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Abstract
We consider 1 i.i.d. increments (or jumps) Xi that are integers in J ⊆ [−c, . . . ,+d] for c, d ∈ N,

the partial sums Sj =
∑

1≤i≤j Xi, and the discrete walks ((j, Sj))1≤j≤n. Late conditionning by a
return of the walk to zero at time n provides discrete bridges that we note (Bj)1≤j≤n. We give in
this extended abstract the asymptotic law in the central domain of the height (max1≤j≤nBj) of the
bridges as n tends to infinity. As expected, this law converges to the Rayleigh law which is the law
of the maximum of a standard Brownian bridge. In the case where c = 1 (only one negative jump),
we provide a full expansion of the asymptotic limit which improves upon the rate of convergence
O(log(n)/

√
n) given by Borisov [4] for lattice jumps; this applies in particular for the case where

Xi ∈ {−1,+d}, in which case the expansion is expressible as a function of n, d and of the height of
the bridge. Applying this expansion for Xi ∈ {−1, d/c} gives an excellent approximation of the case
Xi ∈ {−d,+c} and provides in constant time an indicator used in ranking statistics; this indicator
can be used for medical diagnosis and bioinformatics analysis (see Keller et al. [8] who compute it in
time O(n×min(c, d)) by use of dynamical programming).

1 Generating function of upper bounded bridges

We use in this article generating functions as main tool for the precise analysis of the behaviour of the
walks. Asymptotics methods provide then excellent results for bioinformatics applications (see Section 3
and Figure 2).

We consider first the characteristic (Laurent) polynomial of the jumps

P (u) = pdu
d + · · ·+ p−c

1

uc
,

where the pi are weights. Then we define the generating function of the altitude of the walk at time k as

fk(u) =
∑

−kc≤j≤kd

fk,ju
j , (1)

where fk,j is the number of “walks at altitude j at time k” if pi = 1 for all i, or the probability of this
last event if P (1) = 1.

We consider walks that are forbidden to go upon a barrier h (the level h is permitted). We can write
a recurrence for the Laurent polynomials fk(u), by removing the cases that make the walks go upon the
barrier,

fk+1(u) = fk(u)P (u)−
d∑
i=1

uh+d[uh+d]fk(u)P (u); (2)
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1This extended abstract summarizes a recently published article of Banderier and Nicodème [3]. See [5] for similar
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Figure 1: See [1, 2] for the relevant proofs (in particular, we do not comment upon the fact that some
walks are periodic while others are not; see also [3]). If the equation 1 − zP (u) = 0 has c small roots
ui(z) (that tend to zero at the origin) and d large roots vj(z) (that tend to infinity at the origin), there
are two real dominant roots of 1− zP (u) = 0 for z ∈]0, ρ], a small root (that we call u1(z)) and a large
root (that we call v1(z)), such that max2≤i≤c |ui(z)| < u1(|z|) < v1(|z|) < min2≤j≤d |vj(z)| in the disk
|z| < ρ. (Figure 1 Left): behaviour of the particular characteristic polynomial P (u) = u3 + 1

u . (Figure 1
Right): a visual rendering of the domination property of the roots of 1− zP (u) = 1− z

(
u3 + 1

u

)
in the

real interval ]0, ρ], where the number τ is the unique positive solution of P ′(z) = 0 and ρ = 1/P (τ). For
1
z >

1
ρ or z < ρ the two dominant real solutions u1(z) and v1(z) are such that (i) limz→0+ u1(z) = 0

(small root) and limz→0+ v1(z) = +∞ (dominant large root) and (ii) u1(z) < v1(z). As a consequence
of the identity P ′(τ) = 0, we have u1(ρ) = v1(ρ). The non-dominant large roots v2(z) and v3(z) are
algebraically conjugate and we have u1(z) < v1(z) < |v2(z)| = |v3(z)| for z ∈]0, ρ[.

We can multiply both sides of Equation 2 by zk+1 and sum up from k = 0 to k = ∞; this gives,
(assuming that the walk starts at zero at time zero, or f0(u) = u0 = 1),

F [≤h](z, u)(1− zP (u)) = 1− zuh+1Fh+1(z)− · · · − zuh+dFh+d(z), (3)

where F [≤h](z, u) =
∑
k≥0 z

kfk(u) and the functions Fh+1(z), . . . , Fh+d(z) are unknown functions.

The popular kernel method 2 uses the fact that the roots υ(z) of the equation 1− zP (u) = 0 cancels
the left member of Equation (3); there are d such solutions or large roots vj(z) (1 ≤ j ≤ d) that tend to
infinity as z tends to zero. These solutions then provide a linear system of d equations of the type

vj(z)
h+1Fh+1(z) + · · ·+ vj(z)

h+dFh+d(z) = 1/z.

By solving the system we obtain explicit expressions Fh+j(z) = Dj(z)/V (z) where V (z) is a Vandermonde
determinant upon the roots vj(z) and the Dj(z) are variants of it. We obtain

F [>h](z, u) =
1

1− zP (u)

d∑
j=1

uh+1

vj(z)h+1

Qj(u)

Qj(vj)
, where Qj(t) =

∏
1≤i≤d
i 6=j

(t− vi(z)). (4)

Considering the small roots uj(z) of 1− zP (u) = 0 that tend to zero at the origin, we have from [2]

(−k < −c) [u−k]
1

1− zP (u)
= z

c∑
j=1

u′j(z)

uj(z)−k+1
= [u0]

uk

1− zP (u)
,

which gives for the generating function of bridges

[u0]F [>h](z, u) = z

d∑
j=1

1

vj(z)

c∑
i=1

(
ui(z)

vj(z)

)h
u′i(z)

Qj(ui(z))

Qj(vj(z))
. (5)

2For more informations about this method, see [1, 2, 6].
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2 Asymptotics

We consider now that (i) P (1) = 1, (ii) E(Xi) = 0 (or P ′(1) = 0); these two conditions imply that
τ = ρ = 1 (see the legend of Figure 1 for relevants definitions). We let now n and h tend to infinity with
the condition that h = xσ

√
n, where x ∈ R and σ2 = P ′′(1) is the variance of the jumps.

Using the properties of domination of the roots (see Figure 1), we obtain asymptotically

[u0]F [>h](z, u) = z

(
u1(z)

v1(z)

)h
× u′1(z)Q1(u1(z))

v1(z)Q1(v1(z))
×
(
1 +O(Ch)

)
for |z| < 1, (6)

with

C = max

(
max
j≥2

sup
|z|<ρ−ε

|v1(z)|
|vj(z)|

, max
j≥2

sup
|z|<ρ−ε

|u1(z)|
|uj(z)|

)
.

Considering the expansion of 1/(P (u(z)) = z at z = ρ = 1, we get

z ∼ 1−


u1(z) = 1−

√
2
σ2 (1− z) +O(1− z), v1(z) = 1+

√
2
σ2 (1− z) +O(1− z)

Q1(u1(z))

Q1(v1(z))
=
Q1(1) +O(

√
1− z)

Q1(1) +O(
√

1− z)
= 1 +O(

√
1− z)

Equation (6) is valid in a Delta-domain (see [7]), and we have in such a domain

[u0]F [>xσ
√
n](z, u) =

z

σ
√

2

(
1− 2

√
2
σ2 (1− z)

)xσ√n
√

1− z
×
(
1 +O(

√
1− z)

)
× (1 +O(Cn)) .

Using now the Semi-Large powers theorem (see [7] again), we obtain [zn][u0]F [>xσ
√
n] =

√
n

σ
√
2
× e−2x2 ×(

1 +O
(

1√
n

))
. Since [2] obtained previously [zn][u0]F ]−∞,+∞[ =

√
n

σ
√
2
×
(

1 +O
(

1√
n

))
, we get to

Pr

(
max
0≤i≤n

Bi > xσ
√
n

)
= Rayleigh(x)×

(
1 +O

(
1√
n

))
where Rayleigh(x) = e−2x

2

.

 Lukasiewicz bridges: J = {−1, . . . , c}.
We have in this case

Q1(u1(z)) =
1

pdz

∂

∂u

u(1− zP (u))

u− v1(z)

∣∣∣∣
u=u1(z)

=
1

pdz2
u1(z)

u′1(z)(u1(z)− v1(z))
. (7)

The value of Q1(v1(z)) follows by interchanging the rôles of u1 and v1. This leads to

Pr
(
max1≤j≤n Bj > xσ

√
n
)

exp(−2x2)
= 1 +

(−(2/3)xξ/ζ3/2 − 6x/
√
ζ)

√
n

+
1

n

(
(−2−

10

9

ξ2

ζ3
+

2

3

θ

ζ2
−

16

3ζ
−

8

3

ξ

ζ2
)x

4
(8)

+(
24

ζ
+

5

3

ξ2

ζ3
+ 3−

θ

ζ2
+

20

3

ξ

ζ2
)x

2 −
5

ζ
−

3

8
−

7

6

ξ

ζ2
−

5

24

ξ2

ζ3
+

1

8

θ

ζ2
+

5

24

ξ3

ζ3
−

1

8

θ2 − 3ζ2

ζ2

)

+O
(

1

n3/2

)
,

where ζ = σ2 = P ′′(1), ξ = P ′′′(1) and θ = P ′′′′(1). The algolib Maple package (more precisely, the
gdev and equivalent functions developed by Bruno Salvy, see algo.inria.fr/librairies) can naturally push
the expansion to higher orders.

The particular case: J = {−1,+d}.
In this case, it is possible to compute the values of the derivatives of P (u) evaluated at 1 as functions of

d. For P (u) = ud

d+1 + d
d+1

1
u , we have in particular P ′′(1) = d, P ′′′(1) = d(d − 4), . . . ; substituting these

values in Equation (8) leads to an efficient formula (which has a constant time complexity in n, h, and
d).
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Figure 2: Convergence of the height of discrete bridges to the Rayleigh distribution (top continuous
curve); the dotted curves correspond to simulations; the lower continuous curve follows from a refinement

of Equation (8), computed up to O(1/n2), with P (u) = 1
1+d/cu

d/c + d/c
1+d/c

1
u (heuristics). We emphasize

the excellent precision of our asymptotics for small n.

3 Bioinformatics application

A set of G genes is expressed in a given tissue; this provides a ranking of level of expression of these
genes. Considering now the same ranking and a subset of specific interest of g genes, if these g genes
have a high level of expression, they will mostly appear at the top of the ranking. The aim is to provide a
statistical estimator for exceptional behaviours. Keller et al. [8] proposed the following approach: while
scanning from left to right the ranking of the G genes, build a random walk (Bi)0≤i≤G starting at zero
and such that its jump at time i is{

G− g if the gene at rank i belongs to g,
−g if the gene at rank i belongs to G− g.

By construction, we have B0 = BG = 0 and these walks are therefore bridges. The tail probability
(referred to as p-value) that Keller et al. choose as statistical indicator is p-value = Pr(max1≤i≤G

∣∣Bi∣∣ >
h), for any chosen h. They provide a dynamic programming algorithm computing this indicator in
complexity O(G × g). We compute heuristically the indicator in constant time by setting n = G and

P (u) = 1
1+d/cu

d/c + d/c
1+d/c

1
u with d = G − g and c = g, and applying Equation (8); see Figure 2 for an

example.
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