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Internal Regret with Partial Monitoring

Calibration-Based Optimal Algorithms

Vianney Perchet∗

February 18, 2011

Abstract

We provide consistent random algorithms for sequential decision
under partial monitoring, i.e. when the decision maker does not observe
the outcomes but receives instead random feedback signals. Those
algorithms have no internal regret in the sense that, on the set of
stages where the decision maker chose his action according to a given
law, the average payoff could not have been improved in average by
using any other fixed law.

They are based on a generalization of calibration, no longer defined
in terms of a Voronöı diagram but instead of a Laguerre diagram (a
more general concept). This allows us to bound, for the first time in
this general framework, the expected average internal – as well as the
usual external – regret at stage n by O(n−1/3), which is known to be
optimal.

Key Words : Repeated games, On-line learning, Regret, Partial
Monitoring, Calibration, Voronöı and Laguerre Diagrams

Hannan [17] introduced the notion of regret in repeated games: a player
(that will be referred as a decision maker or also a forecaster) has no external
regret if, asymptotically, his average payoff could not have been greater if
he had known, before the beginning of the game, the empirical distribution
of moves of the other player. Blackwell [6] showed that the existence of
such externally consistent strategies, first proved by [17], is a consequence
of his approachability theorem. A generalization of this result and a more
precise notion of regret are due to Foster & Vohra [13] and Fudenberg &
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Levine [16]: there exist internally consistent strategies, i.e. such that for any
of his action, the decision maker has no external regret on the set of stages
where he actually chose this specific action. Hart & Mas-Colell [18] also
used Blackwell’s approachability theorem to construct explicit algorithms
that bound the internal (and therefore the external) regret at stage n by
O
(
n−1/2

)
.

Some of those results have been extended to the partial monitoring
framework, i.e. where the decision maker receives at each stage a random
signal, whose law might depend on his unobserved payoff. Rustichini [27]
defined - and proved the existence of - externally consistent strategies, i.e.
such that the average payoff of the decision maker could not have been
asymptotically greater if he had known, before the beginning of the game,
the empirical distribution of signals. Actually, the relevant information is a
vector of probability distributions, one for each action of the decision maker,
that is called a flag.

Some algorithms bounding optimally the expected regret by O
(
n−1/3

)

have been exhibited under some strong assumptions on the signalling struc-
ture – see Cesa-Bianchi & Lugosi [9], Theorem 6.7 for the optimality of this
bound. For example, Jaksch, Ortner & Auer [20] considered the Markov de-
cision process framework, Cesa-Bianchi, Lugosi & Stoltz [10] assumed that
payoffs can be deduced from flags and Lugosi, Mannor & Stoltz [23] that
feedbacks are deterministic (along with the fact that the worst compati-
ble payoff is linear with respect to the flag). When no such assumption is
made, Lugosi, Mannor & Stoltz [23] provided an algorithm (based on the
exponential weight algorithm) that bounds regret by O

(
n−1/5

)
.

In this framework, internal regret was defined by Lehrer & Solan [21];
stages are no longer distinguished as a function of the action chosen by the
decision maker (as in the full monitoring case) but as a function of its law.
Indeed, the evaluation of the payoff (usually called worst case) is not linear
with respect to the flag. So a best response - in a sense to be defined - to a
given flag might consist only in a mixed action (i.e. a probability distribu-
tion over the set of actions). Lehrer & Solan [21] also proved the existence
and constructed internally consistent strategies, using the characterization
of approachable convex sets due to Blackwell [5]. Perchet [24] provided an
alternative algorithm, recalled in section 2.2; this latter is based on calibra-
tion, a notion introduced by Dawid [12]. Roughly speaking, these algorithms
ε-discretize arbitrarily the space of flags and each point of the discretization
is called a possible prediction. Then, stage after stage, they predict what
will be the next flag and output a best response to it. If the sequence of
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predictions is calibrated then the average flag, on the set of stages where a
specific prediction is made, will be close to this prediction.

Thanks to the continuity of payoff and signaling functions, both algo-
rithms bound the internal regret by ε+O

(
n−1/2

)
. However the first draw-

back lies in their computational complexities: at each stage, the algorithm
of Perchet [24] solves a system of linear equations while the one Lehrer &
Solan [21], after a projection on a convex set, solves a linear program. In
both case, the size of the linear system or program considered is polynomial
in ε and exponential in the numbers of actions and signals. The second
drawback is that the constants in the rate of convergence depend drastically
on ε.

As a consequence, a classic doubling trick argument will generate an
algorithm with a strongly sub-optimal rate of convergence – that might even
depend on the size of the actions sets – and a complexity that increases with
time.

Our main result is Theorem 2.10, stated in section 2.3: it provides the
first algorithm that bounds optimally both internal and external regret by
O
(
n−1/3

)
in the general case. It is a modification of the algorithm of Perchet

[24] that does not use an arbitrary discretization but constructs carefully a
specific one and then computes, stage by stage, the solution of a system
of linear equations of constant size. In section 3.1, an other algorithm –
based on Blackwell’s approachability as the one of Lehrer & Solan [21] –
with optimal rate and smaller constants is exhibited; it requires however to
solve, at each stage, a linear program of constant size.

Section 1 is devoted to the simpler framework of full monitoring. We
recall definitions of calibration and regret and we provide a näıve algorithm
to construct strategies with internal regret asymptotically smaller than ε.
We show how to modify this algorithm – however in a not efficient way –
in order to bound optimally the regret by O

(
n−1/2

)
. This has to be seen

only as a tool that can be easily adapted with partial monitoring in order
to reach the optimal bound of O

(
n−1/3

)
; this is done in section 2. Some

extensions (the second algorithm, the so-called compact case and variants to
strengthen the constants) are presented in section 3. Some technical proofs
can be found in Appendix.
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1 Full monitoring

1.1 Model and definitions

Consider a two-person game Γ repeated in discrete time, where at stage
n ∈ N, a decision maker, or forecaster, (resp. the environment or Nature)
chooses an action in ∈ I (resp. jn ∈ J ). This generates a payoff ρn =
ρ(in, jn), where ρ is a mapping from I × J to R, and a regret rn ∈ R

I

defined by:

rn =
[
ρ(i, jn)− ρ(in, jn)

]
i∈I

∈ R
I ,

where I is the finite cardinality of I (and J the one of J ). This vector
represents the differences between what the decision maker could have got
and what he actually got.

The choices of in and jn depend on the past observations (also called
finite history) hn−1 = (i1, j1, . . . , in−1, jn−1) and may be random. Explic-
itly, the set of finite histories is denoted by H =

⋃
n∈N (I × J )n, with

(I × J )0 = ∅ and a strategy σ of the decision maker is a mapping from
H to ∆(I), the set of probability distributions over I. Given the history
hn ∈ (I × J )n, σ(hn) ∈ ∆(I) is the law of in+1. A strategy τ of Nature is
defined similarly as a function from H to ∆(J ). A pair of strategies (σ, τ)
generates a probability, denoted by Pσ,τ , over (H,A) where H = (I × J )N

is the set of infinite histories embedded with the cylinder σ-field.

We extend the payoff mapping ρ to ∆(I)×∆(J ) by ρ(x, y) = Ex,y[ρ(i, j)]
and for any sequence a = (am)m∈N and any n ∈ N∗, we denote by ān =
1
n

∑n
m=1 am the average of a up to stage n.

Definition 1.1 (Hannan [17]) A strategy σ of the forecaster is externally
consistent if for every strategy τ of Nature:

lim sup
n→∞

r̄in ≤ 0, ∀i ∈ I, Pσ,τ−as.

In words, a strategy σ is externally consistent if the forecaster could not have
had a greater payoff if he had known, before the beginning of the game, the
empirical distribution of actions of Nature. Indeed, the external consistency
of σ is equivalent to the fact that :

lim sup
n→∞

max
x∈∆(I)

ρ(x, ̄n)− ρ̄n ≤ 0, Pσ,τ−as. (1)

Foster & Vohra [13] (see also Fudenberg & Levine [16]) defined a more
precise notion of regret. The internal regret of the stage n, denoted by
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Rn ∈ R
I×I , is also generated by the choices of in and jn and its (i, k)-th

coordinate is defined by:

Rik
n =

{
ρ(k, jn)− ρ(i, jn) if i = in

0 otherwise.

Stated differently, every row of the matrix Rn is null except the in-th which
is rn.

Definition 1.2 (Foster & Vohra [13]) A strategy σ of the forecaster is
internally consistent if for every strategy τ of Nature:

lim sup
n→∞

R̄ik
n ≤ 0 ∀i, k ∈ I, Pσ,τ−as.

We introduce the following notations to define ε-internally consistency.
Denote by Nn(i) the set of stages before the n-th where the forecaster chose
action i and ̄n(i) ∈ ∆(J ) the empirical distribution of Nature’s actions on
this set. Formally,

Nn(i) = {m ∈ {1, . . . , n}; im = i} and ̄n(i) =

∑
m∈Nn(i)

jm

|Nn(i)|
∈ ∆(J ).

(2)
A strategy is ε-internally consistent if for every i, k ∈ I

lim sup
n→∞

|Nn(i)|
n

(
ρ
(
k, ̄n(i)

)
− ρ
(
i, ̄n(i)

)
− ε

)
≤ 0, Pσ,τ−as.

If we define, for every ε ≥ 0, the ε-best response correspondence by :

BRε(y) =

{
x ∈ ∆(I); ρ(x, y) ≥ max

z∈∆(I)
ρ(z, y)− ε

}
,

then a strategy of the decision maker is ε-internally consistent if any action i
is either an ε-best response to the empirical distribution of Nature’s actions
on Nn(i) or the frequency of i is very small. We will simply denote BR0 by
BR and call it the best response correspondence.

From now on, given two sequences
{
lm ∈ L, am ∈ R

d; m ∈ N
}
where L

is a finite set, we will define the subset of integers Nn(l) and the average
ān(l) as in equation (2).

Proposition 1.3 (Foster & Vohra [13]) For every ε ≥ 0, there exist ε-
internally consistent strategies.
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Although the notion of internal regret is a refinement of the notion of
external regret (in the sense that any internally consistent strategy is also
externally consistent), Blum & Mansour [7] proved that any externally con-
sistent algorithm can be efficiently transformed into an internally consistent
one (actually they obtained an even stronger property called swap consis-

tency).

Foster & Vohra [13] and Hart & Mas-Colell [18] proved directly the ex-
istence of 0-internally consistent strategies using different algorithms (with
optimal rates and based respectively on the Expected Brier Score and Black-
well’s approachability theorem). In some sense, we merge these two last
proofs in order to provide a new one — given in the following section —
that can be extended quite easily to the partial monitoring framework.

1.2 A näıve algorithm, based on calibration

The algorithm (a similar idea was used by Foster & Vohra [13]) that con-
structs an ε-internally consistent strategy is based on this simple fact: if the
forecaster can, stage by stage, foresee the law of Nature’s next action, say
y ∈ ∆(J ), then he just has to choose any best response to y at the following
stage. The continuity of ρ implies that the forecasts need not be extremely
precise but only up to some δ > 0.

Let {y(l); l ∈ L} be a δ-grid of ∆(J ) (i.e. a finite set such that for every
y ∈ ∆(J ) there exists l ∈ L such that ‖y − y(l)‖ ≤ δ) and i(l) be a best
response to y(l), for every l ∈ L. Then if δ is small enough:

‖y − y(l)‖ ≤ 2δ ⇒ i(l) ∈ BR2ε(y)

It is possible to construct a good sequence of forecasts by computing a
calibrated strategy (introduced by Dawid [12] and recalled in the following
subsection 1.2.1).

1.2.1 Calibration

Consider a two-person repeated game Γc where, at stage n, Nature chooses
the state of the world jn in a finite set J and a decision maker (that will
be referred in this setting as a predictor) predicts it by choosing y(ln) in
Y = {y(l); l ∈ L}, a finite δ-grid of ∆(J ) – its cardinality is denoted by L.
As usual, a behavioral strategy σ of the predictor (resp. τ of Nature) is a
mapping from the set of finite histories H =

⋃
n∈N (L × J )n to ∆(L) (resp.

∆(J )). We also denote by Pσ,τ the probability generated by the pair (σ, τ)
over (H,A) the set of infinite histories embedded with the cylinder topology.
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Definition 1.4 (Dawid [12]) A strategy σ of the predictor is calibrated
(with respect to Y = {y(l); l ∈ L}) if for every strategy τ of Nature, Pσ,τ -as:

lim sup
n→∞

|Nn(l)|
n

(
‖̄n(l)− y(l)‖2 − ‖̄n(l)− y(k)‖2

)
≤ 0, ∀k, l ∈ L,

where ‖ · ‖ is the Euclidian norm of RJ .

In words, a strategy is calibrated if for every l ∈ L, the empirical distribution
of states, on the set of stages where y(l) was predicted, is closer to y(l) than
to any other y(k) ( or the frequency of l, |Nn(l)|/n, is small).

Given a finite grid of ∆(J ), the existence of calibrated strategies has
been proved by Foster & Vohra [14] using either the Expected Brier Score
or a minmax theorem (actually this second argument is acknowledged to
Hart). We give here a construction, related but simpler than the one of
Foster and Vohra, due to Sorin [30].

Proposition 1.5 (Foster & Vohra [14]) For any finite grid Y of ∆(J ),
there exist calibrated strategies with respect to Y such that for every strategy
τ of Nature:

Eσ,τ

[
max
l,k∈L

|Nn(l)|
n

(
‖̄n(l)− y(l)‖2 − ‖̄n(l)− y(k)‖2

)]
≤ O

(
1√
n

)
.

Proof. Consider the auxiliary game where, at stage n ∈ N, the predictor
(resp. Nature) chooses ln ∈ L (resp. jn ∈ J ) and the vector payoff is the
matrix Un ∈ R

L×L where

U lk
n =

{
‖jn − y(l)‖2 − ‖jn − y(k)‖2 if l = ln

0 otherwise.

A strategy σ is calibrated with respect to L if Ūn converges to the negative
orthant. Indeed for every l, k ∈ L, the (l, k)-th coordinate of Ūn is

Ū lk
n =

|Nn(l)|
n

∑
m∈Nn(l)

‖jm − y(l)‖2 − ‖jm − y(k)‖2
|Nn(l)|

=
|Nn(l)|

n

(
‖̄n(l)− y(l)‖2 − ‖̄n(l)− y(k)‖2

)
.

Denote by Ū+
n :=

{
max

(
0, Ū lk

n

)}
l,k∈L =: Ūn − Ū−

n the positive part of

Ūn and by λn ∈ ∆(L) any invariant measure of Ū+
n . We recall that λ is an

invariant measure of a nonnegative matrix U if, for every l ∈ L,
∑

k∈L
λ(k)Ukl = λ(l)

∑

k∈L
U lk.
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Its existence is a consequence of Perron-Frobenius Theorem, see e.g. Seneta
[28].

Define the strategy σ of the predictor inductively as follows. Choose
arbitrarily σ(∅), the law of the first action and at stage n+ 1, play accord-
ingly to any invariant measure of Ū+

n . We claim that this strategy is an
approachability strategy of the negative orthant of RL×L because it satisfies
Blackwell [5]’s sufficient condition:

∀n ∈ N, 〈Ūn − Ū−
n ,Eλn

[Un+1|jn+1]− Ū−
n 〉 ≤ 0.

Indeed, for every possible jn+1 ∈ J :

〈Ū+
n ,Eλn

[Un+1|jn+1]〉 = 0 = 〈Ū+
n , Ū−

n 〉, (3)

where the second equality follows from the definition of positive and negative
parts.

Consider the first equality. The (l, k)-th coordinate of Eλn
[Un+1|jn+1] is

λn(l)
(
‖jn+1 − y(l)‖2 − ‖jn+1 − y(k)‖2

)
, therefore the coefficient of ‖jn+1−

y(l)‖2 in the first term is λn(l)
∑

k∈L
(
Ū+
n

)lk −∑k∈L λn(k)
(
Ū+
n

)kl
. This

equals 0 since λn is an invariant measure of Ū+
n .

Blackwell [5]’s result also implies that Eσ,τ

[
‖Ū+

n ‖
]
≤ 2Mnn

−1/2 for any

strategy τ of Nature where M2
n = supm≤n Eσ,τ

[
‖Um‖2

]
= 4L. �

Interestingly, the strategy σ we constructed in this proof is actually
internally consistent in the game with action spaces L and J and payoffs
defined by ρ(l, j) = −‖j − y(l)‖2.

Corollary 1.6 For any finite grid Y of ∆(J ), there exists σ, a calibrated
strategy with respect to Y, such that for every strategy τ of Nature, with Pσ,τ

probability at least 1− δ:

max
l,k∈L

|Nn(l)|
n

(
‖̄n(l)− y(l)‖2 − ‖̄n(l)− y(k)‖2

)
≤ 2Mn√

n
+Θn,
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where Θn = min

{
vn√
n

√
2 ln

(
L2

δ

)
+

2

3

Kn

n
ln

(
L2

δ

)
,
Kn√
n

√
2 ln

(
L2

δ

)}
;

Mn = sup
m≤n

√
Eσ,τ

[
‖Um‖2

]
≤ 3

√
L;

v2n = sup
m≤n

sup
l,k∈L

Eσ,τ

[∣∣∣U lk
n − Eσ,τ

[
U lk
n

]∣∣∣
2
]
≤ 3;

Kn = sup
m≤n

sup
l,k∈L

∣∣∣U lk
n − Eσ,τ

[
U lk
n

]∣∣∣ ≤ 3.

Proof. Proposition 1.5 implies that Eσ,τ

[
Ūn

]
≤ 2Mnn

−1/2. Hoeffding-
Azuma’s inequality (see Lemma 3.4 below in section 3.3.1) implies that
with probability at least 1− δ :

Ū lk
n − Eσ,τ

[
Ū lk
n

]
≤ Kn√

n

√
2 ln

(
1

δ

)
.

Freedman’s inequality (an analogue of Bernstein’s inequality for martingale
see Freedman [15], Proposition 2.1 or Cesa-Bianchi & Lugosi [9], Lemma
A.8) implies that with probability at least 1− δ :

Ū lk
n − Eσ,τ

[
Ū lk
n

]
≤ vn√

n

√
2 ln

(
1

δ

)
+

2

3

Kn

n
ln

(
1

δ

)
.

The result is a consequence of these two inequalities and of Proposition 1.5.
�

The definition of Θn as a minimum (and the use of Freedman’s inequal-
ity) will be useful when we will refer to this corollary in the subsequent

sections. Obviously, in the current framework, Θn ≤ 3√
n

√
2 ln

(
L2

δ

)
.

1.2.2 Back to the Näıve Algorithm

Let us now go back to the construction of ε-consistent strategies in Γ. Com-
pute σ, a calibrated strategy with respect to a δ-grid Y = {y(l); l ∈ L}
of ∆(J ) in an abstract calibration game Γc. Whenever the decision maker
(seen as a predictor) should choose the action l in Γc, then he (seen as a
forecaster) chooses i(l) ∈ BR(y(l)) in the original game Γ. We claim that
this defines a strategy σε which is 2ε-internally consistent.

9



Proposition 1.7 (Foster & Vohra [13]) For every ε > 0, the strategy σε
described above is 2ε-internally consistent.

Proof. By definition of a calibrated strategy, for every η > 0, there exists
with probability 1, an integer N ∈ N such that for every l, k ∈ L and for
every n ≥ N :

|Nn(l)|
n

(
‖̄n(l)− y(l)‖2 − ‖̄n(l)− y(k)‖2

)
≤ η.

Since {y(k); k ∈ L} is a δ-grid of ∆(J ), for every l ∈ L and every n ∈ N,
there exists k ∈ L such that ‖̄n(l)− y(k)‖2 ≤ δ2, hence ‖̄n(l)− y(l)‖2 ≤
δ2 + η n

|Nn(l)| . Therefore, since i(l) ∈ BR(y(l)):

|Nn(l)|
n

≥ η

δ2
⇒ ‖̄n(l)− y(l)‖2 ≤ 2δ2 ⇒ ρ(k, ̄n(l)) − ρ(i(l), ̄n(l)) ≤ 2ε,

for every k ∈ I, l ∈ L and n ≥ N . The (i, k)-th coordinate of R̄n satisfies:

|Nn(i)|
n

(
R̄ik

n − 2ε

)
≤ 1

n

∑

m∈Nn(i)

(
ρ(k, jm)− ρ(i, jm)− 2ε

)

=
1

n

∑

l:i(l)=i

∑

m∈Nn(l)

(
ρ(k, jm)− ρ(i, jm)− 2ε

)

=
∑

l:i(l)=i

|Nn(l)|
n

(
ρ(k, ̄n(l))− ρ(i(l), ̄n(l))− 2ε

)
.

Recall that either |Nn(l)|
n ≥ η

δ2
and ρ(k, ̄n(i)) − ρ(i(l), ̄n(l)) − 2ε ≤ 0, or

|Nn(l)|
n < η

δ2 . Since ρ is bounded (by Mρ > 0), then :

|Nn(i)|
n

(
R̄ik

n − 2ε

)
≤ η

2MρL

δ2
, ∀i ∈ I, ∀k ∈ I, ∀n ≥ N,

which implies that σ is 2ε-internally consistent. �

Remark 1.8 This näıve algorithm only achieves ε-consistency and Propo-
sition 1.5 implies that

Eσ,τ

[
max
i,k∈I

(
R̄ik

n − ε
)]

≤ O

(
1√
n

)
.

The constants depend drastically on L, which is in the current framework
in the order of εJ , therefore it is not possible to obtain 0-internally con-
sistency at the same rate with a classic doubling trick argument (i.e. use a
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2−k-internally consistent strategy on Nk stages, then switch to a 2−(k+1)-
internally consistent strategy, and so on, see e.g. Sorin [29], Proposition 3.2
page 56).

Moreover, since this algorithm is based on calibration, it computes at
each stage an invariant measure of a non-negative matrix; this can be done,
using Gaussian elimination, with O

(
L3
)
operations, thus this algorithm is

far from being efficient (since its computational complexity is polynomial in
ε and exponential in J). There exist 0-internally consistent algorithms, see
e.g. the reduction of Blum & Mansour [7], that do not have this exponential
dependency in the complexity or in the constants.

On the bright side, this algorithm can be modified to obtain 0-consistency
at optimal rate; obviously, it will still not be efficient with full monitoring
(see section 1.4). However, it has to be understood as a tool that can be
easily adapted in order to exhibit, in the partial monitoring case, an optimal
internal consistent algorithm (see section 2.3). And in that last framework,
it is not clear that we can remove the dependency on L (especially for the
internal regret).

1.3 Calibration and Laguerre diagram

Given a finite subset of Voronöı sites {z(l) ∈ R
d; l ∈ L}, the l-th Voronöı cell

V (l), or the cell associated to z(l), is the set of points closer to z(l) than to
any other z(k):

V (l) =
{
Z ∈ R

d; ‖Z − z(l)‖2 ≤ ‖Z − z(k)‖2 , ∀k ∈ L
}
,

where ‖ · ‖ is the Euclidian norm of R
d. Each V (l) is a polyhedron (as

the intersection of a finite number of half-spaces) and {V (l); l ∈ L} is a
covering of R

d. A calibrated strategy with respect to {z(l); l ∈ L} has
the property that for every l ∈ L, the frequency of l goes to zero, or the
empirical distribution of states on Nn(l), converges to V (l).

The näıve algorithm uses the Voronöı diagram associated to an arbitrary
grid of ∆(J ) and assigns to every small cell an ε-best reply to every point
of it; this is possible by continuity of ρ. A calibrated strategy ensures that
̄n(l) converges to V (l) (or the frequency of l is small), thus choosing i(l)
on Nn(l) was indeed a ε-best response to ̄n(l). With this approach, we
cannot construct immediately 0-internally consistent strategy. Indeed, this
would require that for every l ∈ L there exists a 0-best response i(l) to every
element y in V (l). However, there is no reason for them to share a common
best response because {z(l); l ∈ L} is chosen arbitrarily.
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On the other hand, consider the simple game called Matching Penny.
Both players have two action Heads and Tails, so ∆(J ) = ∆(I) = [0, 1],
seen as the probability of choosing T . The payoff is 1 if both players choose
the same action and -1 otherwise. Action H (resp. T ) is a best response for
Player 1 to any y in [0, 1/2] (resp. in [1/2, 1]). These two segments are exactly
the cells of the Voronöı diagram associated to {y(1) = 1/4, y(2) = 3/4},
therefore, performing a calibrated strategy with respect to {y(1), y(2)} and
playing H (resp. T ) on the stages of type 1 (resp. 2) induces a 0-internally
consistent strategy of Player 1.

This idea can be generalized to any game. Indeed, by Lemma 1.10
stated below, ∆(J ) can be decomposed into polytopial best-response areas
(a polytope is the convex hull of a finite number of points, its vertices).
Given such a polytopial decomposition, one can find a finer Voronöı diagram
(i.e. any best-response area is an union of Voronöı cells) and finally use a
calibrated strategy to ensure convergence with respect to this diagram.

Although the construction of such a diagram is quite simple in R, diffi-
culties arise in higher dimension – even in R

2. More importantly, the number
of Voronöı sites can depend not only on the number of defining hyperplanes
but also on the angles between them (thus being arbitrarily large even with a
few hyperplanes). On the other hand, the description of a Laguerre diagram
– this concept generalizes Voronöı diagrams – that refines a polytopial de-
composition is quite simple and is described in Proposition 1.11 below. For
this reason, we will consider from now on this kind of diagram (sometimes
also called Power diagram) .

Given a subset of Laguerre sites {z(l) ∈ R
d; l ∈ L} and weights {ω(l) ∈

R; l ∈ L}, the l-th Laguerre cell P (l) is defined by:

P (l) =
{
Z ∈ R

d; ‖Z − z(l)‖2 − ω(l) ≤ ‖Z − z(k)‖2 − ω(k), ∀k ∈ L
}
,

where ‖ · ‖ is the Euclidian norm of R
d. Each P (l) is a polyhedron and

P = {P (l); l ∈ L} is a covering of Rd.

Definition 1.9 A covering K = {Ki; i ∈ I} of a polytope K with non-
empty interior is a polytopial complex of K if for every i, j in the finite set
I, Ki is a polytope with non-empty interior and the polytope Ki ∩ Kj has
empty interior.

This definition extends naturally to a polytope K with empty interior, if we
consider the affine subspace generated by K.
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Lemma 1.10 There exists a subset I ′ ⊂ I such that {Bi; i ∈ I ′} is a
polytopial complex of ∆(J ), where Bi is the i-th best response area defined
by

Bi = {y ∈ ∆(J ); i ∈ BR(y)} = BR−1(i).

Proof. For any y ∈ ∆(J ), ρ(·, y) is linear on ∆(I) thus it attains its
maximum on I and

⋃
i∈I B

i = ∆(J ). Without loss of generality, we can
assume that each Bi is non-empty, otherwise we drop the index i. For every
i, k ∈ I, ρ(i, ·) − ρ(k, ·) is linear on ∆(J ) therefore Bi is a polytope; it is
indeed defined by

Bi = {y ∈ ∆(J ); ρ(i, y) ≥ ρ(k, y), ∀k ∈ I}
=

⋂

k∈I
{y ∈ R

J ; ρ(i, y)− ρ(k, y) ≥ 0} ∩∆(J ),

so it is the intersection of a finite number of half-spaces and the polytope
∆(J ).

Moreover if Bik
0 , the interior of Bi ∩Bk, is non-empty then ρ(i, ·) equals

ρ(k, ·) on the subspace generated by Bik
0 and therefore on ∆(J ); conse-

quently Bi = Bk. Denote by I ′ any subset of I such that for every i ∈ I,
there exists exactly one i′ ∈ I ′ such that Bi = Bi′ 6= ∅, then {Bi; i ∈ I ′} is
a polytopial complex of ∆(J ). �

Proposition 1.11 Let K = {Ki; i ∈ I} be a polytopial complex of a
polytope K ⊂ R

d. Then there exists {z(l) ∈ R
d, ω(l) ∈ R; l ∈ L}, a

finite set of Laguerre sites and weights, such that the Laguerre diagram
P = {P (l); l ∈ L} refines K, i.e. every Ki is a finite union of cells.

Proof. Let K = {Ki; i ∈ I} be a polytopial complex of K ⊂ R
d. Each Ki

is a polytope, thus defined by a finite number of hyperplanes. Denote by
H = {Ht; t ∈ T } the set of all defining hyperplanes (the finite cardinality
of T is denoted by T ) and K̂ = {K̂ l; l ∈ L} the finest decomposition of
R
d induced by H – usually called arrangement of hyperplanes – which by

definition refines K. Theorem 3 and Corollary 1 of Aurenhammer [2] imply
that K̂ is the Laguerre diagram associated to some {z(l), ω(l); l ∈ L} whose
exact computation requires the following notation:

i) for every t ∈ T , let ct ∈ R
d and bt ∈ R (which can, without loss of

generality, be assumed to be non zero) such that

Ht =
{
X ∈ R

d; 〈X, ct〉 = bt

}
.
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ii) For every l ∈ L and t ∈ T , σt(l) = 1 if the origin of Rd and K̂ l are in
the same halfspace defined by Ht and σt(l) = −1 otherwise.

iii) For every l ∈ L, we define :

z(l) =

∑
t∈T σt(l)ct

T
and ω(l) = ‖z(l)‖2 + 2

∑
t∈T σt(l)bt

T
. (4)

Note that one can add the same constant to every weight ω(l). �

Buck [8] proved that the number of cells defined by T hyperplanes in R
d

is bounded by
∑d

k=0

(
T
k

)
=: φ(T, d), where

(
T
k

)
is the binomial coefficient, T

choose k. Moreover, T is smaller than I(I−1)/2 (in the case where each Ki

has a non-empty intersection with every other polytope), so L ≤ φ
(
I2

2 , d
)
.

If d ≥ n, then φ(n, d) = 2n. Pascal’s rule and a simple induction imply
that, for every n, d ∈ N, φ(n, d) ≤ (n + 1)d. Finally, for any n ≥ 2d, by
noticing that

(n
d

)
+
( n
d−1

)
+ . . .+

(n
0

)
(n
d

) ≤
d∑

m=0

(
d

n− d+ 1

)m

≤
∞∑

m=0

(
d

n− d+ 1

)m

which equals n−d+1
n−2d+1 ≤ 1+d, we deduce that φ(n, d) ≤ (1+d)

(
n
d

)
≤ (1+d)n

d

d! .

Lemma 1.12 Let P = {P (l); l ∈ L} be a Laguerre diagram associated to
the set of sites and weights {z(l) ∈ R

d, ω(l) ∈ R; l ∈ L}. Then, there exists
a positive constant MP > 0 such that for every Z ∈ R

d if

‖Z − z(l)‖2 − ω(l) ≤ ‖Z − z(k)‖2 − ω(k) + ε, ∀l, k ∈ L (5)

then d (Z,P (l)) is smaller than MP ε.

The proof can be found in Appendix A.1; the constant MP depends on the
Laguerre diagram, and more precisely on the inner products 〈ct, ct′〉, for
every t, t′ ∈ T .

1.4 Optimal algorithm with full monitoring

We reformulate Proposition 1.5 and Corollary 1.6 in terms of Laguerre dia-
gram.
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Theorem 1.13 For any set of sites and weights {y(l) ∈ R
J , ω(l) ∈ R; l ∈

L} there exists a strategy σ of the predictor such that for every strategy τ of
Nature:

Eσ,τ

[∥∥∥
(
Ūω,n

)+∥∥∥
]
≤ O

(
1√
n

)
where Uω,n is defined by :

U lk
ω,n =

{ [
‖jn − y(l)‖2 − ω(l)

]
−
[
‖jn − y(k)‖2 − ω(k)

]
if l = ln

0 otherwise

Corollary 1.14 For any set of sites and weights {y(l) ∈ R
J , ω(l) ∈ R; l ∈

L}, there exists a strategy σ of the predictor such that, for every strategy τ
of Nature, with Pσ,τ probability at least 1− δ, and l, l ∈ L:

|Nn(l)|
n

([
‖̄n(l)− y(l)‖2 − ω(l)

]
−
[
‖̄n(l)− y(k)‖2 − ω(k)

])
≤ 2Mn√

n
+Θn

where Mn = sup
m≤n

√
Eσ,τ

[
‖Uω,m‖2

]
≤ 4

√
L‖(b, c)‖∞;

Θn = min

{
vn√
n

√
2 ln

(
L2

δ

)
+

2

3

Kn

n
ln

(
L2

δ

)
,
Kn√
n

√
2 ln

(
L2

δ

)}
;

v2n = sup
m≤n

sup
l,k∈L

Eσ,τ

[∣∣∣U lk
ω,m − Eσ,τ

[
U lk
ω,m

]∣∣∣
2
]
≤ 4‖(b, c)‖2∞;

Kn = sup
m≤n

sup
l,k∈L

∣∣∣U lk
ω,m − Eσ,τ

[
U lk
ω,m

]∣∣∣ ≤ 4‖(b, c)‖∞,

‖(b, c)‖∞ = sup
t∈T

‖ct‖+ sup
t∈T

|bt|.

Such a strategy is said to be calibrated with respect to {y(l), ω(l); l ∈ L}.

The proof are identical to the one of Proposition 1.5 and Corollary 1.6. We
have now the material to construct our new tool algorithm:

Theorem 1.15 There exists an internally consistent strategy σ of the fore-
caster such that for every strategy τ of Nature and every n ∈ N, with Pσ,τ

probability greater than 1− δ:

max
i,k∈I

R̄ik
n ≤ O



√

ln
(
1
δ

)

n


 . (6)
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Proof. The existence of a Laguerre Diagram {Y (l); l ∈ L} associated to a
finite set {y(l) ∈ R

J , ω(l) ∈ R; l ∈ L} that refines {Bi; i ∈ I} is implied
by Lemma 1.10 and Proposition 1.11. So, for every l ∈ L, there exists i(l)
such that Y (l) ⊂ Bi(l). As in the näıve algorithm, the strategy σ of the
decision maker is constructed through a strategy σ̂ calibrated with respect
to {y(l), ω(l); l ∈ L}. Whenever, accordingly to σ̂, the decision maker (seen
as a predictor) should play l in Γc, then he (seen as a forecaster) plays i(l)
in Γ.

If we denote by ̃n(l) the projection of ̄n(l) onto Y (l) then:

R̄ik
n =

∑

l:i(l)=i

|Nn(l)|
n

(
ρ
(
k, ̄n(l)

)
− ρ
(
i(l), ̄n(l)

))

≤
∑

l:i(l)=i

|Nn(l)|
n

([
ρ
(
k, ̄n(l)

)
− ρ
(
k, ̃n(l)

)]

+

[
ρ
(
i(l), ̃n(l)

)
− ρ
(
i(l), ̄n(l)

)])

≤
∑

l:i(l)=i

|Nn(l)|
n

(
2Mρ ‖̃n(l)− ̄n(l)‖

)

≤ (2MρMPL) max
l,k∈L

|Nn(l)|
n

([
‖̄n(l)− y(l)‖2 − ω(l)

]

−
[
‖̄n(l)− y(k)‖2 − ω(k)

])

where the second inequality is due to the fact that i(l) ∈ BR(̃n(l)) and
the third to the fact that ρ is Mρ-Lipschitz. The fourth inequality is a
consequence of Lemma 1.12.

Corollary 1.14 yields that for every strategy τ of Nature, with Pσ,τ prob-
ability at least 1− δ:

max
l,k

Nn(l)

n

([
‖̄n(l)− y(l)‖2 − ω(l)

]
−
[
‖̄n(l)− y(k)‖2 − ω(k)

])
≤

8
√
L‖(b, c)‖∞√

n
+

4‖(b, c)‖∞√
n

√
2 ln

(
L2

δ

)
,

therefore with Ω0 = 16MρMPL
3/2‖(b, c)‖∞ and Ω1 = 8MρMPL

1/2‖(b, c)‖∞
one has that for every strategy of Nature and with probability at least 1−δ:

max
i,k∈I

R̄ik
n = max

i,k∈I
|Nn(i)|

n

(
ρ
(
k, ̄n(i)

)
−ρ
(
i, ̄n(i)

))
≤ Ω0√

n
+

Ω1√
n

√
2 ln

(
L2

δ

)
.
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Remark 1.16 Theorem 1.15 is already well-known. The construction of
this internally consistent strategy relies on Theorem 1.13, which is implied
by the existence of internally consistent strategies... Moreover, as mentioned
before, it is far from being efficient since L – that enters both in the compu-
tational complexity and in the constant – is polynomial in IJ . There exist
efficient algorithms, see e.g. Foster & Vohra [13] or Blum & Mansour [7].

However, the calibration is defined in the space of Nature’s action, where
real payoffs are irrelevant; they are only used to decide which action is as-
sociated to each prediction. Therefore the algorithm does not require that
the forecaster observes his real payoffs, as long as he knows what is the best
response to his information (Nature’s action in this case). This is precisely
why our algorithm can be generalized to the partial monitoring framework.

The polytopial decomposition of ∆(J ) induced by {bt, ct; t ∈ T } is
exactly the same as the one induced by {γb(t), γc(t); t ∈ T } for any γ > 0.
Thus, by choosing γ small enough, ‖(b, c)‖∞ — and therefore the constants
in Corollary 1.14 — can be arbitrarily small (i.e. multiplied by any γ > 0).

However, these two Laguerre diagrams are associated to the sets of sites
and weights L(1) and L(γ), where L(γ) = {γz(l), γω(l) + γ2‖z(l)‖2 −
γ‖z(l)‖; l ∈ L}. If L(γ) is used instead of L(1), then the constant MP

defined in Lemma 1.12 should be divided by γ. So, as expected, the con-
stants in the proof of Theorem 1.15 do not depend on γ. From now on, we
will assume that ‖(b, c)‖∞ is smaller than 1.

2 Partial monitoring

2.1 Definitions

In the partial monitoring framework, the decision maker does not observe
Nature’s actions. There is a finite set of signals S (of cardinality S) such
that, at stage n the forecaster receives only a random signal sn ∈ S. Its law
is s(in, jn) where s is a mapping from I ×J to ∆(S), known by the decision
maker.

We define s from ∆(J ) to ∆(S)I by s(y) =
(
Ey [s(i, j)]

)
i∈I

∈ ∆(S)I .
Any element of ∆(S)I is called a flag (it is a vector of probability distribu-
tions over S) and we will denote by F the range of s. Given a flag f in F ,
the decision maker cannot distinguish between any different mixed actions
y and y′ in ∆(J ) that generate f , i.e. such that s(y) = s(y′) = f . Thus s
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is the maximal informative mapping about Nature’s action. We denote by
fn = s(jn) the (unobserved) flag of stage n ∈ N.

Example 2.1 Label efficient prediction (Example 6.8 in Cesa-Bianchi &
Lugosi [9]):

Consider the following game. Nature chooses an outcome G or B and the
forecaster can either observe the actual outcome (action o) or choose to not
observe it and pick a label g or b. His payoff is equal to 1 if he chooses the
right label and otherwise is equal to 0. Payoffs and laws of signals are defined
by the following matrices (where a, b and c are three different probabilities
over a finite given set S).

G B G B
o 0 0 o a b

Payoffs: g 0 1 and signals: g c c
b 1 0 b c c

Action G, whose best response is g, generates the flag (a, c, c) and action
B, whose best response is b, generates the flag (b, c, c). In order to distin-
guish between those two actions, the forecaster needs to know s(o, y) although
action o is never a best response (but is purely informative).

The worst payoff compatible with x and f ∈ F is defined by:

W (x, f) = inf
y∈s−1(f)

ρ(x, y), (7)

and W is extended to ∆(S)I by W (x, f) = W (x,ΠF (f)).

As in the full monitoring case, we define, for every ε ≥ 0, the ε-best
response multivalued mapping BRε : ∆(S)I ⇉ ∆(I) by :

BRε(f) =

{
x ∈ ∆(I); W (x, f) ≥ sup

z∈∆(I)
W (z, f)− ε

}
.

Given a flag f ∈ ∆(S)I , the function W (·, f) may not be linear so the best
response of the forecaster might not contain any element of I.

Example 2.2 Matching Penny in the dark:
Consider the Matching Penny game where the forecaster does not observe

the coin but always receives the same signal c: every choice of Nature gener-
ates the same flag (c, c). For every x ∈ [0, 1] = ∆({H,T}) – the probability
of playing T –, the worst compatible payoff W (x, (c, c)) = miny∈∆(J) ρ(x, y)
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is equal to −|1 − 2x| thus is non-negative only for x = 1/2. Therefore the
only best response of the forecaster is to play 1

2H+ 1
2T , while actions H and

T give the worst payoff of -1.

The definition of external consistency and especially equation (1) extend
naturally to this framework: a strategy of the decision maker is externally
consistent if he could not have improved his payoff by knowing, before the
beginning of the game, the average flag:

Definition 2.3 (Rustichini [27]) A strategy σ of the forecaster is exter-
nally consistent if for every strategy τ of Nature:

lim sup
n→+∞

max
z∈∆(I)

W (z, f̄n)− ρ̄n ≤ 0, Pσ,τ -as.

The main issue is the definition of internally consistency. In the full
monitoring case, the forecaster has no internal regret if, for every i ∈ I, the
action i is a best-response to the empirical distribution of Nature’s actions,
on the set of stages where i was actually chosen. In the partial monitoring
framework, the decision maker’s action should be a best response to the
average flag. Since it might not belong to I but rather to ∆(I), we will
(following Lehrer & Solan [21]) distinguish the stages not as a function of
the action actually chosen, but as a function of its law.

We make an extra assumption on the characterization of the forecaster’s
strategy: it can be generated by a finite family of mixed actions {x(l) ∈
∆(I); l ∈ L} such that, at stage n ∈ N, the forecaster chooses a type ln
and, given that type, the law of his action in is x(ln) ∈ ∆(I).

Denote by Nn(l) = {m ∈ {1, . . . , n}; lm = l} the set of stages before
the n-th whose type is l. Roughly speaking, a strategy will be ε-internally
consistent (with respect to the set L) if, for every l ∈ L, x(l) is an ε-best
response to f̄n(l), the average flag on Nn(l) (or the frequency of the type l,
|Nn(l)|/n, converges to zero).

The finiteness of L is required to get rid of strategies that trivially insure
that every frequency converges to zero (for instance by choosing only once
every mixed action). The choice of {x(l); l ∈ L} and the description of the
strategies are justified more precisely below by Remark 2.7 in section 2.3.

Definition 2.4 ( Lehrer & Solan [21]) For every n ∈ N and every l ∈
L, the average internal regret of type l at stage n is

Rn(l) = sup
x∈∆(I)

[
W (x, f̄n(l))− ρ̄n(l)

]
.
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A strategy σ of the forecaster is (L, ε)-internally consistent if for every
strategy τ of Nature:

lim sup
n→+∞

|Nn(l)|
n

(
Rn(l)− ε

)
≤ 0, ∀l ∈ L, Pσ,τ -as.

In words, a strategy is (L, ε)-internally consistent if, for every l ∈ L, the
forecaster could not have had, for sure, a better payoff (of at least ε) if he
had known, before the beginning of the game, the average flag on Nn(l) (or
the frequency of l is small).

2.2 A näıve algorithm

Theorem 2.5 ( Lehrer & Solan [21]) For every ε > 0, there exist (L, ε)-
internally consistent strategies.

Lehrer & Solan [21] proved the existence and constructed such strategies
and an alternative, yet close, algorithm has been provided by Perchet [24].
The main ideas behind them are similar to the full monitoring case so we
will quickly describe them. For simplicity, we assume in the following sketch
of the proof, that the decision maker fully observes the sequence of flags
fn = s(jn) ∈ ∆(S)I .

Recall that W is continuous (see Lugosi, Mannor & Stoltz [23], Propo-
sition A.1), so for every ε > 0 there exist two finite families G = {f(l) ∈
∆(S)I ; l ∈ L}, a δ-grid of ∆(S)I , and X = {x(l) ∈ ∆(I); l ∈ L} such that
if f is δ-close to f(l) and x is δ-close to x(l) then x belongs to BRε (f). A
calibrated algorithm ensures that:

i) f̄n(l) is asymptotically δ-close to f(l) - because it is closer to f(l) than
to every other f(k);

ii) ı̄n(l) converges to x(l) as soon as |Nn(l)| is big enough - because on
Nn(l) the choices of action of the decision maker are independent and
identically distributed accordingly to x(l);

iii) ρ̄n(l) converges to ρ(x(l), ̄n(l)) which is greater than W
(
x(l), f̄n(l)

)

— because ̄n(l) generates the flag f̄n(l).

Therefore, W
(
x(l), f̄n(l)

)
is close to W

(
x(l), f(l)

)
which is greater than

W
(
z, f(l)

)
for any z ∈ ∆(I). As a consequence ρ̄n(l) is asymptotically
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greater (up to some ε > 0) than supz W
(
z, f̄n(l)

)
, as long as |Nn(l)| is big

enough.

The difference between the two algorithm lies in the construction of a
calibrated strategy. On one hand, the algorithm of Lehrer & Solan [21]
reduces to Blackwell’s approachability of some convex set C ⊂ R

LSI ; it
therefore requires to solve at each stage a linear program of size polynomial
in εSI , after a projection on C. On the other hand, the algorithm of Perchet
[24] is based on the construction given in section 1.2.1; it solves at each stage
a system of linear equation of size also polynomial in εSI .

The conclusions of the full monitoring case also apply here: these highly
non-efficient algorithms cannot be used directly to construct (L, 0)-internally
consistent strategy with optimal rates since the constants depend drasti-
cally on ε . We will rather prove that one can define wisely once for all
{f(l), ω(l); l ∈ L} and {x(l); l ∈ L} (see Proposition 2.6 and Proposition
1.11) so that x(l) ∈ ∆(I) is a 0-best response to any flag f in P (l), the
Laguerre cell associated to f(l) and ω(l).

The strategy associated with these choices will be (L, 0)-internally con-
sistent, with an optimal rate of convergence and a computational complexity
polynomial in L.

2.3 Optimal algorithms

As in the full monitoring framework (cf Lemma 1.10), we define for every
x ∈ ∆(I) the x-best response area Bx as the set of flags to which x is a best
response :

Bx =
{
f ∈ ∆(S)I ; x ∈ BR(f)

}
= BR−1(x).

Since W is continuous, the family {Bx; x ∈ ∆(I)} is a covering of ∆(S)I .
However, one of its finite subsets can be decomposed into a finite polytopial
complex:

Proposition 2.6 There exists a finite family X = {x(l) ∈ ∆(I); l ∈ L}
such that the family

{
Bx(l); l ∈ L

}
of associated best response area can be

further subdivided into a polytopial complex of ∆(S)I .

The rather technical proof can be found in Appendix A.2. In this framework
and because of the lack of linearity of W , any Bx(l) might not be convex nor
connected. However, each one of them is a finite union of polytopes and the
family of all those polytopes is a complex of ∆(S)I .
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Remark 2.7 As a consequence of Proposition 2.6, there exists a finite set
X ⊂ ∆(I) that contains a best response to any flag f . In particular, if the
decision maker could observe the flag fn before choosing his action xn then,
at every stage, xn would be in X. So in the description of the strategies
of the forecaster, the finite set {x(l); l ∈ L} = X is in fact intrinsic i.e.

determined by the description of the payoff and signal functions.

As a consequence of this remark, mentioning L is irrelevant; so we will,
from now on, simply speak of internally consistent strategies.

2.3.1 Outcome dependent signals

In this section, we assume that the laws of the signal received by the decision
maker are independent of his action. Formally, for every i, i′ ∈ I, the two
mappings s(i, ·) and s(i′, ·) are equal. Therefore, F (the set of realizable
flags) can be seen as a polytopial subset of ∆(S). Proposition 2.6 holds in
this framework, hence there exists a finite family {x(l); l ∈ L} such that
for any flag f ∈ F , there is some l ∈ L such that x(l) is a best-reply to f .
Moreover, for a fixed l ∈ L, the set of such flags is a polytope.

Theorem 2.8 There exists an internally consistent strategy σ such that for
every strategy τ of Nature, with Pσ,τ -probability at least 1− δ:

sup
l∈L

|Nn(l)|
n

Rn(l) ≤ O



√

ln
(
1
δ

)

n


 . (8)

Proof. Propositions 1.11 and 2.6 imply the existence of two finite families
{x(l); l ∈ L} and {f(l), ω(l); l ∈ L} such that x(l) is a best response to
any f in P (l), the Laguerre cell associated to f(l) and ω(l). Assume, for the
moment, that for any two different l and k in L, the probability measures
x(l) and x(k) are different.

The strategy σ is defined as follows. Compute a strategy σ̂ calibrated
with respect to {f(l), ω(l); l ∈ L}. When the decision maker (seen as a pre-
dictor) should choose l ∈ L accordingly to σ̂, then he (seen as a forecaster)
plays accordingly to x(l) in the original game. Corollary 1.14 (with the as-
sumption that ‖(b, c)‖∞ is smaller than 1) implies that with Pσ,τ probability
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at least 1− δ1:

max
l∈L

|Nn(l)|
n

([
‖s̄n(l)− f(l)‖2 − ω(l)

]
−
[
‖s̄n(l)− f(k)‖2 − ω(k)

])
≤

8
√
L√
n

+
4√
n

√
2 ln

(
L2

δ1

)
,

therefore combined with Lemma 1.12, this yields that :

max
l∈L

|Nn(l)|
n

∥∥∥s̄n(l)− f̃n(l)
∥∥∥ ≤ 8MP

√
L√

n
+

4MP√
n

√
2 ln

(
L2

δ1

)
, (9)

where f̃n(l) is the projection of s̄n(l) onto P (l).

Hoeffding-Azuma’s inequality implies that with Pσ,τ probability at least
1− δ2:

max
l∈L

|Nn(l)|
n

∥∥∥∥s̄n(l)− f̄n(l)

∥∥∥∥ ≤

√√√√2 ln
(
2SL
δ2

)

n
(10)

and with probability at least 1− δ3 :

max
l∈L

|Nn(l)|
n

∣∣∣∣ρ̄n(l)− ρ(x(l), ̄n(l))

∣∣∣∣ ≤ Mρ

√√√√2 ln
(
2L
δ3

)

n
. (11)

W isMW -Lipschitz in f (see Lugosi, Mannor & Stoltz [23]) and s (̄n(l)) =
f̄n(l) therefore:

ρ̄n(l) ≥ W
(
x(l), f̃n(l)

)
−
∣∣∣ρ̄n(l)− ρ(x(l), ̄n(l))

∣∣∣−MW

∥∥∥f̄n(l)− f̃n(l)
∥∥∥ (12)

and maxx∈∆(I)W
(
x, f̄n(l)

)
is smaller than

max
x∈∆(I)

W
(
x, f̃n(l)

)
+MW

(∥∥∥s̄n(l)− f̄n(l)
∥∥∥+

∥∥∥s̄n(l)− f̃n(l)
∥∥∥
)

= W
(
x(l), f̃n(l)

)
+MW

(∥∥∥s̄n(l)− f̄n(l)
∥∥∥+

∥∥∥s̄n(l)− f̃n(l)
∥∥∥
)

(13)

since x(l) is a best response to f̃n(l). Equations (12) and (13) yield

Rn(l) ≤ 2MW

∥∥∥s̄n(l)− f̄n(l)
∥∥∥+2MW

∥∥∥s̄n(l)− f̃n(l)
∥∥∥+

∣∣∣ρ̄n(l)−ρ(x(l), ̄n(l))
∣∣∣.

(14)
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Combining equations (9), (10), (11) and (14) gives that with probability at
least 1− δ, if we define Ω0 = 16MPMW

√
L, Ω1 = (2MW + 8MWMP +Mρ)

and Ω2 = L (L+ 2S + 2):

sup
l∈L

|Nn(l)|
n

Rn(l) ≤
Ω0√
n
+

Ω1√
n

√
2 ln

(
2Ω2

δ

)
(15)

If there exist l and k such that x(l) = x(k), then although the decision
maker made two different predictions f(l) or f(k), he played accordingly to
the same probability x(l) = x(k). Define Nn(l, k) as the set of stages where
the decision maker predicts either f(l) or f(k) up to stage n, f̄n(l, k) as the
average flag on this set, ρ̄n(l, k) as the average payoff and Rn(l, k) as the
regret. Since W (x, ·) is convex for every x ∈ ∆(I), then maxx∈∆(I)W (x, ·)
is also convex so |Nn(l,k)|

n maxx∈∆(I)W (x, f̄n(l, k)) is smaller than

|Nn(l)|
n

max
x∈∆(I)

W (x, f̄n(l)) +
|Nn(k)|

n
max

x∈∆(I)
W (x, f̄n(k))

and − |Nn(l, k)|
n

ρ̄n(l, k) = −|Nn(l)|
n

ρ̄n(l)−
|Nn(k)|

n
ρ̄n(k)

so we still have

|Nn(l, k)|
n

Rn(l, k) ≤ O



√

ln
(
1
δ

)

n


 .

Hence the previous bound holds up to a factor L. �

Remark 2.9 Lugosi, Mannor & Stoltz [23] have constructed an externally
consistent strategy, i.e. such that, asymptotically, for any strategy τ of Na-
ture:

ρ̄n ≥ max
z∈∆(I)

W
(
z, f̄n

)
, Pσ,τ−as.

The final argument in the proof of Theorem 2.8 also implies that an inter-
nally consistent strategy is also externally consistent, hence we can compare
bounds between our algorithm.

If the signals are deterministic, Lugosi, Mannor & Stoltz [23]’s efficient
algorithm has an expected regret smaller than O

(
n−1/2

)
. However this bound

became, with random signals, O
(
n−1/4

)
. Thus our algorithm, along with

computing no internal regret, has a better rate of convergence – the optimal
one. Concerning the computational complexity, the true purpose of this al-
gorithm being the minimization of internal regret, it is not efficient to bound
external regret.
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2.3.2 Action-Outcome dependant signals

In this section, we consider the most general framework and we assume that
the laws of the signals might depend on the decision maker’s actions. Our
main result is the following:

Theorem 2.10 There exists an internally consistent strategy σ such that,
for every strategy τ of Nature, with Pσ,τ probability at least 1− δ:

max
l∈L

|Nn(l)|
n

Rn(l) ≤ O

(
1

n1/3

√
ln

(
1

δ

)
+

1

n2/3
ln

(
1

δ

))
. (16)

Proof. The proof is essentially the same as the one of Theorem 2.8, so we
can assume that x(l) 6= x(k) for any two different l and k in L. The only
difference is due to the fact that at stage n ∈ N, the unobserved flag fn has
to be estimated (see e.g. Lugosi, Mannor & Stoltz [23]).

Following Auer, Cesa-Bianchi, Freund & Schapire [1], we define for every
l ∈ L and n ∈ N, the γ̂n-perturbation of x(l) by x̂(l, n) = (1− γ̂n)x(l) + γ̂nu
where u is the uniform probability over I and (γ̂n)n∈N is a non-negative
non-increasing sequence. For every n ∈ N, let

en =

(
1i=in

x̂(ln, n)[in]
(1s=sn)s∈S

)

i∈I
∈
(
R

S
)I

,

where x̂(ln, n)[in] ≥ γn = γ̂n/I > 0 is the weight put by x̂(ln, n) on in. With
this notation, en is an unbiased estimator of fn since Eσ,τ

[
en|hn−1

]
= fn,

seen as an element of
(
R

S
)I
.

We define now the strategy of the forecaster. Assume that in an auxiliary
game Γc, a predictor computes σ̃, a calibrated strategy with respect to
{f(l), ω(l); l ∈ L}, but where the state at stage n is the estimator en ∈ R

IS.
When the decision maker (seen as a predictor) should choose ln accordingly
to σ̃ in Γc, then he (seen as a forecaster) chooses in accordingly to x̂(ln) in
the original game.

In order to use Corollary 1.14, we need to bound vn, Mn and Kn. In
the current framework and thanks to Proposition 1.11, one has for every
l, k ∈ L and n ∈ N:

U l,k
ω,n = 21l=ln

∑

t∈T

σt(k)− σt(l)

T

(
〈en, ct〉+ bt

)
,
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so using the fact that ‖(b, c)‖2∞ = 1 and the definition of en:

sup
l,k∈L

sup
m≤n

Eσ,τ

[∣∣∣U l,k
ω,m

∣∣∣
2
]
≤ 16Eσ,τ

[
‖en‖2

]
≤ 16

∑

i∈I

x̂(ln, n)[i]

(x̂(ln, n)[i])2
≤ 16

I

γn
.

As a consequence, Kn ≤ 4 1
γn
, vn ≤ 4

√
I
γn

and Mn ≤ 4
√

LI
γn

. Lemma 1.12

implies that, with Pσ,τ probability at least (1− δ1), for every l ∈ L:

|Nn(l)|
n

∥∥∥ēn(l)− f̃n(l)
∥∥∥ ≤ 8

√
LIMP√
γnn

+
8
√
IMP√
γnn

√
2 ln

(
L2

δ1

)
+
8

3

MP

γnn
ln

(
L2

δ1

)
,

where f̃n(l) is the projection of ēn(l) onto P (l).
Following Lugosi, Mannor & Stoltz [23], since for every i ∈ I and s ∈ S,

Eσ,τ

[
|ei,sn |2

]
≤ 1/γn, Freedman’s inequality implies that with probability at

least 1− δ2, for every l ∈ L

|Nn(l)|
n

∥∥∥ēn(l)− f̄n(l)
∥∥∥ ≤

√
IS

(√
2

1

nγn
ln

(
2LIS

δ2

)
+

2

3nγn
ln

(
2LIS

δ2

))
.

Hoeffding-Azuma’s inequality implies that with probability at least 1− δ3:

max
l∈L

Nn(l)

n

∣∣∣ρ̄n(l)− ρ(x(l), ̄n(l))
∣∣∣ ≤ Mρ

√
2

n
ln

(
2L

δ3

)
+ 2Mρ

∑
m∈Nn(l)

γ̂m

n
,

and by taking γn = n−1/3, one has
∑

m∈Nn(l)
γ̂m ≤ 3I

2 n
2/3. As a conse-

quence, for every l ∈ L, with probability at least 1− δ:

Nn(l)

n
Rn(l) ≤

Ω1

n1/3
+

Ω2

n1/3

√
2 ln

(
2Ω5

δ

)
+

Ω3

n1/2

√
2 ln

(
2Ω5

δ

)
+
2

3

Ω4

n2/3
ln

(
2Ω5

δ

)

with the constants defined by Ω1 = 16MPMW

√
LI + 3MWMρI, Ω2 =

2MW

√
I
(
8MP +

√
S
)
, Ω3 = Mρ, Ω4 = 2MW (4MP +

√
IS) and Ω5 =

L (L+ 2 + 2IS). They can be decreased if concentration inequalities in
Hilbert spaces are used (see section 3.3). �

In the label efficient prediction game defined in Example 2.1, for every
strategy σ of the decision maker there exists a sequence of outcomes such
that the forecaster expected regret is greater than n−1/3/7 (see Theorem 5.1
in Cesa-Bianchi, Lugosi & Stoltz [10]). Therefore the rate of n−1/3 of our
algorithm is optimal for both internal and external regret.

26



The computational complexity of this internally consistent algorithm is
polynomial in L. Thus it can be seen, in some sense, as an efficient one. A
question left open is the existence of an algorithm whose computational com-
plexity is polynomial in the minimal number of best-response areas required
to cover ∆(S)I , see Proposition 2.6.

The following section 3.1 deals with a simpler question and exhibits an
internally consistent algorithm which requires to solve at each stage a linear
program of size polynomial in L0, the minimal number of polytopes on which
BR is constant, instead of a system of linear equations of size L.

3 Concluding remarks

3.1 Second algorithm: calibration and polytopial complex.

The algorithms we described are quite easy to run stage by stage since the
forecaster only needs to compute some invariant measures of non-negative
matrices. However, they require to construct the Laguerre diagram P =
{P (l); l ∈ L} given the set {bt, ct; t ∈ T }. And we have shown that L,
which is a factor both in the complexity of the algorithms and in their rate
of convergence, can be in the order of T SI hence polynomial in LSI

0 .

This section is devoted to a modification of the algorithm that does not
require to compute a Laguerre diagram but which is more difficult, stage by
stage, to implement. The only difference between the two algorithms is in
the definition of calibration.

Let {K(l); l ∈ L0} be a finite polytopial complex of ∆(J ). It is defined
by two finite families

{
ct ∈ R

J , bt ∈ R; t ∈ T
}
and {T (l) ⊂ T ; l ∈ L} such

that:

K(l) = {y ∈ ∆(J ); 〈y, ct〉 ≤ bt, ∀t ∈ T (l) ⊂ T } , ∀l ∈ L0.

Let us define (ct,l, bt,l) = (ct, bt) if t ∈ T (l) and (ct,l, bt,l) = (0, 0) otherwise.
Then we can rewrite K(l) = {y ∈ ∆(J ); 〈y, ct,l〉 ≤ bt,l, ∀t ∈ T }.

Definition 3.1 A strategy σ is calibrated w.r.t. the complex {K(l); l ∈ L0}
if for every strategy τ of Nature, Pσ,τ -as:

lim sup
n→∞

|Nn(l)|
n

(
〈̄n(l), ct,l〉 − bt,l

)
≤ 0, ∀t ∈ T ,∀l ∈ L0.

Theorem 3.2 There exist calibrated strategies w.r.t. any finite polytopial
complex {K(l); l ∈ L0}.
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Proof. Consider the following auxiliary two-person game Γ′
c, where at stage

n ∈ N the predictor (resp. Nature) chooses ln ∈ L0 (resp. jn ∈ J ) which
generates the vector payoff Un ∈ R

TL0 defined by:

U lk
n =

{
〈1jn=j, ct,l〉 − bt,l if l = ln

0 otherwise.

Any strategy that approaches the negative orthant Ω− in Γ′
c is calibrated

w.r.t. the complex {K(l); l ∈ L0}.
Blackwell’s characterization of approachable convex sets (see Blackwell

[5], Theorem 3) implies that the predictor can approach the convex set Ω−
if (and only if) for every mixed action of Nature in ∆(J ), he has an action
x ∈ ∆(L0) such that the expected payoff is in Ω−. Given yn ∈ ∆(J ),
choosing l(yn) ∈ L0, where l(yn) is the index of the polytope that contains
yn, ensures that Eyn,l(yn)[Un] is in Ω−. Therefore there exist calibrated
strategies with respect to any polytopial complex. �

This modification of the definition of calibration does not change the
other part of our algorithms nor the remaining of the proofs (in particular,
to calibrate the sequence of unobserved flags, the forecaster must use γ̂n-
perturbations). The constants in the rates of convergence are now smaller
since L0 can be much smaller than L and in Γ′

c, E[‖Un‖2] is bounded by

O
(
T0

γn

)
where T0 = supl∈L0

T (l) is the maximum number of hyperplanes

defining a polytope of the complex.
The main argument behind this algorithm (i.e. the characterization of

approachable convex sets of Blackwell [5]) is quite close, in spirit, to the
one of Lehrer & Solan [21]. Note that however, with our representation, the
projection on Ω− can be computed linearly in TL0, so polynomially in L0.
Therefore, it reduces to the construction of an approachability strategy and
so – as shown by Blackwell [5] – to the resolution, at each stage, of a linear
programming of size polynomial in L0.

3.2 Extension to the compact case

We prove in this section that the finiteness of J is not required.
Assume that instead of choosing jn at stage n ∈ N – which generates the

flag fn = s(jn) and an outcome vector
(
ρ(i, jn)

)
i∈I

– Nature chooses directly

an outcome vector On ∈ [−1, 1]I and a flag fn which belongs to s(On) where
s is a multivalued mapping from [−1, 1]I into ∆(S)I . As before, the decision
maker’s payoff is Oin

n (the in-th coordinate of On) and he receives a signal
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sn whose law is f in
n . Strategies of the forecaster and consistency are defined

as before.

Theorem 3.3 If the graph of s is a polytope, then there exists an internally
consistent strategy σ such that, for every strategy τ of Nature, with Pσ,τ

probability at least 1− δ:

max
l∈L

|Nn(l)|
n

Rn(l) ≤ O

(
1

n1/3

√
ln

(
1

δ

)
+

1

n2/3
ln

(
1

δ

))
. (17)

The proof of this result is identical to the one of Theorem 2.10.

Note that the assumption that the graph of s is a polytope is fulfilled
in the finite dimension case. The mapping s is multivalued since in finite
dimension there might exist two different mixed actions y1, y1 in ∆(J ) that
generate the same outcome vectore (i.e. ρ(·, y1) = ρ(·, y2) = O) but different
flags (i.e. f1 = s(y1) 6= s(y2) = f2). Hence we should have f1, f2 ∈ s(O).

3.3 Strengthening of the constants

We propose two different ideas to strengthen the constants of our algorithm.
First, we can use (as did Lugosi, Mannor & Stoltz [23]) only one concen-
tration inequality for every coordinate of the vector Uω,n instead of one
concentration inequality per coordinate. Second, we can implement sparser
vector payoffs (so that its norm decreases) by looking at a slight different
definition of calibration.

3.3.1 Concentration Inequalities in Hilbert Spaces

The rates of convergence of our algorithms rely mainly on three properties:
Blackwell’s approachability theorem, Hoeffding-Azuma’s and Freedman’s in-
equalities. These tools allowed us to study the convergence of a sequence
of vectors Ū+

n towards 0. Approachability is well defined for sequences of
vectors, however the two concentration inequalities hold only for real valued
martingales. To circumvent this issue, we used in the proofs the fact that
if a process

{
Un ∈ R

d
}
n∈N is a martingale then, for each coordinate, the

process
{
Uk
n ∈ R

}
n∈N is a real valued martingale. This does not use the

fact that Un might be sparse and the use of concentration inequalities in
Hilbert space can sharpen the constant.

Indeed, recall Hoeffding-Azuma’s inequality:
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Lemma 3.4 (Hoeffding[19], Azuma [3]) Let Un be a sequence of mar-
tingale differences bounded by K, i.e. for every n ∈ N, Eσ,τ [Un+1|hn] = 0
and |Un| < K.

Then for every n ∈ N and every ε > 0:

Pσ,τ

(∣∣Ūn

∣∣ ≥ ε
)
≤ 2 exp

(−nε2

2K2

)
,

which can be expressed as

Pσ,τ

(
∣∣Ūn

∣∣ ≤ K

√
2

n
ln

(
2

δ

))
≥ 1− δ. (18)

Chen & White [11] proved an equivalent property for vector martingale in
R

d.

Lemma 3.5 (Chen & White [11]) Let Un be a sequence of martingale
differences in R

d bounded almost-surely by K > 0. Then for every n ∈ N

and for every ε > 0:

Pσ,τ

(∥∥Ūn

∥∥ ≥ ε
)
≤ 2max

{
1,

√
nε2

2K2

}
exp

(−nε2

2K2

)
≤ 2 exp

(
−α

nε2

2K2

)
,

for every α ≤ 1− 1
2e (which equals approximatively 0.81).

Assume that for every n ∈ N, ‖Un‖∞ ≤ ‖U‖∞ and ‖Un‖2 ≤ ‖U‖2; we
can deduce from the use of only Hoeffding-Azuma’s inequality that:

Pσ,τ

(
max
l,k

|Nn(l)|
n

∣∣∣Ū l,k
n

∣∣∣ ≥ ε

)
≤ 2L2 exp

( −nε2

2‖U‖2∞

)
.

However, Chen and White’s result, along with the fact that ‖Un‖ ≤ L,
implies that:

Pσ,τ

(
max
l,k

|Nn(l)|
n

∣∣∣Ū l,k
n

∣∣∣ ≥ ε

)
≤ 2 exp

( −nε2

4‖U‖22

)

which can reduce the dependency in L. The effects is even more dramatic
when estimating the sequences of flags, since en has only positive component
(so ‖en‖∞ = ‖en‖2).

There also exist variants of Bernstein’s inequality (see e.g. Yurinskii [31])
in Hilbert spaces that can be used in order to get more precise constants.
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3.3.2 Calibration with Respect of Neighborhoods

Definition 3.6 Given a finite set Y = {y(l) ∈ R
d, ω(l) ∈ R; l ∈ L}, y(k)

is a neighbor of y(l) if k 6= l and the dimension of P (l) ∩ P (k) is equal to
d− 1.

We defined a calibrated strategy with respect to Y, as a strategy σ such
that ̄n(l) is asymptotically closer to y(l) than to any other y(k) as soon as
the frequency of l does not go to zero. In fact, ̄n(l) needs only to be closer to
y(l) than to any of its neighbors. So one can construct neighbors-calibrated
strategies by modifying the algorithm given in Proposition 1.5; the payoff
at stage n is now denoted by U ′

n and is defined by:

(
U ′
n

)lk
=

{
‖jn − y(l)‖2 − ‖jn − y(k)‖2 if l = ln and k is a neighbor of l

0 otherwise

The strategy consisting in choosing an invariant measure of
(
Ū ′
n

)+
is cali-

brated and M2
n = supm≤n Eσ,τ

[
‖Um‖2

]
equals 4N , where N is the maximal

number of neighbors. This latter can be much smaller than 4, and the gain
from this modification is limpid if we consider ε-calibration.

Indeed, in order to construct such strategies, we usually take any ε-
discretization of ∆(J) so that L = O

(
ε−(J−1)

)
. However, there exists a

discretization such that N = 2−(J−1), which is independent of ε.

A Proofs of technical results

This section is devoted to the proofs of previously mentioned results, i.e.
Lemma 1.12 and Proposition 2.6.

A.1 Proof of Lemma 1.12

Let l ∈ L be fixed. we denote by C =
{
ct ∈ R

d; t ∈ T (l)
}
the finite family

of normal vectors to (d− 1)-faces of P (l) and by B = {bt ∈ R; t ∈ T (l)} the
family of scalars such that :

P (l) =
{
Z ∈ R

d; 〈Z, ct〉 ≤ bt, ∀t ∈ T (l)
}
.

Any points satisfying Equation (5) belongs to

Pε(l) =
{
Z ∈ R

d; 〈Z, ct〉 ≤ bt + ε, ∀t ∈ T (l)
}
.
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For any vertex v of P (l), there exists t1, . . . , td ∈ T (l) such that

v =

d⋂

k=1

{
Z ∈ R

d; 〈Z, ctk 〉 = btk

}

and {ct1 , . . . , ctd} is a basis of Rd. If we denote by vε the point defined by

vε =

d⋂

k=1

{
Z ∈ R

d; 〈Z, ctk 〉 = btk + ε
}

then Pε(l) is included in the convex hull of every vε.

Equation (5) can be rephrased as: if x belongs to Pε(l) then d(x, P (l))
is smaller than MP ε. Therefore it is enough to prove this property for every
vε since d(·, P (l)) is a convex mapping thus maximized over a polytope on
one of its vertices.

With these notations, for every k ∈ {1, . . . , d}, 〈vε−v, ctk〉 = ε and there

exists a unique decomposition vε − v =
∑d

k=1 αkctk . Define the symmetric
d × d Gram matrix Ql by Qkk′

l = 〈ctk , ctk′ 〉 and α = (α1, . . . , αd). Then
following classical properties hold:

1) ‖vε − v‖2 = αTQlα and there exist a D = diag(λ1, . . . , λd) a diagonal
matrix with 0 < λ1 ≤ . . . ≤ λd and a d × d matrix P and such that
P−1 = P T and Ql = P TDP ;

2) Qα = ε = (ε, . . . , ε) therefore α = Q−1
l ε;

3) ‖vε − v‖2 = (Q−1
l ε)TQl(Q

−1
l ε) = εTP TD−1Pε ≤ ε2dλ−1

1 .

Therefore, for any Z ∈ Pε – and in particular for any point that satisfies
Equation (5) –, ‖Z − Πl(Z)‖ ≤ maxv ‖vε − v‖ ≤ ε.

√
d
√
λ1

−1
. The result

follows from the fact that L is finite. The constant MP in Lemma 1.12 is
smaller than the square root of the inverse of the smallest eigenvalue of all
Ql times

√
d; it depends on the inner products 〈ct, ct′〉 and on the dimension

of F .

A.2 Proof of proposition 2.6

Definition A.1 Let K be a polytope. A correspondence B : K ⇉ R
d is

polytopial constant, if there exists {K(l); l ∈ L} a finite polytopial complex
of K and {x(l); l ∈ L} such that x(l) ∈ B(f) for every f ∈ K(l).
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Let us now restate Proposition 2.6:

Proposition A.2 BR is polytopial constant.

This theorem is well-known and quite useful in the full monitoring case
(see for example the Lemke-Howson [22] algorithm). In the compact case,
Proposition 2.6 becomes:

Proposition A.3 If s has a polytopial graph, then BR is polytopial con-
stant.

The proofs of both propositions rely on polytopial parameterized max-min
programs defined in the next subsection.

A.2.1 Constant Solution of a Polytopial Parameterized Max-Min
Program

A Polytopial Parameterized Max-Min Program (PPMP) is defined as fol-
lows. Let X and Y be two Euclidian spaces of respective dimension d1 and
d2. Consider the program (Pf ) - depending on a parameter f that belongs
to some polytope F in R

d3 - that is defined by

(Pf ) : max
x ∈ X

s.t. Dx ≤ d

min
y ∈ Y

s.t. Efy ≤ ef

xAy,

where A is a d1 × d2 matrix, {Ef , ef ; f ∈ F} is a family of matrices and
vectors (we do not specify the sizes the matrices, as long as each inequality
makes sense) and D, d are also a fixed matrix and vector such that the
admissible set D = {x ∈ X; Dx ≤ d} is a polytope. The solution set of
(Pf ) is denoted by B(f) ⊂ X and this defines a multivalued mapping B(·)
from F into X .

Theorem A.4 Assume that the correspondence S defined by:

S :
F ⇉ Y
f 7→ Sf = {y ∈ Y; Efy ≤ ef}

has a polytopial graph S. Then B : F ⇉ X is polytopial constant.

Proof. Before going into full details, we first recall the following properties:

i) A linear program is minimized on a vertex of the polytopial feasible
set (this is actually implied by the following point);
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ii) Rockafella [26], Theorem 27.4, page 270: Given x ∈ D and f ∈ F , if y
minimizes xAy on Sf then

−xA ∈ NCSf
(y),

where NCE(y) is the normal cone to the convex set E ⊂ R
d at y ∈ E

defined by :

NCE(y) =
{
p ∈ R

d; 〈p, z − y〉, ∀z ∈ E
}
;

iii) Ziegler [32], Example 7.3, page 193: If P is a polytope then the finite
family {NCP (v); v is a vertex of P} is a polyhedral complex of Rd

called a normal fan (i.e. it is a finite family of polyhedra that cover Rd

and such that each pair has an intersection with empty interior);

iv) Billera & Sturmfels [4], page 530: Since for every f ∈ F , Sf = Π−1(f)
where Π : S ⊂ F × Y → F is the projection with respect to first
coordinates, then there exists {K(l); l ∈ L}, a polytopial complex of
F such that the normal fan to Sf is constant on every K(l) (this can
alternatively be deduced from the following point);

v) Rambau & Ziegler [25], Proposition 2.4, page 221: On each of these
polytopes K(l), the mapping f 7→ Sf is linear. In particular, there
exists a finite family of affine functions Y (l) from K(l) to Y such that
the vertices of Sf are exactly {y(f); y(·) ∈ Y (l)}.

Points i) and ii) imply that if xf maximizes (Pf ) – which is then mini-
mized at some a vertex of Sf denoted by yf , because of point i) – then it can
be assumed that −xfA is a vertex of the polytope NCSf

(yf ) ∩ DA− where
DA− := {−xA; x ∈ D}. Thus B(f), the solution set to (Pf ) contains at
least an element of

Xf =
{
x ∈ D;−xA vertex of DA− ∩NCSf

(yf ), yf vertex of Sf

}
.

By point iii), the normal fan and therefore Xf are constant on K(l).
The latter can also be assumed to be finite by taking a unique representant
x ∈ Xf for every vertices of the intersection of the normal fan and DA−.
Since the number of different fans is finite, for any f ∈ F , the solution set
to (Pf ) contains at least an element of the finite set X =

⋃
f∈F Xf .
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Moreover, for every x ∈ X:

B−1(x) =

{
f ∈ F ; min

y∈Sf

xAy ≥ max
x′∈D

min
y∈Sf

x′Ay

}

=
⋃

l∈L

{
f ∈ K(l); min

y∈Sf

xAy ≥ max
x′∈D

min
y∈Sf

x′Ay

}

=
⋃

l∈L

⋂

x′∈X

{
f ∈ K(l); min

y∈Sf

xAy ≥ min
y∈Sf

x′Ay

}

=
⋃

l∈L

⋂

x′∈X

⋃

y′(·)∈Y (l)

{
f ∈ K(l); min

y∈Sf

xAy ≥ x′Ay′(f)

}

=
⋃

l∈L

⋂

x′∈X

⋃

y′(·)∈Y (l)

⋂

y(·)∈Y (l)

{
f ∈ K(l); xAy(f) ≥ x′Ay′(f)

}
,

where, respectively, the second line is a consequence of point iv), the third
line of the definition of X and the fourth and fifth lines of points i) and v).

By point v), the two mapping y(·) and y′(·) are affine on K(l), so each
possible set {

f ∈ K(l); xAy(f) ≥ x′Ay′(f)
}

is a polytope as the intersection of an half-space and the polytope K(l).
Since, the intersection of a union of polytopes remains a union of polytopes,
for every x ∈ X, B−1(x) is a finite union of polytopes and B is polytopial
constant. �

We can now prove simultaneously Propositions A.2 and A.3:

A.2.2 Proof of Propositions A.2 and A.3

Since s is linear, its graph, denoted by S, is a polytope. Theorem A.4 (with
D = ∆(I)) implies that the solution, denoted by B(f) for every f ∈ F , of
the parameterized program

max
x∈∆(I)

min
y∈s−1(f)

ρ(x, y)

is polytopial constant. We denote by {K(l); l ∈ L} a corresponding poly-
topial complex. If B is constant on K(l), then it is also constant on
K̂(l) = Π−1

S
(K(l)), which is a finite union of polytopes. �
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