note that the data obtained by Da Silva et al. [13]
can be accounted for by the same fitting function (1),
with @ ~ 4 and b ~ 0.5 grain diameters. The Gaussian
widening along Oz is reminiscent of the diffusive models,
previously proposed by Harr [14] and by Coppersmith
et al. [15]. However, note that the latter models predict
a 1/\/y decay along the direction of loading, rather
than the exponential-like one, as observed. At this
point, it is worth addressing the issue of sample size,
i.e., the cell size compared to the grain diameter. The
packing comprises about 220 grains. As shown above,
the localization length is typically 4 grain diameters,
and the tracer displacements attain a zero value (within
the experimental accuracy) at positions far from the cell
boundaries. We conclude that using larger cells (with
rigid boundaries imposing a zero normal displacement)
would not lead to any significant change in either the
localization phenomena or the reported localization
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FIG. 5: Displacement amplitude as a function of the deviation
x to the axis of punching, plotted for various ordinates y (O,
y = 3.1 mm), (e, y = 10.0 mm), (4, y = 17.0 mm), (o,
y = 21.0 mm), (W, vy = 30.0 mm), (V, y = 39.0 mm).
Continuous lines correspond to Gaussian fits according to Eq.
(1) (see text). The lengths a and b appearing in Eq. (1) are
of comparable magnitude, typically 3 or 4 grain diameters.

lengths.

As emphasized above, our data are incompatible with
the predictions of linear elasticity commonly used in civil
engineering to model the behavior of noncohesive soils
below plastic yielding. It is worth noting that our ex-
perimental results also contradict some alternative the-
oretical approaches aimed at modeling the equilibrium
behavior of granular assemblies, such as micropolar elas-
ticity [19], micropolar elasto-plasticity [20], hypoplastic
theory [21], and the hyperbolic model of Bouchaud et al.
[22].

Indeed, micropolar elasticity does not predict any
localization effects in the response to a point load.
Taking into account micropolar effects and couple
stresses brings only negligible corrections (acting as
1/r3 with the distance to the punch) to the stress field
obtained within the frame of continuum elasticity (which
decreases as 1/r) (e.g. see [23]). Oun the other hand,
micropolar elasto-plasticity predicts strain localization
effects and the formation of shear bands at the plastic
yielding. Thus, the localization process is predicted as
irreversible. Irreversibility is of course also obtained
within the frame of hypoplasticity. Concerning the
hyperbolic model of Bouchaud et al. [22], the observed
response is fully incompatible with the picture of internal
stresses confined in two "rays” starting from the loading
point.

In summary, we have performed accurate measure-
ments of the displacement field in a two-dimensional
packing of elastic grains, as a response to a point load

in the reversible regime of deformation. The coarse-
grained displacement field deviates unambiguously from
the predictions of continuum linear elasticity. We have
found that the deformation amplitude, measured along
the punching axis Oy, follows an exponential-like decay
as a function of the distance y to the punch, which indi-
cates a localization process. On the other hand, the iso-
displacement contours resemble a family of ellipses, and
the transverse width of the strained region varies approx-
imately as \/y. We emphasize that, although each indi-
vidual grain behaves elastically, the collective response is
reversible, so that the coarse-grained strain field does not
map onto linear elasticity predictions. Moreover, current
alternative models devised to overcome some known lim-
itations of the standard elasto-plastic model seem to fail
in accounting for our data.
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