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Abstract— Micro and nano-particles can be trapped by a non
uniform electric field through the effect of the dielectrophoretic
force. Dielectrophoresis (DEP) is used to separate, manipulate
and sense micro particles in several domains, such as in
biological or Carbon Nano-Tubes (CNTs) manipulations. This
paper tackles the creation of a closed loop strategy in order
to control, using DEP, the trajectory of micro objects using
vision feedback. A modeling of the dielectrophoresis force is
presented to illustrate the non linearity of the system and
the high dynamics of the object under dielectrophoresis . A
control strategy based on the generalized predictive control
method is proposed with the aim of controlling the trajectory,
taking advantage of the high dynamics despite the non linearity.
Simulated results are shown to evaluate our control strategy.

I. INTRODUCTION

Manufactured products become always smaller and in-

tegrate more and more functionalities in small volumes.

Several applications fields are concerned such as bio-

engineering, telecommunications or in a more general way

Micro-Electro-Mechanical-Systems (MEMS). The assembly

of these microproducts is a great challenge because of the

microscopic sizes of the components. In fact, the major

difficulties of micro-assembly come from the particularity

of the micro-object’s behaviours which are more function

of the surface forces than the volumic forces [1], [2], [3].

The manipulation of a micro-object requires its handling,

positioning, and release without disturbances of the surface

forces such as electrostatic forces, van der Waals forces or

capillary forces. The release is the more critical phase which

is usually perturbed by adhesion phenomenon.

Several methods have been proposed in the last ten years

to improve micromanipulations [4], [5]. The first approach

deals with contact manipulation where the adhesion should

be reduced or could be directly used for manipulation [6],

[7], [8]. The release is the more critical phase which requires

innovative methods to control and guarantee it despite adhe-

sion. Dielectrophoresis force, which is the force applied on a

polarizable particle in a non uniform electric field, has been

recently used to induce repulsive force on micro-objects in

order to release them [9]. The second approach consists in

using non-contact manipulations like laser trapping [10] and

non-contact dielectrophoresis [11]. These principles are not

disturbed by adhesion but the blocking force remains low.

In this paper, modeling and closed loop strategy of DEP

systems using vision feedback are proposed. By simulating

the 3D behavior of micro particles under DEP force, in

function of the electric potential applied on the electrodes

and using the vision capture, the system is ready to include

the feedback block. The problem which will be faced is the

large difference between the high dynamics of the system

(respond time ≃ 1ms) and the low speed rate of the vision

capture (≃ 1 image per 10 ms). We are a predictive control

strategy based on the feedback of the vision sensor and a

model of the DEP force.

II. MODEL PRESENTATION

A. Dynamic Model

The general expression of the dielectrophoretic force,

created by a non uniform electric field, applied to a micro

bead submerged in a liquid medium is [12], [13] is:

−−−→
FDEP = 2πǫ0ǫpr

3Re[K(ω)]
−−→
∇E

2. (1)

K(ω) is the Clausius - Mossotti factor:

K(ω) =
ǫ∗p − ǫ∗m
ǫ∗p + 2ǫ∗m

, (2)

and

ǫ∗ = ǫ +
σ

jω
, (3)

where ǫ are the permittivities, σ are the conductivities, index

0 refers to the vacuum, index m refers to the medium and

index p refers to the micro bead, r is the radius of the micro

bead, ω is the angular frequency of the applied electric field,
−→
∇ is the gradient operator and E is the root mean square

magnitude of the sinusoidal electric field.

The electric field E is created by applying an electric

voltages on pattern of electrodes as described in Fig. 1.

The dynamic model of the micro bead is defined by the

Newton second’s law. The force applied to the micro bead

are the dielectrophoresis force, the Stokes drag force
−−−→
Fdrag

and its own weight
−→
P (see Fig.1).

If we consider that the position X(x, y, z) of the micro

bead is defined by its center’s coordinates, thus the
−→
Ẋ is the

velocity of the particle and the
−−−→
Fdrag verifies:

−−−→
Fdrag = −6πµr

−→
V = −kµ

−→
Ẋ , (4)
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Fig. 1. DEP-based device used in this study

where µ is the dynamic viscosity of the liquid medium. Using

Newton’s second law the particle’s motion is defined by:

−−−→
FDEP +

−→
P − kµ

−→
Ẋ = M

−→
Ẍ (5)

where M is the mass of the micro bead and
−→
Ẍ is the

acceleration vector. We have shown in [14] that, in this

situation, the inertial term M
−→
Ẍ is a negligible volumic effect

in the micro-world : the respond time corresponding to the

acceleration term is negligible compared to the respond time

corresponding to the fluid dynamic term. Thus, the particle’s

motion equation can be reduced as follows:

−→
Ẋ =

(
−−−→
FDEP +

−→
P )

kµ

(6)

A voltage vector U = [U1, U2, U3] applied on the electrodes

creates the non uniform electric field
−→
E which creates the

dielectrophoresis force used to manipulate the micro particle.

Equation (6) manages the dynamical behavior of the micro

particle under dielectrophoresis force. More information on

this model can be found in [14].

B. Study of the micro bead behavior

In order to present our control strategy, we are focusing

on the electrode’s geometry described in Fig.1 submerged in

ultra pure water. We assume here that the micro bead only

moves along the x axis, thus the position X of the micro

bead is defined by (x, y = 0, z = r). Projecting (6) along

the x axis, the velocity of the micro bead is ruled by:

ẋ =
FDEP (x, U)

kµ

(7)

In order to maintain the micro bead’s center along the x
axis, and taking into consideration the electrodes symmetry,

the control input vector, which is the applied voltage vector

U , proposed here is:

U = [Uref − δu, 0V,Uref + δu]. (8)

where Uref is a fixed voltage, in this study it is equal to 75V ,

and δu is the single control variable. The electric field and the

applied voltage on the electrodes are linearly related, due to

the electrostatic superposition principle and the proportional

relation between the electric potential and the charge density:

E = a(x)(Uref − δu) + b(x)(Uref + δu). (9)

This relation allows to replace the electric field E in (1) by

a linear combination of the applied voltages. Thus, from (7)

the velocity ẋ can be written as a second degree equation,

coming from the electric field’s square in the dielectrophore-

sis equation (1), with the respect to the control variable δu:

ẋ = f1(δu) = α(x)δu2 + β(x)δu + γ(x) (10)

where α(x), β(x) and γ(x) characterize the dynamic model.

They are function of the state variable x. The first problem

to control this system is its non linearity which is shown in

the equation (10). The first non linearity of the system with

respect to the control variable δu is due to the square term

δu2. The second non linearity comes from the non linearity

of the functions α(x), β(x) and γ(x). These functions

characterize the system and they are identified using the

hybrid simulation method, described in [14], which combines

preprocessing FEM software simulated data and analytic

equations.

Fig.2 shows the non linearity of these functions. In this

figure, we clearly see that the functions α(x), β(x) and γ(x)
are not linear with respect to the state variable x. This non

linearity increases as the distance between the micro bead

and the electrode’s edge decreases.
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Fig. 2. The non linearity of the three functions α(x), β(x) and γ(x)
(Uref = 75V ) especially when x ≥ 50µm, respectively expressed in

ms−1V −2, ms−1V −1 and ms−1.

Moreover, the micro bead reaches high speed motion when

applying high voltages. Fig.3 shows the step response for a

micro bead starting from the initial position x0 = 0µm and

applying a voltage of δu = 70V , 60V , 50V and 40V . If

we compare the time constant of the micro bead’s response,

which is close to 3ms, to a relatively high speed camera of

400 ips (images per second) we can note that during this

time only two positions can be measured.
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Fig. 3. Step response for a micro bead starting form x0 = 0µm, δu =
40V, 50V, 60V and 70V and Uref = 75V

III. CONTROL STRATEGY

In order to control the micro bead’s trajectory along a

reference trajectory w in a dielectrophoresis-based device

using vision feedback, two main difficulties occur. The first

problem is the non linearity of the system with respect to

the control variable δu as the equation (10) shows and the

non linearity in relation to the state variable x due to the non

linearity of the functions α(x), β(x) and γ(x) as it is shown

in Fig.2. Moreover, the other problem is the high dynamics

of the system which induces high speed motion of the micro

bead compared to the camera speed rate, which is one of the

most conventional way to measure the micro bead’s position.

Both non linearity and high dynamics led us to develop an

appropriate control strategy (Fig.4).

Control 

Strategy 

Micro bead dynamic < Camera period acquisition 

Camera 

uδ w
 

Non linear 

system 

1
( )x f uδ=� 

Fig. 4. Summary of the control strategy

A. Linear model

To resolve the non linearity problem, starting by the non

linearity relative to the control variable δu, the first step

consists of transforming this non linear system to another

linear system relatively to a new control variable named ξ.

Using the following variable transformation:

ξ = f2(δu) =

(

δu +
β(x)

2α(x)

)2

, (11)

we are able to create a linear relation between the new control

variable ξ and the velocity of the micro bead ẋ. The new

linear dynamic equation is:

ẋ = α(x)ξ + ρ(x), (12)

where

ρ(x) = γ(x) −
β2(x)

4α(x)
. (13)

Equation (12) solves the non linearity problem in relation to

the new control variable ξ.

Concerning the non linearity in relation to the state vari-

able, produced by the non linear functions α(x), β(x) and

γ(x) (see Fig.2), these functions can be estimated by using

an estimated value of the state variable x. This estimated

value is equal to the current position when it is available,

and it is equal to the reference value w date when the state

variable x is not available. This last case is based on the

hypothesis that the reference trajectory is known at any time

and the controlled position is relatively close to the desired

position.

B. Generalized Predictive Control (GPC)

In order to control the high dynamics of the micro bead,

a control strategy ables to apply a series of control variables

while no position’s informations are available between two

successive camera acquisition is presented. One of the con-

trol strategy which fulfill these requests is the GPC. The goal

of the generalized predictive control is to find the optimal

future control actions that drive the future process output to

track the reference trajectory as closely as possible in the

presence of system constraints and disturbances [15]. The

generalized predictive control is used in several domains of

applications such as solar power plants [16], turbine engines

[17] and robotic manipulators [18]. The main idea of the

GPC is to find a future control sequence from a given time

which minimizes the error between the predicted output and

the reference.

Based on a numerical model, the GPC enables to calculate

the optimal control sequence of N values ξ in the future

which minimize the error between the output position and

the reference w in N steps in the future.

The application of the GPC strategy on our system requires

a discrete model. Considering that the camera acquisition pe-

riod is Tc which means the position’s information is updated

each Tc seconds. During this period the controller calculates

the appropriate control variable sequence of N values using

the sample time Ts in order to track the reference trajectory

with N × Ts ≥ Tc.

The details of the control strategy is presented in [19].

IV. RESULTS AND DISCUSSION

In order to test the proposed control strategy, the dielec-

trophoresis system described in Fig.1 has been simulated,

where the liquid medium is ultra pure water with ǫm = 80ǫ0,

σm = 10−16Sm−1 and µ = 10−3kg(sm)−1. The micro

object is a silicium micro bead with radius r = 30µm,

ǫp = 8.4ǫ0 and σp = 10−12Sm−1. The frequency 2πω of



the applied voltage used to create the non uniform electric

field is 10kHZ and Uref = 75V and the applied voltage on

the electrodes is limited to Umax = 150V . The sample time

is chosen equal to 0.5ms and the camera has an acquisition

sample time equal to 2.5ms. Thus, the minimum value of

the prediction’s horizon N is equal to 2.5/0.5 = 5 steps.

In order to test the robustness of the control law, the model

used in the GPC controller and the simulated model differs

by adding errors of 20% on the electric permittivities of both

medium and particle.

A. High dynamics

Firstly, the proposed control strategy has been tested on

high dynamic reference trajectories. Considering a sinusoidal

reference trajectory with period equal to 10 times the camera

acquisition period, i.e. 25ms with a magnitude of 25µm
around x = 0. In this range the model can be considered

linear.

Fig.5 shows the output position of the the micro bead’s

calculated by the real system using the control variable

δu obtained from the control variable ξ calculated by the

proposed GPC applied on the model. This control strategy

is also compared to a regular PI corrector to demonstrate

the efficiency of our strategy. The proportional constant of

this PI corrector is equal to the inverse of the gain of the

system considered as a first order linear system in this range.

The gain of the system is calculated and it is equal to

1.610−6mV −1. The integrator constant of the PI corrector

is equal to the time constant of the system which is equal to

3.610−3s.
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Fig. 5. Output trajectory of the system controlled by the generalized
predictive control and compared to the PI control. The camera acquisition
period is 2.5ms .

B. Non linearity

Secondly, we test the proposed control strategy in the

non linear range, by tracking a trajectory which reaches

position near the electrode’s edges. In this case the sinusoidal

reference trajectory changes in magnitude and period. Fig.6

shows the output trajectory of the real system controlled by

the proposed GPC strategy based on the model where the

amplitude of the reference trajectory is 130µm and its period

is 100ms.

In this example, the micro bead goes toward the electrodes.

At the time t = 0.01s, the micro bead’s position is near to

x = 100µm, the control did not find any value of the control

variable ξ which nullify the error between the calculated

and the reference position. The controller determines the

optimum value which maximizes the velocity of the beads.
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Fig. 6. Output trajectory of the Generalized predictive control tracking a
long range reference trajectory using camera with acquisition period equal
to 2.5ms.

V. CONCLUSIONS

We have proposed a model and a closed loop control

strategy based on the generalized predictive control of a

dielectrophoretic-based device. The behavior of a micro

bead, driven by dielectrophoresis force, is characterized by

its high dynamics compared to the capture speed rate and

the non linearity of its dynamic equation in relation to both

the voltage variable and the position. The control strategy

proposed provides the optimal sequence of voltage values

with a smaller sampling rate then the camera speed rate.

It enables to minimize the error between the micro bead’s

position and the reference even when the micro bead is

near the electrodes where the non linearity is strong. The

proposed control strategy is tested and compared to other

regular control strategy such as the PI controller and several

results are presented.
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