
HAL Id: hal-00567040
https://hal.science/hal-00567040

Submitted on 18 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Pareto-based Memetic Algorithm for Optimization of
Looped Water Distribution Systems

Raúl Baños, Consolacion Gil, Juan Reca, Julio Ortega

To cite this version:
Raúl Baños, Consolacion Gil, Juan Reca, Julio Ortega. A Pareto-based Memetic Algorithm for
Optimization of Looped Water Distribution Systems. Engineering Optimization, 2010, 42 (03), pp.223-
240. �10.1080/03052150903110959�. �hal-00567040�

https://hal.science/hal-00567040
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

A Pareto-based Memetic Algorithm for Optimization of 

Looped Water Distribution Systems 
 
 

Journal: Engineering Optimization 

Manuscript ID: GENO-2009-0078.R1 

Manuscript Type: Review 

Date Submitted by the 
Author: 

20-May-2009 

Complete List of Authors: Baños, Raúl; University of Almería, Dept. Computer Architecture 
and Electronics 
Gil, Consolacion; University of Almería, Dept. Computer 
Architecture and Electronics 
Reca, Juan; University of Almeria, Rural Engineering 
Ortega, Julio; University of Granada, Architecture and Computer 
Technology 

Keywords: 
water distribution systems, cost, reliability, multi-objective 
optimization, memetic algorithms 

  

Note: The following files were submitted by the author for peer review, but cannot be converted 
to PDF. You must view these files (e.g. movies) online. 

gENOguide_RaulBanos200509.tex 

 
 

 

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization



For Peer Review
 O

nly

May 20, 2009 12:59 Engineering Optimization gENOguide

Engineering Optimization
Vol. 00, No. 00, October 2008, 1–20

A Pareto-based Memetic Algorithm for Optimization of

Looped Water Distribution Systems
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Looped water distribution networks have traditionally been used in urban and industrial water
supply. Nowadays, they are also being introduced in certain irrigation water distribution
systems, such as in greenhouse horticultural systems. The design of looped networks is a
much more complex problem than the design of branched ones, but their greater reliability
can compensate for the increase in cost. Most papers found in the literature try to minimize
the network investment cost, while other designing objectives are considered as constraints.
This paper introduces a multi-objective memetic algorithm that simultaneously optimizes the
total investment cost, and also the reliability of the network in terms of total surplus power at
the demand nodes. This memetic algorithm uses the Pareto-dominance concept to determine
the quality of the solutions. The results obtained in two small water supply networks, and a
large irrigation water supply network denote the good performance of the memetic algorithm
here proposed in comparison with other well known meta-heuristics.

Keywords: water distribution systems, cost, reliability, multi-objective optimization,
memetic algorithms.

1. Introduction

In mathematics, optimization (Pardalos and Resende 2000) is the discipline which
is concerned with finding inputs of a function that minimize or maximize its value,
in most cases subject to constraints. Combinatorial optimization (Grotschel 1995)
is a branch of optimization which is concerned with the optimization of func-
tions with discrete variables. The optimal design of water distribution networks
is a combinatorial optimization problem that consists of finding the best way of
conveying water from the sources (reservoirs) to the users (demand nodes), satis-
fying some requirements. The typical single-objective constrained formulation of
this problem aims to obtain a combination of pipe diameters (decision variables)
that minimize the network investment cost, while pipe layout, connectivity and
demands are imposed as constraints (Montesinos et al. 1999, Reca and Martinez
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2006). Mathematically, it is a non-linear, constrained and multi-modal problem in-
cluded in the class of complex combinatorial problems known as NP-hard (Gupta
et al. 1993), which implies that it is not feasible to obtain the optimal solution in a
polynomial runtime. For this reason, an interesting, if not the best, way of treating
this problem is to use computational optimization techniques, i.e. the design and
implementation of algorithms for solving optimization problems. As a result of the
research performed in the past, an important number of methods have been ap-
plied to solve this single-objective formulation, including non-linear optimization
models (Varma et al. 1997), global optimization methods (Sherali et al. 1998), and
heuristic approaches (Cunha and Sousa 1999, Maier et al. 2003, Reca and Martinez
2006). The main drawback of the single-objective constrained formulation is that
it does not adequately incorporate the concept of reliability, understood as the
capability of providing adequate supply under both normal and abnormal condi-
tions (Farmani et al. 2005a). Todini (2000) references some previous studies that
demonstrate that the choice of the minimum cost function does not incorporate
the concept of reliability. This is the reason why, in recent years, some authors
have coupled different multi-objective optimization methods considering network
reliability. One difficulty that must be faced is finding an accurate way to express
reliability analytically, and although different measures have been proposed, no
single one is universally accepted (Xu and Goulter 1999). One of the most used
reliability measures is the concept of resilience index proposed by Todini (2000),
which is a measure of the capability of the network to cope with failures and is
related indirectly to system reliability. Some authors have recently used this index
in multi-objective formulations of this problem (Farmani et al. 2005a, Baños et al.
2009). In recent years, this resilience index has been improved in order to overcome
some drawbacks (Prasad and Park 2004, Jayaram and Srinivasan 2008).

It is worth noting that heuristic approaches are suitable when solving NP-hard
problems (Garey and Johnson 1979). Heuristic methods (Glover et al. 1993) can
be seen as simple procedures that provide satisfactory, but not necessarily optimal,
solutions to complex problems in a quick way. Meta-heuristics (Blum and Roli
2003) are generalizations of heuristics in the sense that they can be applied to
a wide set of problems, needing few modifications to be adapted to a specific
case. Over recent years, a number of independent researchers have shown that
Memetic Algorithms (MA) (Moscato and Cotta 2003) is a very effective meta-
heuristic to solve combinatorial optimization problems. MAs are population-based
meta-heuristic search methods that are inspired by Darwinian principles of natural
selection and Dawkins’ notion of meme (Dawkins 1976). The aim of this work is
to evaluate the performance of a new Pareto-based memetic algorithm to optimize
water distribution networks using a multi-objective formulation. In order to achieve
a strong comparison, two other multi-objective meta-heuristics (MOMHs) have also
been implemented and evaluated in two small-sized water supply networks, and a
larger irrigation water supply network.

2. Looped Water Distribution Networks: Multi-Objective Formulation

Typical single-objective formulation (Montesinos et al. 1999, Reca and Martinez
2006) of the optimal design of water distribution networks tries to minimize the
cost with pipe diameters as decision variables, while pipe layout, connectivity and
demands are imposed as constraints. Equation 1 shows the cost function that is
typically used to solve the single-objective formulation of this problem (Reca and
Martinez 2006), where C is the total cost of the network, ci is the cost of the pipe
with diameter i per unit length, Li is the total length of pipe i in the network, and
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npipes is the number of available pipe diameters.

C =
∑npipes

i=1 ciLi (1)

However, some authors (Todini 2000, Prasad and Park 2004, Farmani et al.
2005a, Baños et al. 2009) have extended the traditional single-objective formulation
of the problem in order to consider not only the network investment cost, but
also the reliability of the system. The reliability of a network can be understood
as the capability of providing adequate supply under both normal and abnormal
conditions (Farmani et al. 2005a). However, there are many different alternatives
to consider reliability. In particular, two main research lines have been analysed
in the past to include the concept of reliability (Farmani et al. 2005a): surrogate-
based measures (deterministic modelling) and stochastic analysis of uncertainty
(probabilistic modelling). One of the most used surrogate-based measures is the
resilience index proposed by Todini (2000), which is strongly related to the intrinsic
capability of the system to overcome failures, while still satisfying demands and
pressures in nodes. Although most previous studies considering reliability in this
problem have used the resilience index proposed by Todini, some authors (Prasad
and Park 2004, Jayaram and Srinivasan 2008) have modified this in recent years.
In particular, this paper uses the modified resilience index proposed by Jayaram
and Srinivasan (2008), which overcomes the drawback of Todini’s resilience index
when evaluating networks with multiple sources. In contrast to Todini’s resilience
index, the value of the modified resilience index is directly proportional to the total
surplus power at the demand nodes. Equation 2 shows this modified resilience index
(MRI ) where nnodes is the number of demand nodes, qj is demand at node j, ha,j

is the pressure available at node j, hr,j is the pressure required at node j. It can be
observed that are only considered those solutions with pressures equal to or higher
than that required in all nodes.

MRI =
P

nnodes

j=1
qj(ha,j−hr,j)

P

nnodes
j=1

qjhr,j

× 100 (2)

subject to ha,j≥hr,j ∀j

Thus, the multi-objective formulation of the water distribution network design
consists of finding the best diameter in each pipe so that the network investment
cost (C ) is minimized (Equation 1), while the modified resilience index (MRI ) is si-
multaneously maximized (Equation 2). In the field of multi-objective optimization,
there exist two different ways to consider all the objectives to be optimized. The
first one is using aggregating functions, i.e. all the objectives to be optimized are in-
cluded in a single function using a combination of mathematical operations (Hajela
and Y-Lin 1992). However, the design of aggregating functions is very difficult when
the objectives have different scales of values, e.g. cost and resilience. An interesting
way to overcome this drawback is to apply Pareto-optimization (Goldberg 1989),
which instead of giving a scalar value to each solution, establishes relationships
between solutions according to Pareto-dominance relations. A solution s1 is said
to dominate another s2 when s1 is better in at least one objective, and not worse in
the others. Two solutions are called indifferent or incomparable if neither one dom-
inates the other. All the non-dominated solutions found in the search are usually
stored in an external archive of solutions (ND). As all the objectives are equally
important, the aim of multi-objective optimization is to find the Pareto-optimal set
(or a representative sample of it). The practical advantage of using Pareto-based
multi-objective algorithms is that the front of non-dominated solutions returned
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can be used in a subsequent phase to select one of the solutions according to several
criteria. In the case of water distribution networks, this selection process can be
carried out according to several criteria (economic budget, supply requirements,
etc). For instance, if the economic budget is not limited and/or the supply of water
is critical, solutions with higher values of modified resilience index, but which are
more expensive, should be selected. However, in other networks, where the supply
requirements are not so critical, inexpensive solutions would be selected. Therefore,
the multi-objective algorithm obtains a set (front) of non-dominated solutions, and
later the solution is selected according to the particular circumstances.

3. Multi-Objective Memetic Algorithm (MOMA)

The population-based approach called Memetic Algorithm (MA) was first intro-
duced by Moscato (1989). Memetic Algorithms are optimization techniques in-
spired by Darwinian principles of natural evolution and Dawkins’ notion of a meme
(Dawkins 1976), defined as a unit of cultural evolution that can exhibit local refine-
ment. In practice, MAs apply the operators of the evolutionary algorithms (EAs)
while also applying a separate local search process to refine individuals (Moscato
and Cotta 2003). Many different implementations of memetic algorithms have been
reported across a wide range of applications (Hart et al. 2004, Knowles and Corne
2004, Eusuff et al. 2006).

In the last decade, some authors have proposed MAs for multi-objective opti-
mization. Ishibuchi et al. (1997), proposed the so called Multi-Objective Genetic
Local Search (MOGLS), which is a genetic algorithm for multi-objective optimiza-
tion that employs local search to each individual of the population using a weighted
sum of multiple objectives as a fitness function. Authors demonstrated the high
performance of MOGLS in the flowshop scheduling problems in comparison with
VEGA (Shaffer 1984). Knowles and Corne proposed the memetic-PAES (M-PAES)
(Knowles and Corne 2000), which is an extension of PAES (Knowles and Corne
1999) using a population of agents (solutions) and a crossover operator which re-
combines agents found by the PAES procedure. Promising agents found in the
search are also stored in an external set of agents (external archive). Results ob-
tained in the 0/1 knapsack problem outperformed PAES and were similar to those
obtained by SPEA (Zitzler and Thiele 1999). Later, Jaszkiewicz (2002) presented
an extension of the method proposed by Ishibuchi et al., whose main difference is
the way the agents are selected for recombination. In particular, Jaszkiewicz pro-
posed that the parents were selected from a temporary population that contains a
certain number of agents as the best agents found in the search.

This paper evaluates the performance of a multi-objective memetic algorithm
(MOMA) for solving the multi-objective formulation described in Section 2. The
multi-objective memetic algorithm presented here uses evolutionary operators and
local search. Procedure 1 shows the basic description of MOMA, where: P is the
main population composed of Psize agents. emphParentsrate is the percentage of
agents taken from P that are used to generate the offspring, and ne is the number
of evaluations that determine the stop criterion. The algorithm starts by initial-
ising the population of agents (P). Let us notice that as the agents are randomly
generated some of them have a negative value of the modified resilience index. In
order to avoid these unfeasible solutions, the FeasibleSolution() procedure is called,
which improves the solution in terms of resilience (increasing the pipe sizes) until
the modified resilience index becomes positive or zero and all the minimum de-
mand pressures are fulfilled. The main loop is then repeated until the number of
evaluations of the fitness function exceeds ne. This loop consists of dividing the

Page 4 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

May 20, 2009 12:59 Engineering Optimization gENOguide

Engineering Optimization 5

population into two subpopulations of the same size in order to apply local opti-
mizers in each one, as described below. In each iteration of the main loop some
agents of the same subpopulation are combined to generate an offspring, i.e. a new
agent (network configuration) which takes some pipe diameters from each parent.
In this combination process only the best agents of the main population in terms of
Pareto-dominance can participate as parents. In particular, the agents are sorted
based on a ranking of Pareto-dominance, such that the agent that dominates most
agents in the population has the highest ranking, while the one dominating fewest
has the lowest ranking. Thus, agents are selected from best to worst rankings, such
that when generating offspring, a given percentage of parents (Parentsrate) are se-
lected according to this score. After that, the offspring is improved using one of the
three local optimizers. When all the offspring have been generated and improved
with the local search optimizer, the population P is updated taking into account
this new factor. In particular, the previous population and the offspring are sorted
according to their Pareto-dominance ranking, where the agent which is dominated
by the lowest number of agents (of the population and the offspring) has the highest
rank, and the most dominated agent has the lowest rank. Thus, the new popula-
tion is composed of the Psize agents with highest Pareto-dominance ranking. It is
generally required that the individuals/agents of evolutionary/memetic algorithms
should maintain diversity over the entire search process to avoid the premature
convergence of agents. The diversity of the population of agents can be measured
by various means. One of the most used strategies is Shannon’s information en-
tropy concept (Davidor and Ben-Kiki 1992). This strategy in the single-objective
constrained formulation would be equivalent to saying that the algorithm has con-
verged when a large percentage of agents have the same fitness values (Baños et
al. 2007). As in the multi-objective case there is not a single objective function to
optimize, this strategy must be adapted to consider several objectives. In partic-
ular, our implementation considers that the population has converged in a given
iteration of the main loop when none of the offspring agents have been included in
the new population P, in which case a restart procedure is called, which consists
of re-initialising the main population with new agents.

Procedure 1 : Multi-Objective Memetic Algorithm (MOMA).
Input: Psize, ne, Parentsrate, LO1, LO2;
Output: P;
For i=1 To Psize

P(i) ← Generate randomly an agent();
P(i) ← FeasibleSolution(P(i));

Repeat
For i=1 To Psize

If i≤ Psize/2 Then
parent1 ← SelectParents(P(1), P(Psize/2), Parentsrate);
parent2 ← SelectParents(P(1), P(Psize/2), Parentsrate, parent1);
offspring ← Recombine(parent1, parent2);
LocalOptimizer(LO1, offspring);

Else If i> Psize/2 Then
parent1 ← SelectParents(P((Psize/2)+1), P(Psize), Parentsrate);
parent2 ← SelectParents(P((Psize/2)+1), P(Psize), Parentsrate, parent1);
offspring ← Recombine(parent1, parent2);
LocalOptimizer(LO2, offspring);

P ← UpdatePopulation(P,offspring);
If Convergence(P)=1 Then

Re-startPopulation(P);
Until (number evaluations≥ne);
Return (ND(P));
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Figure 1. (a) Partial Restricted Optimizer, (b) Partial Proportional Optimizer, (c) Unique Proportional
Optimizer.

An important aspect concerns the local search strategies used. MOMA improves
the population by modifying the pipe diameters of the agents using three different
local search strategies: partial restrictive optimizer (PRO); partial proportional op-
timizer (PPO), and unique proportional optimizer (UPO). All the local optimizers
work selecting randomly a pipe from a given network (agent) which is substituted
with another pipe of different diameter. The difference among local optimizers
arises in the criterion of accepting the new solutions after the pipe change, as
Figure 1 shows. In this figure, the dotted lines enclose the area of the objective
space where a given agent s cannot be located after a movement (e.g. after a pipe
change).

• The partial restrictive optimizer (PRO) has two variants, PRO1 and PRO2,
which are applied to each half of population P. In particular, PRO1 tries to im-
prove (minimize) the cost by means of reducing the pipe diameter by one degree,
accepting this change if and only if the cost decreases and the modified resilience
index decreases less than a given percentage (%DMRI). PRO2 tries to improve
(maximize) the modified resilience index by means of increasing the diameters
by one degree, accepting this change if and only if the modified resilience index
increases and the cost increases less than a given percentage (%Icost).
• The partial proportional optimizer (PPO) has two variants, PPO1 and PPO2,

which are also applied to each half of the population P. PPO1 tries to improve
(minimize) the cost by means of reducing the pipe diameter by one degree,
accepting this change if and only if the cost decreases more than the modified
resilience index decrement. PPO2 tries to improve (maximize) the resilience by
means of increasing the diameters by one degree, accepting this change if and
only if the modified resilience index increases more than the cost increment.
• The unique proportional optimizer (UPO) is applied to the entire population,

and consists of randomly increasing or decreasing the pipe diameter by one
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degree of random pipes, accepting only these solutions where the cost reduction
is higher than the modified resilience index reduction or the modified resilience
index increment is higher than the cost increment.

It can be observed that all the local optimizers avoid premature convergence and
guarantee population diversity, since none of the local optimizers are hill climbing
methods where only new improved (dominating) agents are accepted, but they do
also accept new agents which are indifferent or incomparable to the original ones,
whenever they do not increase/decrease a given pre-established cost/resilience,
respectively.

4. Empirical Analysis

4.1. Test Problems

The performance of the multi-objective memetic algorithm proposed and of the
other two MOMHs are evaluated in three gravity-fed looped water distribution
networks. The main characteristics of each network are summarised below. A de-
tailed description of these networks can be found in Reca and Martinez (2006).

• Alperovits and Shamir network (Alperovits and Shamir 1977) is a simple two-
loop network, with seven nodes and eight pipes arranged in two loops. A total of
14 commercial pipe diameters can be selected, i.e. there exist 148 = 1, 4758 ∗ 109

possible configurations;
• Hanoi network (Fujiwara and Khang 1990) consists of 32 nodes, 34 pipes, and

3 loops. A set of 6 available commercial-diameter pipes is used, which implies a
total of 634 = 2, 8651 ∗ 1026 possible configurations;
• Balerma network (Reca and Martinez 2006) is a greenhouse irrigation net-

work that consists of a multi-source network, containing a total of 443 demand
nodes (hydrants), fed by 4 reservoirs. It has 454 pipes and 8 loops. The pipeline
database is composed of ten commercial PVC pipes, i.e. there exist 10454 possible
configurations.

A minimum pressure limitation is 30 meters above ground level for each node
(hr,j=30) in Alperovits-Shamir and Hanoi networks, while Balerma has a pres-
sure limitation of 20 meters (hr,j=20). The interface of the program and the
memetic algorithm have been programmed in the Visual-Basic programming lan-
guage. Database management system has been implemented using a relational
database and the ActiveX Data Objects (ADO) model. EPANET network solver
(Version 2.00.07) (Rossman 2000) has been used considering its default values.

4.2. Parameter Settings

To compare the results of different executions, the stop criterion in the experiments
cannot be fixed to a number of iterations, since each MOMH has particular charac-
teristics that could result in considerable differences in their runtimes. Given this
circumstance, the best way to guarantee the equality of conditions is that all the
methods perform the same number of evaluations of the fitness function. That num-
ber of evaluations, ne, should depend on the complexity of the network. The size of
the search space is a function of the number of links n l and the number of possible
pipe diameters nd. Equation 3 has been adopted to establish a ratio between the
number of evaluations in two different networks (α and β). The resulting fitness
function evaluations are 91690, 264570, and 4540000 for the Alperovits-Shamir,
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Hanoi and Balerma networks, respectively. These values have been obtained tak-
ing as reference that the number of evaluations of the fitness function in Balerma
is ne =10000 × n l.

nβ
e

nα
e

=
n

β

l ∗ln(nβ

d )
nα

l ∗ln(nα
d ) (3)

When applying heuristic methods to optimization problems it is advisable to per-
form a sensitivity analysis, i.e. to determine to what extent the output of the model
depends upon the inputs. One aspect to determine when applying population-based
meta-heuristics in general, and memetics algorithms in particular, is the population
size (Psize). This empirical study has been performed using different population
sizes (Psize = {50, 200, 500} agents) in order to analyse the effect of modifying
this factor. Another important input is the parameter that determines the degree
of elitism, i.e. the percentage of best agents taken from the population P that
are used to generate offspring (Parks et al. 2001). Our empirical study uses Par-
entsrate={10%,25%,50%,100%}, where low values mean that only best solutions
(in terms of Pareto-dominance ranking) are used in the offspring generation (high
elitism), while using the highest value means that all the agents can participate
in this process (without elitism). Another important aspect to determine is the
local optimizer to be applied. In particular, it is analysed which of the three local
optimizers described in Section 3 obtains the best median non-dominated front of
eleven independent runs, using fixed values of Psize=200 and Parentsrate=50%. It
is important to note that while in single-objective optimization it is straightforward
to determine the median value of several runs, in Pareto-based multi-objective op-
timization it is not possible, because it is obtained not one single solution, but
rather several non-dominated solutions as an approximation to the (unknown)
Pareto-optimal front. Thus, each parametric configuration is run eleven times, and
that execution which has the median value in terms of set coverage (SC) and
hyper-volume (HV) is then selected. While PPO and UPO do not use any parame-
ters, each run of PRO uses different parameters (Run1:%Icost=%Dresilience=0%;
Run2:%Icost=%Dresilience=10%; ..., Run11:%Icost=%Dresilience=100%). Once
the local optimizers have been evaluated, a second sensitivity analysis is performed
to determine accurate values of Psize and Parentsrate, as Table 1 shows.

Table 1. Parameters used in the empirical executions.

A B C D E F G H I J K L

Psize 50 50 50 50 200 200 200 200 500 500 500 500

Parentsrate 10% 25% 50% 100% 10% 25% 50% 100% 10% 25% 50% 100%

4.3. Performance Measures

The quality of the sets of non-dominated solutions is evaluated using two metrics:
set coverage, and hyper-volume. Both are based on ideas taken from the metrics
proposed by Zitzler and Thiele (Zitzler and Thiele 1999). A more detailed descrip-
tion of the adaptation of both metrics to this problem can be found in (Baños et
al. 2009).

Set Coverage (SC). Given two subsets of non-dominated solutions, X, X’,
function SC maps the ordered pair (X,X’) to a value z within the interval [0,1].
The value z represents the percentage of solutions of X’ dominated by at least one
solution of X. The value SC (X,X’)=1 means that all solutions in X’ are dominated
by any solution of X. It should be noted that SC is not a symmetric metric, i.e.
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Figure 2. Graphical explanation of the metrics used over two non-dominated sets.

SC (X,X’)=z does not imply that SC (X’,X)=1-z. For instance, if the solutions
of Figure 2(a) are considered, SC (X,X’)=0.75, and SC (X’,X)=0.20, i.e. 75% of
solutions of non-dominated front X’ are dominated by at least one solution of X,
and 20% of solutions of X are dominated by at least one solution of X’.

Hyper-volume (HV). Let X= (x 1, x 2, .., xn) be a set of non-dominated so-
lutions. The function HV (X) returns the area of the objective space (bounded by
a reference point) dominated by at least one of the members of X. The reference
point is x ref=(max(C (xi)),0), i.e. the maximum cost, and the minimum resilience
allowed (0). Figures 2(b) and 2(c) show that HV(X)> HV(X’).

4.4. Results and Discussion

As commented above, the first empirical study here performed aims to de-
termine the performance of the three local optimizers described in Section 2
(PRO,PPO,UPO) using fixed values of Psize=200 and Parentsrate=50%. In all
cases, the comparison has been performed using the median non-dominated front
of eleven runs in terms of set coverage and hyper-volume metrics. For instance,
the median front obtained by MOMA using PRO in Alperovits-Shamir network
was obtained using %Icost=%Dresilience=30%. Table 2 shows a comparison of the
three local optimizers in Alperovits-Shamir network. It can be observed that only
few solutions of PPO or UPO are dominated by at least one solution of PRO,
while PPO dominates 56.3% and 35.7% of the solutions found by PRO and UPO,
respectively. UPO dominates 43.8% and 53.0% of the solutions of PRO and PPO,
respectively. In terms of set coverage, UPO obtains the best average result and
best ranking, while PPO is the best in terms of hyper-volume. Therefore, it can
be concluded that PPO and UPO could be ranked with the same value. Similar
analysis is made in the Hanoi network, as displayed in Table 3. In this network,
PRO (%Icost=%Dresilience=40%), PPO, and UPO obtain the same final ranking.
The reason for the good performance of PRO in terms of hypervolume is due to
the the fact that the front of non-dominated solutions obtained by this local opti-
mizer obtains extreme solutions (low cost), and therefore dominates a greater area
of the objective space (see Figure 3). Finally, Table 4 shows that when comparing
the three local optimizers in Balerma network, UPO obtains a higher final ranking
than UPO and PRO (%Icost=%Dresilience=50%).

Figures 3, 4 and 5 show the non-dominated fronts obtained by these optimiz-
ers in Hanoi, Alperovits-Shamir, and Balerma networks, respectively. These figures
confirm that non-dominated solutions obtained by UPO and PPO are very similar,
outperforming the results obtained by the restrictive approach (PRO). The reason
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Table 2. Sensitivity analysis of local optimizers in Alperovits-Shamir network.

PRO PPO UPO AVG SC (RANK) HV (RANK)
P

RANK FINAL RANK

PRO 0.0606 0.0804 0.0705 (3) 0.8226 (3) 6 2

PPO 0.5625 0.3571 0.4598 (2) 0.8494 (1) 3 =1

UPO 0.4375 0.5303 0.4839 (1) 0.8465 (2) 3 =1

Table 3. Sensitivity analysis of local optimizers in Hanoi network.

PRO PPO UPO AVG SC (RANK) HV (RANK)
P

RANK FINAL RANK

PRO 0.1458 0.0659 0.1059 (3) 0.3901 (1) 4 =1

PPO 0.4255 0.1264 0.2760 (2) 0.3828 (2) 4 =1

UPO 0.3511 0.5347 0.000 0.4429 (1) 0.3792 (3) 4 =1

Table 4. Sensitivity analysis of local optimizers in Balerma network.

PRO PPO UPO AVG SC (RANK) HV (RANK)
P

RANK FINAL RANK

PRO 0.0119 0.0066 0.0093 (3) 0.6469 (3) 6 3

PPO 0.5429 0.0199 0.2814 (2) 0.8266 (2) 4 2

UPO 0.4571 0.4071 0.4321 (1) 0.8291 (1) 2 1
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Figure 3. Comparison of median fronts obtained by local optimizers in Hanoi network.

for the poor performance of PRO is the difficulty of establishing adequate values of
%Icost and %Dresilience. On the other hand, it can be observed that the effect of
dividing the population into two subpopulations in an attempt to optimize each ob-
jective separately (PRO and PPO) does not have a clear advantage in comparison
with using a unique proportional optimizer in the entire population (UPO). Con-
sidering that UPO obtains the highest final ranking in all the networks, and that
it also obtains the best ranking in terms of set coverage, the unique proportional
optimizer (UPO) will be used as local optimizer in MOMA.

Once it has been evaluated the performance of the three local optimizers, a
second sensitivity analysis is performed to determine accurate values of Psize and
Parentsrate, using the values described in Table 1. Firstly, let us analyse the results
obtained by these configurations from the point of view of the set coverage metric
(Metric SC). Table 5 shows the set coverage values in Alperovits-Shamir network.
In particular, numerical values located in row i, column j indicate the set coverage
between both executions (SC (i,j)). For instance, the value 0.475 in row D, column
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Figure 4. Comparison of median fronts obtained by local optimizers in Alperovits-Shamir network.
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Figure 5. Comparison of median fronts obtained by local optimizers in Balerma network.

B means that 47.5% agents (solutions) of B are dominated by at least one agent of
D. The last column displays the average (AVG) of all the coverage values. From this
table some conclusions can be drawn about the impact of parametric settings of
these MOMHs for this problem. When analysing this table it can be perceived that
configuration F (Psize=200; Parentsrate=25%) obtains the best average coverage.
In general, runs using 200 agents often obtain higher set coverage values than
using 50 or 500 agents. However, it is not possible to obtain clear conclusions
about the best value of Parentsrate, although rates of 25% obtain good results.
The same analysis is performed on the Hanoi network. As Table 6 displays, once
again configuration F obtains the highest set coverage. In this case, the use of
populations of 200 agents also often improves the results obtained using 50 or
500 agents. As in Alperovits-Shamir network, it is very difficult to obtain a clear
conclusion about the best values of Parentsrate. Finally, Table 6 shows the results
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obtained in Balerma network, and it is observed that configuration F also obtains
the highest average coverage. Therefore, it is possible to conclude that the best
parametric configuration to be used in terms of coverage is F.

Table 5. Set Coverage (metric SC) of MOMA in Alperovits-Shamir network.

A B C D E F G H I J K L AVG

A — 0.425 0.132 0.356 0.083 0.058 0.071 0.067 0.078 0.067 0.067 0.089 0.136

B 0.220 — 0.132 0.254 0.095 0.039 0.054 0.112 0.052 0.076 0.122 0.144 0.118

C 0.561 0.650 — 0.492 0.191 0.175 0.080 0.146 0.198 0.124 0.167 0.289 0.279

D 0.293 0.475 0.283 — 0.083 0.107 0.089 0.124 0.095 0.095 0.144 0.211 0.182

E 0.634 0.625 0.585 0.712 — 0.340 0.357 0.371 0.345 0.267 0.367 0.500 0.464

F 0.781 0.825 0.755 0.763 0.548 — 0.500 0.584 0.517 0.410 0.533 0.622 0.622

G 0.756 0.775 0.698 0.729 0.476 0.369 — 0.416 0.397 0.381 0.456 0.544 0.545

H 0.732 0.650 0.642 0.695 0.429 0.291 0.393 — 0.379 0.257 0.367 0.489 0.484

I 0.732 0.775 0.623 0.712 0.512 0.359 0.464 0.449 — 0.305 0.500 0.533 0.542

J 0.707 0.750 0.660 0.763 0.548 0.418 0.518 0.483 0.474 — 0.533 0.567 0.584

K 0.707 0.625 0.547 0.661 0.488 0.359 0.366 0.405 0.328 0.267 — 0.489 0.477

L 0.683 0.550 0.377 0.509 0.357 0.282 0.357 0.315 0.336 0.219 0.267 — 0.387

Table 6. Set Coverage (metric SC) of MOMA in the Hanoi network.

A B C D E F G H I J K L AVG

A — 0.265 0.349 0.516 0.105 0.104 0.110 0.122 0.235 0.326 0.302 0.340 0.252

B 0.310 — 0.258 0.375 0.105 0.055 0.088 0.085 0.333 0.348 0.460 0.383 0.255

C 0.250 0.279 — 0.359 0.099 0.071 0.071 0.116 0.177 0.304 0.302 0.319 0.213

D 0.179 0.250 0.288 — 0.072 0.060 0.082 0.098 0.177 0.326 0.302 0.340 0.198

E 0.655 0.632 0.652 0.719 — 0.368 0.401 0.384 0.549 0.435 0.492 0.426 0.519

F 0.655 0.750 0.682 0.688 0.454 — 0.462 0.500 0.451 0.435 0.492 0.426 0.545

G 0.643 0.735 0.667 0.719 0.368 0.352 — 0.457 0.451 0.435 0.508 0.426 0.524

H 0.595 0.721 0.621 0.656 0.382 0.280 0.335 — 0.510 0.478 0.492 0.468 0.504

I 0.000 0.000 0.000 0.000 0.079 0.060 0.050 0.049 — 0.087 0.127 0.128 0.053

J 0.000 0.000 0.000 0.000 0.092 0.066 0.066 0.061 0.784 — 0.365 0.170 0.146

K 0.000 0.000 0.000 0.000 0.099 0.077 0.066 0.073 0.706 0.587 — 0.298 0.173

L 0.000 0.000 0.000 0.000 0.099 0.077 0.071 0.073 0.804 0.478 0.587 — 0.199

Table 7. Set Coverage (metric SC) of MOMA in the Balerma network.

A B C D E F G H I J K L AVG

A — 0.129 0.000 0.090 0.004 0.034 0.033 0.058 0.008 0.010 0.000 0.000 0.033

B 0.054 — 0.055 0.135 0.013 0.063 0.073 0.068 0.031 0.020 0.000 0.000 0.047

C 0.609 0.247 — 0.416 0.113 0.093 0.080 0.068 0.008 0.010 0.000 0.000 0.149

D 0.239 0.400 0.044 — 0.026 0.144 0.113 0.068 0.008 0.020 0.000 0.000 0.099

E 0.489 0.541 0.055 0.315 — 0.211 0.291 0.408 0.450 0.330 0.390 0.521 0.364

F 0.000 0.400 0.000 0.000 0.322 — 0.431 0.796 0.626 0.700 0.878 0.833 0.453

G 0.000 0.271 0.000 0.000 0.322 0.317 — 0.806 0.733 0.820 0.842 0.833 0.449

H 0.000 0.000 0.000 0.000 0.222 0.131 0.066 — 0.176 0.440 0.671 0.729 0.221

I 0.000 0.000 0.000 0.000 0.217 0.228 0.139 0.670 — 0.690 0.866 0.792 0.327

J 0.000 0.000 0.000 0.000 0.183 0.084 0.060 0.408 0.183 — 0.793 0.896 0.237

K 0.000 0.000 0.000 0.000 0.139 0.030 0.046 0.243 0.099 0.210 — 0.667 0.130

L 0.000 0.000 0.000 0.000 0.048 0.017 0.020 0.087 0.038 0.030 0.281 — 0.047

Table 8 shows the results obtained by MOMA considering the hypervolume met-
ric (Metric HV) in Alperovits-Shamir, Hanoi, and Balerma networks. The hypervol-
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ume obtained using 200 (configurations E, F, G, H) and 500 agents (configurations
I, J, K, L) is often higher than using 50 (configurations A, B, C, D) in all the net-
works, especially in Balerma. As regards the Parentsrate, using intermediate rates
higher than 25% often obtains slightly better results than using low rates (10%),
which denotes that applying a high elitism pressure does not imply an increase in
the quality of the sets of non-dominated solutions.

Table 8. Hypervolume of MOMA in Alperovits-Shamir, Hanoi and Balerma Networks.

A B C D E F G H I J K L

HVAlperovits 0.793 0.759 0.821 0.796 0.844 0.846 0.847 0.844 0.848 0.845 0.846 0.849

HVHanoi 0.352 0.339 0.354 0.353 0.369 0.370 0.379 0.370 0.290 0.311 0.323 0.320

HVBalerma 0.661 0.665 0.622 0.664 0.843 0.849 0.847 0.846 0.846 0.845 0.838 0.824

Having considered the results obtained by the implemented MOMA in both met-
rics, it must be decided which is the best parametric configuration. To this end it
is established a ranking among configurations according to both metrics. Table 9
summarizes these results for Alperovits-Shamir network. The first column shows
the configurations, the second one the average set coverage and their respective
rankings. The third column shows the hypervolumes and the corresponding rank-
ings. Finally, the last two columns display the sum of rankings of coverage and
hypervolume, and the relative order among methods. Taking into account the last
column, it can be deduced that the best configurations are F, G, and I. Table 10
shows the same ranking analysis but for the Hanoi network. In this case, the best
configuration is G. In the case of Balerma, Table 11 shows that the best parametric
configuration is F. This indicates that it is more advisable, especially in Hanoi, to
perform an in-depth search, i.e. using few agents (Psize={50,200}), which means
that each agent perform more evaluations of the fitness function than using larger
populations (Psize=500), where the diversity is higher, but each agent performs a
shorter search.

Table 9. Ranking of parametric configurations in Alperovits-Shamir network.

Config. AVG SC (RANK) HV (RANK HV)
P

RANK FINAL RANK

A 0.1358 (11) 0.7925 (11) 22 9

B 0.1182 (12) 0.7594 (12) 24 10

C 0.2793 (9) 0.8214 (9) 18 7

D 0.1817 (10) 0.7959 (10) 20 8

E 0.4638 (7) 0.8437 (8) 15 6

F 0.6215 (1) 0.8455 (5) 6 1=

G 0.5451 (3) 0.8465 (3) 6 1=

H 0.4839 (5) 0.8438 (7) 12 5

I 0.5422 (4) 0.8479 (2) 6 1=

J 0.5837 (2) 0.8452 (6) 8 2

K 0.4765 (6) 0.8460 (4) 10 4

L 0.3865 (8) 0.8486 (1) 9 3

Having performed the parametric analysis of the proposed MOMA in the water
distribution networks, and having obtained the best parametric configurations, the
next step is to compare the results with those obtained by the other two well
known MOMHs that use the concept of Pareto-dominance: SPEA2 (Zitzler et al.
2001) and PESA (Corne and Knowles 2000). The performance of SPEA2 in this
problem was evaluated by Farmani et al. (Farmani et al. 2005b). Baños et al. (2009)
applied SPEA2, PESA and other MOMHs to this problem using Todini’s resilience
index and admitting solutions with positive values of the resilience index. However,
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Table 10. Ranking of parametric configurations in the Hanoi network.

Config. AVG SC (RANK) HV (RANK HV)
P

RANK FINAL RANK

A 0.2522 (6) 0.3519 (7) 13 6=

B 0.2545 (5) 0.3394 (8) 13 6=

C 0.2134 (7) 0.3535 (5) 12 5

D 0.1976 (9) 0.3528 (6) 15 7

E 0.5193 (3) 0.3693 (4) 7 4

F 0.5448 (1) 0.3695 (3) 4 2

G 0.5237 (2) 0.3792 (1) 3 1

H 0.5035 (4) 0.3698 (2) 6 3

I 0.0527 (12) 0.2897 (12) 24 11

J 0.1459 (11) 0.3109 (11) 22 10

K 0.1732 (10) 0.3233 (9) 19 9

L 0.1991 (8) 0.3204 (10) 18 8

Table 11. Ranking of parametric configurations in the Balerma network.

Config. AVG SC (RANK) HV (RANK HV)
P

RANK FINAL RANK

A 0.0333 (12) 0.6613 (12) 24 10

B 0.0465 (11) 0.6645 (9) 20 9

C 0.1493 (7) 0.6621 (11) 18 7=

D 0.0992 (9) 0.6639 (10) 19 8

E 0.3638 (3) 0.8433 (6) 9 4

F 0.4532 (1) 0.8490 (1) 2 1

G 0.4493 (2) 0.8474 (2) 4 2

H 0.2213 (6) 0.8456 (4) 10 5=

I 0.3274 (4) 0.8458 (3) 7 3

J 0.2369 (5) 0.8445 (5) 10 5=

K 0.1303 (8) 0.8377 (7) 15 6

L 0.0473 (10) 0.8235 (8) 18 7=

these methods have been adapted to this study using now the modified resilience
index and obliging solutions to have not only positive values of resilience, but also
pressure higher than that required in all the demand nodes. Parameter settings of
SPEA2 and PESA obtained in a previous work (Baños et al. 2009) are used in the
comparison with the memetic algorithm, but always considering the same number
of evaluations of the fitness function according to Equation 3.

In reference to Alperovits-Shamir network, the results shown in Table 12 indicate
that agents obtained by MOMA dominate 36.1%, and 28.6% of those obtained by
SPEA2 and PESA, respectively, while fewer than 21.4% of the agents of MOMA
are dominated by the solutions obtained on the other fronts. Figure 6 compares
these MOMHs in Alperovits-Shamir network. It can be seen that although all the
methods are very close, MOMA is able to dominate many agents of the other
MOMHs.

Table 12. Set Coverage (SC) among MOMHs using their best run in Alperovits-Shamir network.

SPEA2 PESA MOMA

SPEA2 0.5714 0.2136

PESA 0.0164 0.0583

MOMA 0.3607 0.2857

Table 13 shows the same analysis performed on the Hanoi network. Here again,
MOMA is clearly the best method. In fact, fewer than 10.5% of the agents of
MOMA are dominated by the solutions obtained on the other fronts, while MOMA
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Figure 6. Non-dominated agents obtained by the MOMHs in Alperovits-Shamir network.

dominates over 59.1% of the solutions of the remaining MOMHs. These conclusions
can be graphically corroborated in Figure 7.

Table 13. Set Coverage (SC) among MOMHs using their best run in the Hanoi network.

SPEA2 PESA MOMA

SPEA2 0.5000 0.1044

PESA 0.0000 0.0110

MOMA 0.5915 0.6667

Finally, it is evaluated the performance of all the MOMHs in the large-scale
irrigation network (Balerma) using their best parameter settings. Let us note that
this irrigation network has several branches, and so the results could be improved by
increasing the local search process in these links. However, with a view to comparing
the performance of the method with the other meta-heuristics, MOMA operators
have been used without particular adaptations, i.e. the local optimizers evaluate
not only branch pipes, but also random ones. Table 14 shows the coverage ratios
obtained by the executions performed in the Balerma network. Once again, MOMA
outperforms the remaining MOMHs, dominating over 59.1% of the solutions of the
remaining MOMHs. These results can be graphically observed in Figure 8.

Table 14. Set Coverage (SC) among MOMHs using their best run in the Balerma network.

SPEA2 PESA MOMA

SPEA2 0.3810 0.1224

PESA 0.0000 0.0211

MOMA 0.5294 0.8095

Table 15 shows the results obtained by the best run of each MOMH in all the
networks, considering the hyper-volume (HV). It can be seen that, although all
the methods obtain approximate hyper-volumes in most cases, MOMA is the best
in Alperovits-Shamir, and Balerma networks, while SPEA2 slightly outperforms
MOMA in Hanoi. These results reinforce the previous conclusions obtained using
the set coverage (SC).
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Figure 7. Non-dominated solutions obtained by the MOMHs in the Hanoi network.
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Figure 8. Non-dominated solutions obtained by the MOMHs in the Balerma network.

The better performance of MOMA in comparison with SPEA2 and PESA would
be explained by the use of the local optimizers. While SPEA2 and PESA apply
recombination and mutation operators to improve the quality of the solutions,
MOMA also substitutes the random mutation of SPEA2 and PESA with a local
optimizer. The main difference between the mutation operator of SPEA2 and PESA
and the local optimizer of MOMA is that, although in all cases a pipe diameter is
modified, in MOMA it is modified only one degree in a pre-established direction
(i.e. increasing or reducing the pipe diameter by one degree depending on whether
the aim is to reduce the cost or increase the resilience). Therefore, MOMA makes
a better use of the number of evaluations than SPEA2 and PESA.
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Table 15. Hyper-volume (HV) obtained by all the MOMHs in all three networks.

SPEA2 PESA MOMA

Hyper-volume (ALP) 0.8423 0.8323 0.8455

Hyper-volume (HAN) 0.3808 0.2678 0.3792

Hyper-volume (BAL) 0.7157 0.7412 0.8377

5. Conclusions

This paper presents and evaluates the performance of a new memetic algorithm to
solve a multi-objective formulation of the water distribution network design prob-
lem. This formulation tries to reduce the total investment cost, while increasing the
reliability of the network by modifying the pipe diameters, which are the decision
variables. The reliability of the network has been measured by using the recently
proposed modified resilience index, whose values are directly proportional to the
total surplus power at the demand nodes. Unlike single-objective optimization,
where a numerical value is enough to determine the quality of the solutions, in
Pareto-based multi-objective optimization this process is more complicated. With
the aim of overcoming this drawback, two metrics have been used when compar-
ing non-dominated fronts, and these, together with the graphical plotting of the
non-dominated fronts, provide the reader with information about the performance
of each method. Three different local search optimizers have been proposed and
empirically evaluated, concluding that the so-called unique proportional optimizer
obtains the best results. On the other hand, the parameters of the memetic algo-
rithm have been set under the condition that all the runs perform the same number
of evaluations. It has been observed that modifying the percentage of parents used
to generate offspring does not have a clear impact on the results obtained, but
these results also show that intermediate-sized populations obtain the best results
in almost all runs. The results obtained by the memetic algorithm here proposed
are compared with two other meta-heuristics in order to establish a strong com-
parison. In general, all the methods here evaluated have obtained good results
when applied to three benchmark water distribution networks, but especially the
memetic algorithm, which is closer to the Pareto-optimal front, particularly in the
largest network (Balerma). The reason for this better performance of MOMA is
the advantage of using a local search optimizer that increases or reduces the pipe
diameter by one degree depending on whether the aim is to reduce the cost or
increase the resilience. These conclusions can offer very useful guidelines for solv-
ing larger realistic loop water distribution networks. Furthermore, this study helps
researchers to optimize other design objectives for this problem.
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