Farida Benmakrouha

Christiane Hespel
email: hespel@insa-rennes.fr

Edouard Monnier
email: monnier@insa-rennes.fr

DRAWING SOLUTION CURVE OF DIFFERENTIAL EQUATION * †

Keywords: Curve drawing, differential equation, symbolic algorithm, generating series, dynamical system, oscillating output

We develop a method for drawing solution curves of differential equations. This method is based on the juxtaposition of local approximating curves on successive intervals [t i , t i+1] 0≤i≤n-1 . The differential equation, considered as a dynamical system, is described by its state equations and its initial value at time t 0 . A generic expression of its generating series Gt truncated at any order k, of the output and its derivatives y (j) (t) expanded at any order k, can be calculated. The output and its derivatives y (j) (t) are expressed in terms of the coefficients of the series Gt and of the Chen series. At the initial point t i of every interval, we specify the expressions of Gt and y (j) (t). Then we obtain an approximated output y(t) at order k in every interval [t i , t i+1] 0≤i≤n-1 . We have developed a Maple package corresponding to the creation of the generic expression of Gt and y (j) (t) at order k and to the drawing of the local curves on every interval [t i , t i+1] 0≤i≤n-1 . For stable systems with oscillating output, or for unstable systems near the instability points, our method provides a suitable result when a Runge-Kutta method is wrong.

Introduction

The usual methods for drawing curves of differential equations consist in an iterative construction of isolated points (Runge-Kutta). Rather than calculate numerous successive approximate points y(t i) i∈I , it can be interesting to provide some few successive local curves {y(t)} t∈[t i ,t i+1] 0≤1≤n-1 . Moreover, the computing of these local curves can be kept partly generic since a generic expression of the generating series Gt i of the system can be provided in terms of t i . The expression of the local curves {y(t)} t∈[t i ,t i+1] is only a specification for t = t i at order k of the formula given in the proposition of section 3. We consider a differential equation y (N) (t) = φ(t, y(t), • • • , y (N -1) (t)) (1) with initial conditions y(0) = y 0,0 , • • • , y (N -1) (0) = y 0,N -1

We assume that φ(t, y(t), 1) . Then this differential equation can be viewed as an affine single input dynamical system.

• • • , y (N -1) (t)) is polynomial in y, • • • , y (N -

Preliminaries

2.1 Affine system, Generating series

We consider the nonlinear analytical system affine in the input:

(Σ)  q = f 0 (q) + P m j=1 f j (q)u j (t) y(t) = g(q(t))

(2)

• (f j) 0≤j≤m being some analytical vector fields in a neighborhood of q(0)

• g being the observation function analytical in a neighborhood of q(0)

Its initial state is q(0) at t = 0. The generating series G 0 is built on the alphabet Z = {z 0 , z 1 , • • • , zm}, z 0 coding the drift and z j coding the input u j (t). Generally G 0 is expressed as a formal sum

G 0 = P w∈Z * G 0 |w w where G 0 |z j 0 • • • z j l = f j 0 • • • f j l g(q)
| q(0) depends on q(0).

Fliess's formula and iterated integrals

The output y(t) is given by the Fliess's equation ([START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminés non commutatives[END_REF]):

y(t) = X w∈Z * G 0 |w Z t 0 δ(w) (3)
where G 0 is the generating series of (Σ) at t = 0:

G 0 = P w∈Z * G 0 |w w = g(q)| q(0) + P l≥0 P m j i =0 f j 0 • • • f j l g(q)| q(0) z j 0 • • • z j l (4)
and R t 0 δ(w) is the iterated integral associated with the word w ∈ Z * = {z 0 , z

δ(ǫ) = 1 R t 0 δ(vz i) = R t 0 `R τ 0 δ(v) ´ui (τ)dτ ∀z i ∈ Z ∀v ∈ Z * . (5
)
where ǫ is the empty word, u 0 ≡ 1 is the drift and u i∈ [1..m] is the ith input. We define the Chen's series as follows ([START_REF] Chen | Iterated path integrals[END_REF])

Cu(t) = X w∈Z * Z t 0 δ(w) (6)
We set

ξ i,1 (t) = Z t 0 u i (τ)dτ (7)
From the previous definitions, we obtain the following expression:

y(t) = X w∈Z * G 0 |w Cu(t)|w (8)
2.3 Iterated derivatives y (n) (0) of the output G 0 being the generating series of the system, the ith derivative of y(t) is

y (i) (t) = G 0 |C (i) u (t) (9)
We prove the following lemma ([START_REF] Hespel | Iterated derivatives of a nonlinear dynamic system and Faà di Bruno formula[END_REF]) based on the Picart-Vessiot theory ([START_REF] Fliess | Théorie de Picard-Vessiot des systèmes réguliers[END_REF])

Lemma : Let be P 0≤j≤m u j .z j = A. Then the derivative of the Chen's series is d dt Cu = Cu.A

From it, results the following recurrence relation:

C (i) u = CuA i , A 1 = A, A i+1 = AA i + DtA i (10)
Dt being the operator of time derivation. Since Cu(0) = 1 and

C (i) u (0) = A i (0) then y (i) (0) = X w∈Z * G 0 |w C (i) u (0)|w = G 0 |A i (0) (11)
Let us remark that the successive derivatives y(0), y (1) (0), • • • , y (k) (0) are obtained from the coefficients G 0 |w associated with the words whose length is ≤ k. It results that the Taylor expansion of y(t) up to order k only depends on the coefficients of G 0 truncated at order k. For instance, for a single input u(t) with drift u 0 (t) ≡ 1, the derivatives are the following

y(0) = G 0 |ǫ y (1) (0) = G 0 |z 0 + G 0 |z 1 u(0) y (2) (0) = G 0 |z 2 0 + (G 0 |z 0 z 1 + G 0 |z 1 z 0)u(0)+ G 0 |z 2 1 u(0) 2 + G 0 |z 1 u (1) (0) • • • = • • • (12)
This method allows us to compute recursively the successive derivatives of y(t) at t = 0.

3 Main results

Approximate value of y (n) (t)

The Fliess's formula can be written

y(t) = G 0 |ǫ + X w∈Z * -{ǫ} G 0 |w Cu(t)|w (13)
An approximate function y k (t) de y(t) up to order k in a neighborhood of t = 0 is obtained by expanding this expression up to the same order k. Then we have

|y(t) -y k (t)| = O(t k+1) (14)
For instance, at order k = 1, y(t) has the following approximate expression for a single input with drift

y 1 (t) = G 0 |ǫ + G 0 |z 0 t + G 0 |z 1 ξ 1 (t) (15)
where ξ k (t) denotes the kth primitive of u(t). This computing can be generalized to the successive derivatives of y(t).

Proposition

Given the expression of y (n) (0) in terms of the coefficients of G 0 and of the derivatives of order ≤ n -1 of the input u(t) t=0 obtained recursively according to the previous section, we can deduce the expression of y (n) (t) by executing in y (n) (0) the following transformations

1. We substitute

u (i) (t) to u (i) (0) for 0 ≤ i ≤ n -1 2.
For every occurrence of a coefficient G 0 |v where v ∈ Z * , we add the following corrective term

X w =ǫ G 0 |wv Cu(t)|w
The proof is based on the following properties

 d dt Cu(t)|vz i = Cu(t)|v u i (t) Cu(t)|ǫ = 1 (16)
For instance, for a single input with drift, we compute from

y (1) (0) = G 0 |z 0 + G 0 |z 1 u(0)
the expression of y (1) (t) :

y (1) (t) = G 0 |z 0 + P w =ǫ G 0 |wz 0 Cu(t)|w + (G 0 |z 1 + P w =ǫ G 0 |wz 1 Cu(t)|w)u(t) (17)
By restricting the sums to the words w whose length |w| satisfies 1 ≤ |w| ≤ k, we obtain a function y

(n) k (t) approximating y (n) (t) up to order k. And then

|y (n) k (t) -y (n) (t)| = O(t k+1) (18)

Generalization at time t = t i

For a single input with drift, the system (Σ) can be written at t = t i :

 q(t i + h) = f 0 (q(t i + h)) + f 1 (q(t i + h))u(t i + h) y(t i + h) = g(q(t i + h)) (19) By setting 8 < : U i (h) = u(t i + h) Y i (h) = y(t i + h) Q i (h) = q(t i + h) (20)
we obtain the following system

(Σ i)  Qi (h) = f 0 (Q i (h)) + f 1 (Q i (h)U i (h) Y i (h) = g(Q i (h)) (21)
And G i is the generating series of (Σ i). By setting

ψ i,k (h) = ξ k (t i + h), then ψ i,k (h) is the kth primitive of u(t i + h) or the kth primitive of U i (h).
We have the equalities

ξ 1 (t i + h) = Z t i +h t i u(τ)dτ = Z h 0 U i (t)dt = ψ i,1 (h) (22)
And then, we can prove recursively that the Chen's integral R t i +h t i δ(w) can be computed as an integral R t 0 δ(W) by considering U i (t) instead of u(t i + t).

Application to curves drawing

We present an application to the curve drawing of the solution of differential equations. We consider a differential equation

y (N) (t) = φ(t, y(t), • • • , y (N -1) (t)) (23)
with initial conditions

y(0) = y 0,0 , • • • , y (N) (0) = y 0,N
It can be written for y = q 1 :

8 > > > < > > > : q (1) 1 = q 2 q (1) 2 = q 3 • • • = • • • q (1) N = φ(t, q 1 , • • • , q N) (24)
We assume that

φ(t, q 1 , • • • , q N) = P 0 (q 1 , • • • , q N) + m X j=1 P j (q 1 , • • • , q N)u j (t) for P 0 , P 1 , • • • , P N polynomials in commutative variables q 1 , • • • , q N .
For an analytical affine single input system (Σ) then m = 1 and the vector fields are f 0 , f 1 , corresponding to P 0 , P 1 .

We propose a curve drawing of the output y(t) of this system in [0, T] = S [t i , t i+1] 0≤i≤n-1 according to the following algorithm: Firstly, we compute a generic expression of the generating series Gt.

• Initial point t 0 = 0: y(0) = q 1 (0), • • • , y (N -1) (0) = q N (0) are given.

The vector fields f 0 , f 1 applied to g(q) evaluated in t 0 provide G 0 |w for |w| ≤ k

• Step i: Knowing y(t i-1) = q 1 (t i-1), • • • , y (N -1) (t i-1) = q N (t i-1
) and G i-1 |w . for |w| ≤ k, we compute y(t i), • • • , y (N -1) (t i) according to section 3 and G i |w for |w| ≤ k by applying the vector fields f 0 , f 1 to g(q) at q(t i). We draw the local curve of the function t i-1 +dt → y(t i-1 +dt) on the interval [t i-1 , t i].

• Final point t = T = tn: stop at i = n.

Genericity of the method

The computing of the coefficients

G i |z j 0 • • • z j l = f j 0 • • • f j l g(q)| q(t i)
is generic. The computing of the expressions of

Y i (h) = y(t i + h) = y(t i) + X |w|≤k G i |w C U i (h)|w
and of

Y (1) i (h) = G i |z 0 + P 1≤|w|≤k G i |wz 0 C U i (h)|w + (G i |z 1 + P 1≤|w|≤k G i |wz 1 C U i (h)|w)U i (h) (25
) are generic too. We use the previous algorithm by specifying t i at every step in the previous expressions.

Example 1: Duffing equation

Its equation is the following: y (2) (t) + ay (1) (t) + by(t) + cy 3 (t) = u(t) y(0) = y 0 , y (1)

(0) = y 1,0 (26)
It can be written as a first order differential system

8 > > > > < > > > > : q (1) 1 (t) = q 2 (t) q (1) 2 (t) = -aq 2 (t) -bq 1 (t) -cq 3 1 (t) + u(t) = F (q(t)) + u(t) y(t) = q 1 (t) = g(q) q 1 (0) = y 0 , q 2,0 = y 1,0 (27)
The vector fields are

f 0 (q 1 , q 2) = q 2 ∂ ∂q 1 -(aq 2 + bq 1 + cq 3 1) ∂ ∂q 2 = q 2 ∂ ∂q 1 + F (q) ∂ ∂q 2 f 1 (q 1 , q 2) = ∂ ∂q 2
1. We write generic equations describing the generating series G i at t = t i :

∀t i G i |z j 1 • • • z j l = (f j 1 • • • f j l g(q))| q(t i)
Let us remark that

G i |wz 1 = 0 ∀w ∈ Z * , G i |wz 1 z 0 = 0 ∀w ∈ Z +
For instance, for order k = 3, we have only to compute 6 coefficients of G i instead of 15 coefficients.

G i |ǫ = q 1 (t i) G i |z 0 = q 2 (t i) G i |z 2 0 = F (q(t i)) G i |z 1 z 0 = 1 G i |z 3 0 = (q 2 ∂ ∂q 1 F (q) + F (q) ∂ ∂q 2 F (q)) q(t i) G i |z 1 z 2 0 = -a (28)
2. We write generic approximate expression of the output y(t i+1) and its derivative y (1) (t i+1) for every t = t i+1 = t i +h at order k:

y(t i+1) = G i |ǫ + P 1≤|w|≤k G i |w C U i (h)|w y (1) (t i+1) = G i |z 0 + P 1≤|w|≤k G i |wz 0 C U i (h)|w + (G i |z 1 + P 1≤|w|≤k G i |wz 1 C U i (h)|w)U i (h) (29)
For instance, for order k = 3

Y i (h) = y(t i + h) = y(t i) + G i |z 0 h + G i |z 2 0 h 2 /2+ G i |z 1 z 0 ψ i,2 (h) + G i |z 3 0 h 3 /(3!)+ G i |z 1 z 2 0 ψ i,3 (h) (30) and Y (1) i
(h) = y (1) (t i + h) = G i |z 0 + G i |z 2 0 h+ G i |z 1 z 0 ψ i,1 (h) + G i |z 3 0 h 2 /2+ G i |z 1 z 2 0 ψ i,2 (h) (31)
3. And we use the algorithm of section 4 by specifying t i at every step. So we obtain the drawing of y(t).

Example 2: Electric equation

y (1) (t) + k 1 y(t) + k 2 y 2 (t) = u(t) y(0) = y 0 , (32)
It can be written as a first order differential system 8 < :

q (1) (t) = -k 1 q(t) -k 2 q 2 (t) + u(t) = a(q(t)) + u(t) y(t) = q(t), q(0) = y 0 (33)
The vector fields are

f 0 (q) = -(k 1 q + k 2 q 2) d dq = a(q(t)) d dq f 1 (q) = d dq 1. Generic expression of G i Let us remark that G i |wz 1 = 0 ∀w ∈ Z +
For instance, for order k = 2

G i |ǫ = q(t i) G i |z 0 = a(q(t i)) G i |z 1 = 1 G i |z 2 0 = a(q(t)) d dq a(q(t)) G i |z 1 z 0 = d dq a(q(t)) (34)

Generic expression of Y

i (h), Y (1) (h) for order k = 2 Y i (h) = y(t i + h) = y(t i) + G i |z 0 h + G i |z 1 ψ i,1 (h)+ G i |z 2 0 h 2 /2 + G i |z 1 z 0 ψ i,2 (h) (35)
and

Y (1) i (h) = y (1) (t i + h) = G i |z 0 + G i |z 1 U i (h)+ G i |z 2 0 h + G i |z 1 z 0 ψ i,1 (h) (36)
3. And we use the algorithm of section 4 by specifying t i at every step. So we obtain the drawing of y(t) (see the next section).

Maple package: some demonstrations

In this section, we produce a demonstration in the following cases The drawings are similar by both methods (Runge-Kutta or our method).

• For stable system (electric equation, linear equation) with oscillating output (Runge-Kutta vs our method vs Exact Solution)

1. Electric equation with positive parameters for oscillating input u(t) = sin(100t) , step= 0.5 (Runge-Kutta vs our method) The oscillations of the output are not described by Runge-Kutta method when our method diplays a lot of oscillations.

2. Linear equation for oscillating input u(t) = t 2 sin(100t), step= 0.05 (Runge-Kutta vs our method vs Exact Solution) The drawing of the exact solution is similar to the drawing of our method.

• For unstable system (electric equation with negative parameters), u(t) = sin(100t), step = 0.01., Runge-Kutta method notifies an error when our method displays a suitable curve. The Runge-Kutta method does not apply to this case when the drawing of our method displays an infinite branch.

Conclusion

We develop a method for drawing a solution curve of a differential equation, based on the symbolic computing.

The symbolic computing allows us to profit from the genericity: We propose that one uses the formal expression of the generating series G i and of the output y(t i) and its derivative y (1) (t i). Then we replace these expressions by their values at every step.

The symbolic computing allows us to profit from the precision: We can choose any order k for approximating the output and its derivative. The error is on the order of k + 1.

And then an interest of this method consists in choosing the precision, not only by the size of the time interval h but by the order of the approximation. The quality of any approximation depends on the order, the size of the interval but also depends on the roughness of the curve and the stability of the system. From a lot of examples, we express the following conclusions: For stable systems with smooth outputs, our method and a Runge-Kutta method provide similar results. For unstable systems, our methods allows us to obtain a suitable result near the instability points, when the Runge-Kutta methods give an error message. For stable systems with rough or oscillating outputs, our method provides a suitable result when a Runge-Kutta method is wrong.

Fig. 2 :

 2 Fig.2: Stable system, oscillating input, large step, by Runge-Kutta (without oscillation) and our method

Fig. 3 :Fig. 4 :Fig. 5 :

 345 Fig.3: Linear equation, oscillating input, small step by Runge-Kutta

Fig. 6 :

 6 Fig.6: Unstable system, oscillating input, small step, by our method