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Abstract. Phytoplankton patchiness has been investigatedstatistically using scale laws. This result is often referred to
with multifractal analysis techniques. We analyzed oceanicas the theory of passive scalars.

chlorophyll maps, measured by the SeaWiFS orbiting sen- Since the phytoplankton’s ability to swim is very limited,
sor, which are considered to be good proxies for phytoplankits displacements are mainly due to the velocity of the fluid in
ton. The study area is the Senegalo-Mauritanian upwellingyhich it evolves. Phytoplankton patchiness is thus strongly
region, because it has a low cloud cover and high chlororelated to turbulence. This consequence has led numerous
phyll concentrations. Multifractal properties are observed,authors to study the scale invariance properties of phyto-
from the sub-mesoscale up to the mesoscale, and are founglankton patches, and to confront experimental data with
to be consistent with the Corssin-Obukhov scale law of pasphenomenological models derived from, or inspired by, the
sive scalars. This result indicates that, in this specific regiontheory of passive scalars. Early studies remained confined to
and within this scale range, turbulent mixing would be the second-order moments, such as the slope of the power spec-
dominant effect leading to the observed variability of phyto- trum (see, e.g., Platt, 1972), whereas more recent research
plankton fields. Finally, it is shown that multifractal patchi- takes into account the intermittent transfer of conservative
ness can be responsible for significant biases in the nonlineajuantities in scale space, such as energy and scalar variance,
source and sink terms involved in biogeochemical numericalyhich give rise to multifractal statistics through cascade pro-
models. cesses (Seuront et al., 1996a, b, 1999; Seuront and Schmitt,
2004, 2005a, b; Lovejoy et al., 2001a, b; Pottier et al., 2008).

At smaller scales, most of these studies found empirical
] proof for a passive scalar regime of phytoplankton patchi-
1 Introduction ness, corresponding to the well-knows5/3” power spec-
trum slope of homogenous and isotropic turbulence. This
It is sometimes argued that turbulent mixing leads to ho-pyrely turbulent regime appears to be limited to spatial scales
mogeneous fields. However, Kolmogorov (1941), Obukhovsmaller than a particular scale of the order of 100 m, called
(1949) and Corssin (1951) have shown that, on the ContrarWhe “p|anktosca|e” by Lovejoy et al. (2001b) In fact, al-
turbulent mixing generates highly irregular structures that arghough phytoplankton can reasonably be described as pas-
heterogeneous at all scales. Their work was based on the hyively advected, in the sense that its retroaction on the turbu-
pothesis of scale invariance, which means, in simple wordsjent flow is negligible, it cannot be considered to be totally
that eddies can be expected to occur in a similar manner at ajjassive, since it is biologically active. One important biolog-
scales. In the case where the physical quantity is the concencal process is zooplankton grazing, and the “planktoscale” is
tration of a passive tracer, these authors demonstrated that iEﬁJrrentIy interpreted as corresponding to the scale at which
Varlablllty exhibits fractal properties which can be deSCfibedchangeS take p|ace in the grazing regime_ This modifica-
tion of the grazing regime appears to be related to the zoo-
plankton’s ability to swim. Contrary to phytoplankton, zoo-

Correspondence tdS. Thiria plankton is able to swim, although its speed remains limited.
BY (sylvie.thiria@locean-ipsl.upmc.fr) Therefore, there exists a scale above which its displacements
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220 L. de Montera et al.: Multifractal analysis of oceanic chlorophyll maps

are dominated by turbulent mixing. This hypothesis is sup-In this equation, Av; = (Ju(x+1) —v(x)|) represents the
ported by the fact that the zooplankton’s concentration powemmean shear of (longitudinal) velocity between two points
spectrum whitens at scales smaller than the “planktoscale$eparated by a distanteande represents the mean density
(Currie and Roff, 2006). of the energy flux, which is equal to the rate of energy dis-
At scales larger than the “planktoscale”, the phytoplanktonsipation per unit mass. A similar scale law has been derived
patchiness description is more confused. Some authors founf@r the concentratiol of a passive tracer (Obukhov, 1949;
a power spectrum slope steeper tha/3 (around—2, Cur-  Corrsin, 1951):
rie and Roff, 2006; Seuront et al., 1999), interpreting this re-Ac; ~ /313 )
sult as a transition from Eulerian to Lagrangian statistics, due
to the inertia of the boat carrying the instruments (cf. Seurontvhereg = x3/?¢~1/ represents the non-linear coupling be-
et al., 1996b). On the other hand, the analysis of remotelytween velocity and concentration, with= —% the
sensed phytoplankton fields from aircraft led to a smoothemean density of the concentration variance flux (for a review
slope (around-1.2, Lovejoy et al., 2001b). From a theoreti- concerning these early turbulent models, see, e.g., Panchey,
cal point of view, the situation is even less clear: some studied971).
reached the conclusion that growth and trophic interactions Landau and Lifshitz (1944) pointed out that these fluxes
should decrease the slope of the power spectrum (Denmahave no reason to be homogeneous: although they are on av-
and Platt, 1976; Fasham, 1978), whereas some others predietage conserved during the cascade process, their transfer is a
that it should increase (Steele and Henderson, 1979) or thatriori intermittent. This remark has led the transfer process to
the power spectrum has no specific regime (Horwood, 1978)be described by stochastic multiplicative cascades (Novikov
In this context, to the best of our knowledge, the largeand Stewart, 1964; Yaglom, 1966). A multiplicative cas-
volumes of data collected by remote sensing from space¢ade can be constructed by iterating the following simple
over a period of more than two decades, have almost noprocedure: (i) distribute a quantity uniformly over an inter-
been exploited in order to improve scientific understandingval, (i) divide this interval into sub-intervals, (iii) multiply
of the multi-scaling properties of phytoplankton fields (with these by a random variable in order to obtain the new quan-
the noticeable exception of Nieves et al., 2007). The aim oftity for each sub-interval, (iv) repeat steps (ii) and (iii) until
the present study is to analyze oceanic chlorophyll maps obthe smallest scale of the cascade is reached. The important
tained through the use of this type of sensor. The first part of0int here is that the distribution of the random variables, re-
the paper briefly recalls the passive scalar theory and the nderred to as the multiplicative weights in the following, does
tion of multifractal intermittency. The second and third parts Not depend on the level of iteration of the construction al-
describe both the cascade model and the analysis techniqu@@rithm. Thus, because the latter is not dependent on scale,
The fourth part presents the dataset and the pre-treatmentte resulting mathematical object has fractal and even mul-
The fifth and sixth parts are dedicated to the results and theiifractal properties. It turns out that these properties can be
interpretation. Finally, the last part of the paper providesdescribed by the scaling of its statistical moments, of frac-
an example of the importance of multifractal patchiness intional orderg (for more details, see Schertzer et al., 2002):

oceanic tracers, by assessing the biases it produces in bio- 1\ K@
geochemical numerical models. (ef)~ (7) 3)
Ky ()
| )= (7) " @
2 Theoretical background: turbulence and l

multifractals wheree; and x; are the fluxes averaged at scald. is the

_ _ largest scale of the cascade, akiglg) and K, (¢) are the
Richarsdon (1922) described turbulence as a cascade process-called moment scaling functions.

that transfers kinetic energy from large scales to small scales |n order to obtain realistic fields, the discrete cascade
by a hierarchy of imbricated eddies. The hypothesis of scalgnodel described above has been generalized to continu-
invariance relies on phenomenology and the invariance of thgus cascades, obtained by scale densification (Schertzer and
Navier-Stokes equations under dilatation or contraction of_ ovejoy, 1987). This generalization was necessary because
the reference system (see Appendix A of Schertzer and Lovenyo points separated by a given length in physical space
joy, 1987). On the basis of this hypothesis, and the conservago not always have the same distance to their closest com-
tion of energy in the inertial range, Kolmogorov (1941) used mon ancestor in the cascade (cf. Pecknold et al., 1993).
dimensionality and some general assumptions, such as hoxn interesting property of continuous cascades is that their
mogeneity and isotropy, to derive his famous statistical scalgyenerators (i.e., the logarithm of the random multiplicative

law: weights) converge towards infinitely divisible laws. How-
ever, there is still no consensus concerning the degree of con-
Avy ~ Y3173 (1)  vergence. Some authors proposed Poisson generators (She

Ocean Sci., 7, 21229, 2011 www.ocean-sci.net/7/219/2011/
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and Leveque, 1994; Dubrulle, 1994) whereas some otherschlorophyll concentration variations, denoted hﬁ:hlf =
add an assumption of self-similar renormalization, so that the{|Chl(x +1) — Chl(x)|?). According to Eq. (7), the-th-order
generator converges more accurately towards stable distribustructure function is equal to:

tions (Schertzer and Lovejoy, 1987, 1997). Until this ques- q . [»aq\1qh

T s ; / : " AChIf ~(g9)19". (10)
tion finds a definitive answer, since the notion of scale invari- _ _ _ S

ance is at the root of the theory, the latter assumption seem8Y introducing Eq. (8), this equation simplifies to:
plausible, and the decision was made to use stable laws taChlf ~ (4H~Kelaa), (11)

describe the generator of the process which correspond t%h the termk be d dint
Gaussian distributions if the variance is finite or Levy distri- en, the termk (aq) can be decomposed into conserva-

butions if the variance is infinite. In this type of case, the tive_ and non-cons_ervative parts us_ing the following identity,
moment scaling functions take the simple form (SchertzerWhICh can be straightforwardly derived from Eq. (9):

and Lovejoy, 1987): K(ap)=qK(a)+a*K(q). (12)
C1 ‘ This operation yields:
Ke(q) = 81 (g% —q) (5) «
Oe — AChI! ~ (4 H=Klan=a Ke(q), (13)
C1 o ning:
Ky (@)= —Xl (q N _q) (6) As expected, by defining:
X K;(q) = a* K¢(q)
: . . i (14)
wherea, and «, are multifractality parameters varying be- | # = H—-K;(a),

tween 0 and 2, and'1, andC1, are intermittency parame- one obtains the usual form of the structure function corre-
ters varying between 0 and the dimension of the embeddingponding to the case wheze= 1:

space, which here is equal to 2. -
AChI ~ (77 =K@ (15)
In the following, we thus use a simplified form of Eq. (7)

3 The FIF model requiring only three parameters, namefy, o; andCy;:

Concerning the chlorophyll concentration, these laws can-Ach|, ~ ¢17 (16)

not be directly applied, the main reason being that bIOIOgl_This model is called the fractionally integrated flux (FIF) and

cal activities may produce deviations from a purely passive . : .
scalar behaviour. Nevertheless, we expect that the variabilit as first present(_ad by Schert_zer_and LoveJ(_)y (1987) n _the
ramework of their study of rain fields. In this regard, it is

of chlorophyll maps still presents some multifractal proper- . ) T i !
pterestlng to note the similarities between marine biogeo-

ties, and that it would be possible to use a cascade mod . . :
similar to that presented above. We thus looked for a phe-ChemIStry and the cycle of water in the_ atmospherfa. Firstly,
nomenological model having the same form as Eq. (1), bu oth are'strongly dependent on ascending currents: these cur-
in which the parameters are not known, i.e.: rents bring nutrients to the surface layers of the ocean and
water vapour to the upper layers of the atmosphere. Then,
AChI; ~ (g“)lH (7 the first phase transition to heavier particles generally occurs
) ) in thin layers in which physical conditions are appropriate:
where Chlis the chIoro_phyII concentration amChl, = phytoplankton is produced near to the ocean’s surface be-
{IChl(x +1) ~Chi()]). ¢ is a conserved flux and and 5 qe it needs light to grow, whereas clouds are formed in
are adjustablelparamete.rs. As Qescrlbed apove, the conservgg, atmospheric layer in which water vapour condenses. The
flux has to verify the basic multifractal relation: next phase transition to heavier particles occurs when phyto-
I\ K@ plankton feeds zooplankton, and when cloud droplets are in-
(¢f) ~ (7) (8)  corporated into raindrops. Finally, zooplankton may die and
sink (or return to a nutrient form by mineralization), whereas
and it is assumed that it converges towards a log-stable lawraindrops may fall (or return to water vapour by evapora-
Cit tion). Although these atmospheric and oceanic processes
K:(q)= (g% —q). 9) have very different space and time scales, with one involv-
a—1 ing biology and the other physics, the comparison is striking.
This model is described by four parametess:H, o; and  The interesting point here is that, in both cases, the evolution
C1,. However, it is possible to reduce the number of pa-cycle is an alternating composition of turbulent mixing and
rameters to three, since taking tia¢h power ofz in Eq. (7) phase transition processes. This analogy leads phytoplankton
is equivalent to a simple shift off by K. (a), and to the patchiness to be thought of as “clouds in the sea”. Besides,
multiplication of C1, by a factora® (Lavallee et al., 1993).  as will be shown below, the multifractal parameters obtained
The proof uses the-th-order structure functions of chloro- from chlorophyll maps are close to those obtained in the case
phyll maps defined by the average of theh power of  of cloud or rain fields.

Www.ocean-sci.net/7/219/2011/ Ocean Sci., 7, 2P3-2011



222 L. de Montera et al.: Multifractal analysis of oceanic chlorophyll maps

4 Analysis technique signal is too noisy, the fluctuations due to turbulence or other
processes will be hidden. Moreover, the estimation of higher-
The first step of the analysis consists in verifying the scaleorder statistical moments can easily be biased by the pres-
law given by Eq. (9), and in estimating its expondit  ence of a few unrealistic values in the data, such as isolated
This is generally performed by using the first-order struc- pixels having abnormally high chlorophyll concentrations.
ture function. Since the flug is assumed to be conserved in  Another difficulty is that areas below clouds or high
scale space, whatever the scilé;) is constant. Therefore, aerosol concentrations cannot be observed, because the sen-
Eg. (9) reduces to: sor cannot see the sea surface. As a consequence, chloro-
phyll maps remotely sensed from space present many “holes”

H
AChl oc /. 17 of different sizes (the set defined by the locations of these
This equation allows? to be estimated using the simple ex- Missing data may be fractal itself, because cloud and aerosol
pression: distributions are also fractal, see respectively Lovejoy and

Schertzer, 2006 and Lilley et al., 2004). We also noticed that
H =log; (AChl)). (18)  the values around the periphery of these “holes” were not

S . . reliable, presumably because of uncertainties in the correc-
The second step consists in quantifying the multifractal PrOP%ion of the atmospheric effect. Therefore, it was chosen to

grtles (.)f'the flux, and in estimating ﬁnd Ce. ljn ordg:rr:o ‘ study only maps which had no missing values. This type of
050, Itis nr:ac;ssary tr? r?construc_tlt b? cascla i\an 'Ej_ere Ofata is of course difficult to find, because of the abundance of
to retrieve the flux at the finest avallable scale. According 10,45 and aerosols in the atmosphere, such that a compro-

Eq. (9), t.h|s requwgsgfracu.onal derivative of (_)rdﬁr How- mise needed to be found between the size of the maps and
ever, a simple derivation of integer order provides a good NU3pe sample size

merical approximation (Lavae etal., 1993), suchastaking |, gder to optimize this compromise, the study area was

the norm of the gradient of the field: carefully chosen. The most appropriate area was found to be
2 > the Senegalo-Mauritanian upwelling region, because it nor-
Cimax ™ \/(dCh|> + (@) . (19) mally has a very low cloud cover (although this does not re-
dx dy main true during the summer months, when the InterTropical

Note that, since the rest of the analysis is based on the grac_ionvergence Zone (ITCZ) moves north). Another reason is

dient of the field, it is crucial to work with data affected by the prefertl_ce offup\;velhn?r; which tprgwdets high T.hlorophylll
a low level of noise. Indeed, if the noise is strong, taking concentrations far from the coast, due o peculiar oceanic

the gradient of the field will result in useless, noisy fields. conditions (Aristegui et al., 2004; Lathighe et al., 2008).

Therefore the finest available scale does not necessarily co;l:h.e refo_rti, the ch:)icethof th'ﬁ area; r(_aducleclj:_the”mter?su:]ement
respond to the measurement scale: it is usually necessary p!Se With respect to the conerent signal. Finafly, the chosen

perform initial averaging of the data at a larger scale, beforeocatlon “%S t:ettvr\]/een m\é_f@ N at?]d ? E_2V6) '(Ej V.VTCh d d
computing the gradient, in order to suppress the noisiest oforresponas lo the areéa between the L.ape Verde islands an

the finest scales. The cut-off scale at which the fields hav he coast of West Africa, between Mauritania and Guinea-

to be averaged is called the “effective measurement scale issau (see Fig. 1).

in the following. This scale is determined by computing the _dThedchgllce (.)f plrgdduct level als_(t) has to be ?grefijlkl)y con-d
power spectrum, and then estimating the wave numberabov%I ered. Liassical s-0ay composite maps could not be used,
ecause they include a non-uniform time averaging in the

which it flattens out. data. d di th t of missing data f h pixel
Once the flux has been obtained at the “effective measurel-_"’lva’I L%pe:l éngton d ?I amlo%n | cr>nm|ssr|:g a 3 tor ea%ifplr)r(r? '
ment scale”, the stochastic multiplicative cascade can be re-SVel Lo Proaucts (daily globa maps mapped 1o a unito
scale grid) could not be used either, firstly because of pro-

constructed by averaging (or “degrading”) the flux at larger; . i i
scales. The statistical moments are then computed for varieetion effects, and secondly because this product is actually

ous orders and scales in order to test Eq. (8). If the scaling nganved from sub-sampling of the original data: only one

the statistical moments is verified; (¢) can be estimated. Ei)lxnelir:s;hkep:nforn(ia(;hds?u;’:lrenof\jéliﬂa ptl)>|<elsb. This reSduc\;ViFS
Finally, the parameteks; andCy; are obtained by determin- 0 € amount of cala IS Unavoidab'e, because Sea

ing the least squares fit to this function. i_s po_sitionec_i in L.OV\.' Earth_Orbit (L.EO)’ mear?‘”g that_ the
time it remains within the field of view of receiver stations
it too short for full datasets to be transmitted to the ground.
5 Dataset However, full resolution chlorophyll data was transmitted for
some restricted areas, including the Senegalo-Mauritanian
Particular attention was paid to the selection of chlorophyll upwelling region. This dataset is called the local unmapped
maps, because multifractal analysis is very sensitive to thdevel L2 product, and is suitable for use in this study. In
quality of the data. As explained above, the analysis techthis product, the pixel resolution is around 1%nHowever,
nique is based on the gradient of the field. Therefore, if thethe spot size over which the data are measured varies with

Ocean Sci., 7, 21229, 2011 www.ocean-sci.net/7/219/2011/
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' ' ' ' T Lovtuse ' ' ' ' Fig. 2. Example of a 128 ki horizontal chlorophyll map (resolu-
tion 1 kn?) extracted from the SeaWiFS local L2 product.
Fig. 1. Geographic map of the Senegalo-Mauritanian upwelling re-

gion.

elevation angle. Therefore, only the inner part of the scans
was considered, in order to limit this effect. Note also that K
some authors (Lovejoy et al., 2001b) recommend using di-

rect analysis of marine reflectivities (level L1 product) be- =
cause the fields’ heterogeneity may bias chlorophyll concen-2 s}
tration retrieval algorithms. Indeed, since these algorithms g
are generally non-linear, it is not correct to extrapolate them — —357
directly to the measurement scale which is much larger than

the scale of homogeneity. However, this problem should not 4

affect our analysis because the retrieval of chlorophyll con-  _45[

centration was performed without any extrapolation in scale )

space (the retrieval algorithm is based on an empirical rela- =5, 1 2 3 " 5 p 7
tion derived from the comparison between remotely sensed = (1km) (@km) (4km) (8km) (16km) (32km) (64 km) (128km)
marine reflectivities and in-situ chlorophyll concentrations). 10g,()

Moreover, working directly with marine reflectivities is dif- _ _ _

ficult because of its lack of physical interpretation. Actually, Fig- 3. First-order structure function of SeaWiFS chlorophyll maps

the only physical quantity that can be related to a theoreticafom?aredtr‘]” IttT1 a I!neislfr_tcutr)ve Ofdsmfteh e?_ual :0 O'|4' _Thettqu?r(-j

scale law is the chlorophyll concentration Chl. For example, ure from fhe theorical it observed at he finest scales 1S atiribute
id i lati hio of the f ChF(R to measurement noise, and corresponds to flattening of the power

consider a non-iinear reiationship of the form f_( ): spectra at high wave numbers (see Fig. 4).

where R denotes a marine reflectivity. If is non-linear,

then £ ~1 is also non-linear. There is consequently no reason

. . . _ 71 . . ) A A A ) X
for the marine reflectivityk = f~~(Chl) to verify a scaling  jsojated, unrealistically high values. Each of these unrealistic

of the form of Eq. (9) because non-linear transformations doyxe|s was corrected using the mean value of the surrounding
not generally conserve first-order structure functions. pixels.

Finally, 100 maps of 12& 128 pixels of 1kr, with a
minimum of 99.5% of available data, were extracted from
SeaWiFS data over a period of one year running from Julye Results
2003 to June 2004 (a sample chlorophyll map is shown in
Fig. 2). The few missing data were interpolated automati-Figure 3 shows the first-order structure function for the 100
cally by computing the mean of the surroundings pixels. All SeaWiFS chlorophyll maps. The smaller scales (1-4 km)
selected maps were checked manually. Some maps had te@ere not taken into account when determining the fit, be-
be rejected because of an offset affecting some parts of theause they present a deviation from the scaling observed
field. The origin of this offset is not known. The gradient of throughout the remainder of the scale range (4-128km).
the maps was also checked manually, in order to detect anyhe cause of this deviation does not appear to be physical,

Www.ocean-sci.net/7/219/2011/ Ocean Sci., 7, 2P9-2011



224 L. de Montera et al.: Multifractal analysis of oceanic chlorophyll maps

i i i i i both parameters). Note that the values of these parameters,
as well as that of, are close to those obtained for rain and
clouds, which are respectively ~ 0.4, C1 ~0.12,a ~ 1.8
(Verrier etal., 2010) an& ~ 0.4, C1 ~0.08,« ~ 1.9 (Love-

joy and Schertzer, 2006). Another possibility is to normalize
the norm of the gradient in the same manner for all maps
by using the “climatological” mean computed over all maps.
This technique has the advantage to provide an estimation of
the outer scale of the cascade by extrapolating the scale laws
of the moments (see, e.g., Lovejoy and Schertzer, 2006). Al-
though the sample used in this study is limited and may not
be representative, the results are presented in Fig. 5 (right)
and yield an outer scale equal to 2000 km, which could be
related to the size of oceanic gyres in terms of order of mag-

log, (E(K)

14} e o nitude.
‘ ‘ ‘ ‘ ‘ We also tried to perform the same type of analysis using
0 1 2 3 4 5 6 SST (Sea Surface Temperature), which is another useful, re-
(128km)  (64km) (32km) (16km) (Bkm)  (4km)  (2km) motely sensed oceanic tracer. However, this attempt failed
log, (k) because the spectrum of the SST maps was found to flatten

out at larger scales (around 32 km) than that of chlorophyll
Fig. 4. Angle-integrated power spectrum of SeaWiFS chlorophyll maps, and the available range of scales was thus insufficient.
maps compared with a linear curve of slope equat-1067. The  This whitening effect, which hides the small scale fluctua-
power spectrum flattens out at the fifth octave, corresponding t%ons, may be due to air-sea exchanges, which tend to spa-
wavelengths smaller than 4 km. tially homogenize the SST. However, Nieves et al. (2007)

performed a multi-scale analysis of SST data with a larger

scale range (level L3 product) and found that the observed
because such a break in the scaling has never been observgflitifractal spectra was very similar to the one obtained with
in other studies (cf. Lovejoy et al., 2001b). This break waschlorophyll concentration data. This result provides an addi-
therefore associated with the scale below which the measurejonal argument in favour of a link between phytoplankton
ment noise becomes dominant, when compared with the copatchiness and turbulent mixing at large scales, which will
herent signal (here, the definition of the noise is very large:pe developed in the next section.
it includes not only the sensor’s sensitivity, but also atmo-  The use of statistical moments is a very convenient way
spheric corrections and retrieval algorithms errors). This hy-of estimating multifractal parameters. However, as it is not
pothesis is confirmed by the power spectrum (Fig. 4), whichyery intuitive, we propose here to demonstrate the existence
flattens out beyond a wave number corresponding to 4 km irof a cascade process, through the use of the more classical
the physical space. Finally, over the scale range 4-128 kmgoncept of probability density. The algorithm used in this
the empirical first-order structure function is consistent with method is the following: (i) compute the flux at the finest

Eq. (17), andH is estimated to be around 0.4 (the numeri- available scale, (ii) perform averages ovek 2 squares,
cal fit yields 0.402 with a standard deviation of the estimator (jiiy compute the multiplicative weights that relate the values
equal to 0.005). of the coarse-grained flux to the previous ones, (iv) plot the
Since the noise has to be removed before continuing thé>robability Density Function (PDF) of the logarithm of these
analysis, the data were averaged overdkny areas. Then, multiplicative weights, (v) iterate steps (ii), (iii) and (iv) un-
for each map, the norm of the gradient was computed andil the largest scale of the cascade is reached. This method
normalized in order to reconstruct the cascade. Figure 5 (left)s straightforward to implement and does not require any
shows the scaling of the statistical moments for various or-prior assumption concerning the data. The results obtained
ders. This set of scale laws is found to be consistent withwith our selection of chlorophyll maps are given in Fig. 7.
the basic multifractal relation given by Eq. (8). For each The PDF of the logarithm of the multiplicative weights does
orderg, the slope of the scale law provides an estimationnot depend on the scale at which they are derived, thus con-
of K;(g). The moment scaling function retrieved by this firming the use of a scale invariant cascade model. Figure 8
method is shown in Fig. 6. The fit of this function accord- shows the left tail of the total PDF, compared with a Gaussian
ing to Eq. (9) yieldsC1; ~0.12 ando; =~ 1.92 (here, we re-  distribution having the same mean and variance. The empir-
nounced to provide the standard deviations of the estimator&al PDF decays as a power law (producing a straight line on
because they would indicate an artificially high precision; thea log-log graphic), which is much slower than the Gaussian
estimation error of the whole analysis technique has beetehaviour. This result supports the fact that the generator
tested with simulations and is found to be around 10% forfollows a Levy law with infinite variance, and allows to
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Fig. 5. Scaling of the statistical moments of the flgxfor the orders; =0, 0.1, 0.2, ..., 2, with corresponding theoretical fits. Hére,

corresponds to the largest scale of the SeaWiFS chlorophyll maps, i.e. 128 km. Left: for each map, the flux was normalized to a mean value

of 1. Right: the normalization was performed with the “climatological” mean value computed over all maps, which allows estimating the

outer scale of the cascade by extrapolation to larger scales.
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Fig. 6. Moment scaling functiork ; (¢) of the flux¢, with theoreti-
cal fit.

7 Interpretation

Since the parametef was found to be close to 1/3, it is
tempting to relate it to the theory of passive scalars. This
theory is based on the hypothesis of a 3-D isotropic tur-
bulence that does not hold for our selection of chlorophyll
maps, because, in the considered scale range (1-128 km),
the ocean is a stratified fluid with a horizontal dimension
much larger than the vertical one. However, some recent
studies (e.g., Lovejoy and Schertzer, 2010) suggest that the
Corrsin-Obukhov scale law may still be valid in the horizon-
tal. Therefore, if turbulent mixing is the dominant effect, we
may expect that the horizontal variability of phytoplankton
fields would verify the scale law given in Eq. (2). If this is
correct, then, assuming the velocity and passive scalar fluc-
tuations to be independent, Schmitt et al. (1996) have shown
that the parameteff of the FIF model (Eg. 9) should be
equal to:

H=1/3+K.(1/6)— K, (1/2). (20)

be estimated using a different approach, since the theoretical

slope of the asymptote this distribution is equakHtil+«).

The deviation off with respect to the value 1/3 is due to the

The resulting value of is found to be 1.95, which is consis- intermittency of the energy and scalar variance fluxes, since
tent with the value previously obtained using statistical mo-a conserved flux raised to a power exponent, not equal to 1,

ments.

Www.ocean-sci.net/7/219/2011/

is no longer a conserved quantity. The tekiy(1/6) depends
only on the turbulence, and is well known; by assuming the
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Fig. 7. PDFs of the logarithm of the multiplicative weights for each
level of the cascade (corresponding to contractions of the averagin
area by a factor? from 128 kn? until 4 km?). The PDFs are very
similar, with the exception of the function corresponding to the last
scale contraction (from 8 kfrto 4 kn?), which is flatter. This may
be due to the presence of noise.

Fig. 8. Log-log graph of the left tail of the total PDF of the log-
Brithm of multiplicative weights (blue), compared with a Gaussian
having the same mean and variance (red). The PDF decays as a
power law, with a slope-2.95 (green fit), corresponding to @&ty

law of indexa = 1.95. The Gaussian function decays much faster,
and would therefore be inappropriate for cascade generation.

parameters, = 1.5 andCy, = 0.25 proposed by Schmitt et

al. (1996), its value is expected to be around.05. How- to 0.12 and concluded to a combined turbulent/growth-

ever, the estimation of the teri, (1/2) is more delicate, dominated process. Therefore, the question i_s still open _and
since the multifractal parameters pfre not known a priori, ~ future studies should try to understand precisely in which
and have to be estimated. One possible solution consists jfarticular seasons or locations this departure from the tur-
using the empirical multifractal parameters obtainedzfar bulent scaling is likely to occur. According to the model pro-

the previous section, because they have a simple approximaRPSed in Lovejoy et al. (2001a), this departure should be ob-
relationship to those of (de Montera et al., 2010): served in area which have a weak turbulent activity combined

with a high growth rate.
{le ~ oo (21)

ClX 2% Cl{.

This yields «, ~ 1.92 and C1, ~ 0.45, thus allowing 8 Bias in biogeochemical numerical models
K,(1/2) to be estimated at a value equalt@.11. The
(semi-)theoretical value df is therefore 13—0.05+0.11~ The forecasting of coupled turbulent/biogeochemical sys-
0.39, which is consistent with its experimental value of 0.4 tems is currently performed by means of 3-D numerical sim-
obtained with the SeaWiFS chlorophyll maps. ulations. The main shortcoming of this technique is that
This coherency led us to the conclusion that phytoplanktonit necessarily implies the use of high-pass filtering in scale
behaves like a passive scalar within the studied scale rangepace (or “scale truncation”), which strongly affects the esti-
which includes the mesoscale and the sub-mesoscale. Thiwation of non-linear advection terms in the fluid mechanics
does not mean that phytoplankton is a purely passive scalaequations. This truncation of scale space is unavoidable be-
however it implies that biological activity does not affect the cause of the limited power of computers. It means, for exam-
scale law generated by turbulent mixing. This is consistentple, that a small length interval, considered as a differential
with the previous finding of Seuront et al. (1999) and Cur- elementdxin the equations, has a value much larger than the
rie and Roff (2006), who showed that biological activity af- scale of homogeneity in the numerical simulation (generally
fected the scaling over a limited range only, between 30 m10-100 km for global models, whereas dissipation occurs at
and 500 m, which is smaller than the resolution of remotelyscales of the order of a millimeter). The impact of this dras-
sensed satellite data. tic simplification remains unknown. Although it is generally
However, as explained in the introduction, other studiesbelieved that it can be compensated for, for example by in-
(e.g., Lovejoy et al., 2001b) found a parameférequal creasing the viscosity (Boussinesq hypothesis), this remains
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0.05 ‘ ‘ ‘ ‘ The PDF of the percentage of this relative error is shown in
Fig. 9. Its mean value is approximately 22%, which is far
from being negligible. One possible approach for reducing
0.04 1 this error would be to derive an analytic expression for the
scale dependency of the biological parameters (sughias

the example above), using the multifractal parameters of the
0.03 1 tracer patchiness, if available.

0.045

0.0351

[
Q 0.025}
a

0.02 9 Conclusions

0.015F
Multifractal properties of oceanic chlorophyll maps have
been investigated with remotely sensed data recorded from
0.005} 1 space. The FIF model has been validated, showing that
chlorophyll maps can be modelled statistically, through the
0 20 20 60 80 100 use of a fractionally integrated multiplicative cascade. In

% of error the study area, the Senegalo-Mauritanian upwelling region,
the parameters of this model were found to He~x 0.4,

0.01f

Fig. 9. Assessment of the distribution of the relative error percent- = ° N .
age resulting from the hypothesis of homogeneity over 128 km C1~0.12andr ~1.92. The estimates of the scale law expo-

areas, for a quadratic source term in a biogeochemical numericépentH is ConSiStentWiFh P"’_‘SS:ive scglar behaviour, indicat_ing

model. that phytoplankton variability is dominated by turbulent mix-
ing over the studied scale range (4—-128 km), and that biolog-
ical activity do not modify this scaling. This result confirms

to be demonstrated (for a test of the Boussinesq hypothesigrevious studies that reached this conclusion based on in-situ
see Schmitt, 2007). data. However, it cannot be generalized to other locations

If biogeochemical processes are involved, the situation i?€cause it may not be correct in areas having a high growth
even worse, because the estimation of these interactions {&t€ combined with a weak turbulent activity.
also affected by the truncation error. Moreover, the parame- Finally, it has been shown that, as a consequence of this
ters of biogeochemical models are often obtained by meangultifractal patchiness, the non-linear source and sink of bio-
of laboratory experiments performed at a typical scale of onegeochemical numerical models could be strongly biased. Fu-
meter. Therefore, since the relations in which these paramture studies should therefore be dedicated to the use multi-
eters are involved are generally non-linear, it is not correctfractal techniques to improve the accuracy of numerical sim-
to use them at larger scales if the real fields are heterogeulations. This could be performed, for example, by predict-
neous. It can thus be useful to assess the bias generatéd the scale dependence of the model parameters or by re-
by the assumption of homogeneity over |arger scales. Fofining the assimilation of data measured at different scales.
this, we consider a global numerical model operating with Although the effect of grazing was not observed in this study
al° gnd scale (rough|y Corresponding to the 128%(map5 because of the low resolution of satellite data, the develop-
analyzed in the present paper), which includes a quadratiénent of such techniques implies to take it into account since
source term of the forn8C2, whereC is the concentration the scaling is modified at lower scales, in particular at scales
of a tracer angb is a parameter assumed to be derived underof the order of the so-called “planktoscale”.
stable conditions, at the scale of one meter in a laboratory.
If it is assumed that the 100 SeaWiFS chlorophyll maps areacknowledgementsThis study was funded by the French Centre
realizations of the sub-grid heterogeneity of the tracer, therNational dEtudes Spatiales (CNES).
for each map we compute the source term at the finest avail-
able scale (which is 1km in this case, whereas a 1 m scal&dited by: E. J. M. Delhez
would be needed!), and average these values over the whole
128 kn? map. Finally, we estimate the value of this source
term that would result from the hypothesis of homogeneity,
by averaging the concentration over the whole 128 kmap
and then computing the source term. The source term is the
estimated with a relative errd¥ equal to:
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