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Évolution de la dimension fractale pour un modèle de trafic.

Évolution de la dimension fractale pour un modèle de trafic

Une méthode alternative pour l'appréhension morphogénique d'un flux, simulé en système multi-agent ?

I. Introduction

Dans un premier temps, nous allons présenter les méthodes et les outils utilisées,en précisant leur intérêt et leur cadre d'application. Nous posons ensuite le problème et nous expliquerons la démarche utilisée pour réaliser l'étude.

A. Systèmes Multi-Agents

Un système multi-agents est un outil informatique de modélisation composé d'agents. Les agents sont des entités virtuelles autonomes, capables d'interagir avec d'autres entités et d'agir sur leur environnement. Selon leur comportement, ils peuvent se déplacer, communiquer et apprendre. Néanmoins, ils possèdent une connaissance toujours limitée de leur environnement et des ressources qui leur sont propres (Ferber J. 1995, p.13).

Au sein des sciences cognitives et sociales, les SMA offrent la possibilité de programmer simplement un monde artificiel à base d'agents, à partir de théories, de lois et d'hypothèses (Daudé E. 2003). Il est alors possible d'observer le comportement du système dans son environnement, et sa réaction à la variation de certains paramètres. Tout l'enjeu de cette approche est de concevoir, selon le principe de parcimonie, des règles de fonctionnement simples de nos agents, mais précisément choisies pour répondre à une problématique clairement identifiée. Connaissant toutes les composantes et tous les paramètres du système, l'outil permet alors d'observer et de comprendre un comportement global, avec des effets de structuration, de transition, d'émergence, etc. (M. [START_REF] Vidal | Fundamentals of Multiagent Systems with NetLogo Examples[END_REF]).

Les SMA, bien que disposant d'un très large spectre applicatif, se prêtent particulièrement bien à la simulation de la mobilité car le mouvement, c'est à dire le « changement de position dans l'espace en fonction du temps, par rapport à un système de référence » (Le Grand Robert, Version numérique), est une propriété intrinsèque de l'outil.
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B. Dimension fractale

La géométrie fractale a été définie par Benoît Mandelbrot en 1975 comme « la géométrie de l'irrégulier, du fragmenté, du fractionné » en opposition à la géométrie euclidienne [START_REF] Martin | Quelle est la dimension du massif karstique de la Sainte Baume ?[END_REF]. La dimension fractale permet de décrire l'irrégularité de forme d'un objet à travers les échelles. En géographie, on est souvent confronté à des objets multi-fractale, c'est-à-dire avec une irrégularité de la dimension fractale en fonction de ses résolutions d'observation (Dauphine A. 2004).

De nombreux travaux montrent que la géométrie fractale est une approche pertinente, ou du moins complémentaire à d'autres méthodes, telle que la théorie des graphes, pour analyser et caractériser des réseaux. En effet, « des réseaux topologiquement identiques peuvent être spatialement distincts et desservir le territoire de façon différente » (Genre-Grandpierre C. 1999). La dimension fractale va donc décrire l'hétérogénéité du réseau sur un espace délimité, sachant qu'une dimension (théorique) égale à deux signifierait que le réseau dessert tout point de l'espace, et à l'inverse, une dimension égale à un correspondrait à un réseau rectiligne et mono scalaire.

C. Réseaux et mobilités

Dans ce travail, nous avons calculé la dimension fractale d'un réseau de transport simulé. L'épaisseur des traits que nous visualisons à l'écran et que nous avons mesurée reflète la fréquentation de chaque arc. Nous avons décidé de prendre en compte seulement la fréquentation, et non la densité d'utilisation qui correspond à un flux mesuré (ou simulé) rapporté à la longueur d'un arc (Genre-Grandpierre C. 2000), car nous nous intéressons seulement au chemin emprunté par les taxis et à la récurrence des trajets. Notre méthode est assez similaire à des calculs de dimension fractale d'un réseau routier dont la taille des arcs dépend de la typologie des axes (par exemple, une autoroute correspondrait à l'arc le plus épais). Sauf que, dans notre cas, la hiérarchie du réseau émerge du modèle au lieu d'être définie comme un paramètre initial. Cette émergence va dépendre de la topologie du réseau, de la localisation des points de dessertes, de la densité de la demande de mobilité, mais aussi des principes de déplacement des véhicules pour lesquels nous avons implémenté une procédure d'optimisation des tournées. 

D. Questions

E. Démarche

Voici les différentes étapes que nous avons suivies pour réaliser ce travail :  Simuler un service de transport non régulé théorique en SMA ;

 Calculer la dimension fractale de différents moments de la simulation grâce à un export d'images cadencé toutes les 20 itérations logicielles (ou ticks) ;

 Observer l'évolution de la dimension fractale en comparant avec les images exportées ;

 Interpréter les résultats et critiquer la méthode.
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II. Le modèle

Dans cette partie, nous allons fournir des explications précises sur le modèle simulé, puis nous décrirons les modifications que nous y avons apporté pour cette étude.

A. Le modèle initial 1. Contexte

Le modèle utilisé a été extrait d'un premier travail [START_REF] Lammoglia | Simulation d'un transport spontané non régulé, par un système multiagents[END_REF]. Il a été développé dans l'optique de simuler différents degrés d'optimisation pour un service de transport non régulé et très peu contraint. Il s'agissait d'observer, grâce à une analyse statistique exploratoire, différents indicateurs permettant de décrire l'efficacité du transport (nombre de clients total, taux de remplissage par tournée, etc.). Au cours des simulations, nous avons pu observer l'évolution du trafic graphiquement, mais aucune analyse morphologique quantitative des tournées n'a été réalisée. Nous avons choisi de réutiliser le modèle car il intégrait déjà des indicateurs de trafic et vu son caractère purement théorique, il était facile de l'adapter pour ce travail. La méthode présentée ici nous permet donc d'analyser notre service de transport selon une autre approche et de préciser ou de réfuter les hypothèses dégagées au cours des observations.

Composition

Nous modélisons ici les déplacements de deux catégories d'agents mobiles : des villageois qui se déplacent à destination des marchés les plus attractifs grâce à des taxis. Le territoire virtuel de la simulation est constitué de stations qui permettent de prendre en charge des clients à destination de marchés définis selon un potentiel gravitaire [START_REF] Lammoglia | Simulation d'un transport spontané non régulé, par un système multiagents[END_REF]. Les stations se situent aux intersections des routes comme des points de rencontre entre les taxis et les villageois. Elles correspondent aux sommets d'un graphe complet non planaire sur lequel se déplacent les véhicules avec ou sans client(s) dans un espace isotrope, mais non continu. Appliquant le principe de parcimonie, chaque agent a une fonction relativement limitée qui lui est propre.

Les villageois apparaissent aléatoirement (loi random) sur le territoire au début de la journée et en même quantité. Ils choisissent leur marché de destination et si celui-ci est trop éloigné, ils se déplacent vers une station pour prendre un taxi qui les déposera au marché. Les marchés et les stations acquièrent un potentiel d'attractivité selon le nombre de clients captés et de véhicules passés. Une fois arrivés à destination, les villageois disparaissent du modèle. La figure 1 montre comment est structuré l'environnement.

Les taxis prennent les clients et choisissent un itinéraire pour réaliser leur tournée. Une tournée correspond au déplacement d'un taxi à partir de la prise en charge d'un ou plusieurs villageois jusqu'à destination du marché. Selon nos observations antérieures, leur forme dépend du processus d'optimisation utilisé, de la répartition des villageois et surtout de la topologie du réseau. Elles varient plus ou moins en fonction du temps de la simulation. C'est cette évolution qui sera l'objet de cette étude. 

Fonctionnement

Nous ne rentrerons pas dans les détails techniques des procédures de nos agents dans cet article. Il est néanmoins important de préciser les processus permettant l'optimisation des tournées.

L'optimisation consiste à maximiser le potentiel gravitaire des stations par le villageois et par le taxi. En effet, le villageois se déplace en fonction du potentiel d'attractivité des stations rapporté à la distance. Les véhicules sont capables de reconnaître les stations possédant la plus forte demande de mobilité, c'est-à-dire les stations où il y a eu le plus de clients embarqués. Les deux agents ont donc une capacité de cognition mais avec une connaissance toujours limitée de leur environnement. Dans ce modèle, nous avons à la fois l'effet de distance qui joue un rôle dans l'organisation des tournées, mais surtout, le comportement plus rationnel des agents.

B. Évolution du modèle

Le modèle que nous avons simulé pour les calculs de dimension fractale est similaire, dans le fond, au modèle initial. Nous avons néanmoins apporté un certain nombre de modifications sur la forme. En effet, le modèle n'est plus adapté pour une analyse visuelle des déplacements des agents, mais il a été modifié pour pouvoir effectuer des calculs de dimensions fractales à un pas de temps prédéfinis.

Dans cette présentation, nous ne nous intéressons plus à l'efficacité du service de transport, mais plutôt à la -4 -Évolution de la dimension fractale pour un modèle de trafic. morphogenèse des déplacements (trajets et tournées confondus). Plus concrètement, nous avons fait en sorte que tous les objets de la simulation (routes, stations, villageois et taxis) soient cachés pendant l'exécution du modèle (à noter que nous pouvons les faire réapparaître à tout moment). Sur l'écran de la simulation, il ne reste plus que la trace des déplacements des taxis. Chaque fois qu'un taxi parcourt un axe, un trait se forme. L'épaisseur de la trace est proportionnelle à la fréquentation de l'axe par chaque taxi. On parlera alors de trafic routier des taxis. Notre indice de trafic correspond au nombre de passages effectués sur chaque arc du réseau, normalisé par la fréquentation de l'arc possédant le plus grand nombre de passages. Le fait de normaliser l'indice nous permet d'avoir un grossissement proportionnel des axes tout en limitant l'épaisseur des traits pour une meilleure lisibilité. Sur les images extraites, nous visualisons les axes en blancs sur un fond noir comme nous pouvons le voir sur les figures 2 et 3. 

III. Le calcul des dimensions fractales

Nous allons maintenant préciser la méthode de calcul de dimension fractale, puis nous expliquons comment nous avons utilisé l'information.

A. La méthode et les outils utilisés

Après avoir simulé notre modèle et exporté les captures d'écran, nous avons importé et traité les images sur Mathematica de manière automatique. Il a été nécessaire de convertir les images qui étaient par défaut en niveaux de gris, en points noirs ou blancs.

Les calculs de dimensions fractales ont été réalisés par Maxime Forriez en suivant un algorithme initialement développé par Laurent Nottale, permettant l'estimation d'une dimension fractale par le comptage des boîtes carrées (Forriez M. 2010). Le coté de la plus petite boîte mesure 1 pixel et celui de la plus grande 523 pixels (l'étendue de notre image).

Les algorithmes de calcul ont également été développés sur Mathematica et les graphiques de dimension fractale ont été automatiquement générés à partir du logiciel. Le temps nécessaire pour effectuer tous ces calculs a été d'environ 30 minutes, ce qui est relativement court vu le nombre d'images qui a été traité. La méthode est donc efficace d'un point de vue technique.
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B. L'information extraite

A partir de nos calculs, deux types de graphique de dimension fractale ont été tracés : un avec un ajustement linéaire et un autre avec un ajustement polynomial. En effet, au début de la simulation, les points forment une courbe non linéaire alors qu'ils tendent vers une droite en fin de simulation. Pour chaque pas de temps, c'est-à-dire pour chaque image extraite, deux graphiques ont été créés : 1 080 au total.

Un tableau récapitulatif a été exporté. Nous pouvons y lire pour chaque image :

 le nombre de points comptés (ln N) en fonction de la résolution (ln E) ;

 les coefficients de la droite de régression linéaire avec l'erreur statistique et et la variable t de Student ;

 le coefficient de corrélation de la régression linéaire ;

 les trois coefficients des polynômes du second degré, avec toujours l'erreur statistique et la variable t de Student ;

 le coefficient de corrélation et de détermination du polynôme.

Ainsi, nous avons pu construire un graphique représentant l'évolution des coefficients de la droite de régression linéaire et surtout le graphique de l'évolution de la dimension fractale qui est la valeur absolue du coefficient a de l'équation y = ax + b.

IV. Résultats

Dans une dernière partie, nous allons présenter les résultats que obtenus. Nous essayons, ensuite, de les interpréter en distinguant les principales informations de ce travail à retenir.

A. Observations a) Fonctions d'ajustement

En observant les graphiques, on se rend compte que l'on passe d'une courbe non linéaire (Figure 4) à une droite au début de la simulation, d'où l'intérêt de calculer l'ajustement polynomial en plus de l'ajustement linéaire. L'équation de la courbe pour la première image est ln N = 6,7 -2,29(ln E) + 0,21(ln E)², mais, dès la deuxième image, on se rend compte que la courbure s'atténue. On observe sur la figure 5 une droite, aux alentours des 600 itérations, alors que le coefficient de second degré est égale à 0 à partir des 1 400 itérations. Notre simulation se faisant sur 9 000 itérations et la transition étant relativement rapide, nous pensons que cela ne remet pas en cause la pertinence de la méthode. Il est néanmoins important d'interpréter et de comprendre cette observation (cf. IV. B. a)). A l'aide des exports d'images, nous avons pu comparer différentes phases de la simulation et aller plus loin dans nos observations :  0 -80 ticks : les trajets sont très concentrés autour des deux marchés du bas (cf. Figure 2). Les déplacements des taxis sont minimes car ils vont chercher les villageois les plus proches du marché polarisant, afin d'optimiser leurs tournées ;
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 80 ticks : il apparait une forte concentration de déplacements sur un petit axe entre les deux marchés du bas. On est en présence d'un arc qui semble jouer un rôle de centre, ou du moins, de passage obligé pour la desserte des deux marchés voisins. Cet arc, bien que plus discret, se distingue tout au long de la simulation ;

 1 300 -5 880 ticks : les tournées se dispersent et le troisième marché, qui jusqu'alors, était desservi par un seul taxi isolé, se rattache au réseau (cf. Figure 6). Sur cette période, les taxis ont commencé à s'éloigner de l'aire d'attraction de leur marché privilégié ;

 5 880 -9 000 ticks : la forme du réseau ne semble plus trop évoluer. On a l'impression que les taxis ont exploré les stations les plus intéressantes (cf. Figure 3), même si, de temps en temps, il apparaît de nouveaux arcs. La hiérarchie des arcs se structure et la différence de taille entre les traits s'atténue (à cause de la normalisation par l'arc le plus fréquenté). 

c) L'évolution de la dimension fractale

En analysant la courbe (cf. Figure 7), nous pouvons repérer des seuils et des étapes que nous comparerons avec ceux qui ont été observés précédemment :  0 -80 ticks : la dimension fractale évolue beaucoup ( 1,2 D n 1,3 ), avec une croissance soudaine. Cependant, comme nous l'avons vu précédemment, cette partie de la simulation ne peut pas être prise en compte puisque nous utilisons un ajustement linéaire alors que, sur cette période, nous sommes en présence d'une polynomiale ;

 80 -800 ticks : la dimension fractale augmente toujours considérablement avec des oscillations très courtes et assez prononcées ;

 800 -2 600 ticks : la croissance commence à s'amortir et l'on observe beaucoup moins de variations. On voit bien que les flux se structurent, et que la hiérarchie et l'étalement de ses derniers commencent à se stabiliser ;

 2 600 -9 000 ticks : pour les trois quart de temps de la simulation, on observe que la dimension fractale varie très peu ( 1,47 D n 1,51 ). La forme du trafic est donc structurée et notre modèle peut être considéré comme stable.

Globalement, on se rend compte que la dimension fractale augmente de 0,3 au cours de la simulation pour arriver un maximum de 1,5. L'emprise spatiale de la desserte s'est donc rapidement améliorée, et elle paraît correcte sachant que la dimension d'un réseau est théoriquement bornée entre 1 et 2. Le passage d'une polynomiale à une droite et l'augmentation importante de la dimension fractale, témoigne d'une meilleure emprise spatiale des trajets sur l'environnement. Il y a une optimisation de la forme des flux dessinés, à la fois en termes de taille et d'homogénéité spatiale, par rapport à l'environnement. En effet, au fur et à mesure que la simulation progresse, on voit que les taxis élargissent leur tournées, en explorant des arcs du réseau de plus en plus éloignés des marchés.
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b) Le phénomène d'attracteur

Mis à part les 2000 premières itérations, nous avons vu que la dimension fractale évoluait très peu au cours de la simulation. Les flux semblent donc se structurer rapidement en début de simulation, et atteindre une forme relativement stable. La structure semble être stable, aussi bien en termes de hiérarchie de fréquentation (épaisseur des traits) qu'en termes d'étalement spatial. Les taxis répètent les mêmes trajets puisqu'ils privilégient les tournées les plus attractives. Nous pouvons alors parler de phénomène d'attracteur car, même si de temps en temps, les taxis découvrent de nouvelles stations, la structure du système est tellement forte que la dimension fractale du réseau n'évolue quasiment plus.

La méthode présentée dans cet article ne permet pas de vérifier quel paramètre détermine le plus la mise en place de l'attracteur. Néanmoins, nous avons vu que les flux étaient fortement structurés par la topologie du réseau et par le comportement des taxis. En effet, les taxis desservent en priorité les stations proches des marchés : procédure d'optimisation de nos agents. Et ils s'éloignent peu à peu en explorant des stations non desservies, ou des villageois attendent d'être pris. La topologie joue alors un rôle important.

V. Conclusion

In fine, nous pouvons dire que le calcul de dimension fractale est un véritable plus pour analyser la forme et la hiérarchie des flux simulés. L'analyse d'image et l'approche fractale sont complémentaires puisque l'une nous permet de voir comment évolue spatialement les flux, en mettant en relation la localisation des marchés, la topologie du réseau, etc. ; alors que l'autre nous permet de définir des seuils et d'observer des tendances globales, comme la structuration du système, sa stabilisation, etc. L'évolution de la dimension fractale permet donc d'analyser quantitativement l'évolution morphologique du système à travers sa gamme scalaire, et indépendamment de l'observation visuelle. L'attention peut ainsi être portée sur les phénomènes spatiaux et territoriaux, ce qui permet finalement d'observer et d'expliquer plus précisément l'interaction entre les agents et l'environnement au cours de la simulation.

Cependant, certains points restent à être éclaircis. Nous avons vu qu'en début de simulation, la dimension fractale observée à partir de la droite de régression linéaire n'était pas bien adaptée. Il serait alors intéressant de se concentrer sur cette étape pour comprendre plus précisément comment se met en place le système et quel est l'influence des premières itérations du modèle sur le reste de la simulation. De plus, tout au long du travail nous avons mis en relation les observations avec nos connaissances sur le fonctionnement du modèle (comportement des agents, topologie du réseau, etc.) mais nous n'avons pas pu tester précisément qu'elle était l'influence de chaque paramètre sur l'évolution morphologique des flux.

Globalement, ce travail montre non seulement que l'analyse multi-dimensionnelle d'un flux peut être utilisée pour comprendre et expliquer la structuration d'une desserte, mais il montre aussi que la méthode employée est relativement facile à mettre en place. Elle nous semble plutôt reproductible et applicable pour d'autres modèles. Nous prévoyons d'ailleurs de la réutiliser, et de la développer pour des simulations ultérieures.

VI. Perspectives

Ce travail a eu l'avantage d'éveiller un certain nombre de perspectives pour nos recherches sur la simulation de systèmes de transport.

Dans un premier temps, il serait intéressant d'utiliser la dimension fractale comme un indice supplémentaire de comparaison entre différents scénarios de simulation. La mise en comparaison nous permettrait-elle de mieux comprendre l'influence de nos procédures ? Est-elle un moyen efficace de distinguer les conséquences morphologiques et spatiales de différents scénarios de simulation ?

Concernant les indices, il serait intéressant de voir s'il existe des relations entre les indices déjà observés et calculés (indices orientés transport) et la dimension fractale. Nous avons, par exemple, remarqué que la courbe d'évolution de la dimension fractale ressemblait étroitement à la courbe obtenue avec l'indice d'efficacité qui le nombre de stations traversées, avec prise en charge de clients, rapporté au nombre total de stations traversées. Il est possible qu'il y ait une forte ressemblance entre les deux indices, l'un étant peu être plus pertinent que l'autre pour observer la morphogenèse des flux simulés ? Il serait aussi intéressant de programmer une petite interface de visualisation de la simulation (dessin des flux) combinée à l'évolution de la dimension fractale. Cela nous permettrait de comparer l'information de manière beaucoup plus intuitive. La visualisation serait alors animée, avec la possibilité de mettre en pause le défilement des séquences, de revenir en arrière etc., pour une observation précise et approfondie de nos données.

Enfin, concernant l'influence des paramètres du modèle sur la morphogénèse des flux et sur la dimension fractale, il serait intéressant de pouvoir intégrer directement dans le programme de simulation, un algorithme de calcul de dimension fractale. Cela nous permettrait de tester dynamiquement l'influence de chaque paramètre sur la structuration du système.

Figure 1 :

 1 Figure 1 : Écran de simulation à l'initialisation.

Figure 2 :

 2 Figure 2 : Écran de simulation à 220 ticks

Figure 4 :Figure 5 :

 45 Figure 4 : Courbe de dimension fractale avec ajustement polynomial ( 20 ticks)

Figure 6 :

 6 Figure 6 : Raccordement du troisième marché (5 880 ticks)

Figure 7 :

 7 Figure 7 : Évolution de la dimension fractale des flux simulés B. Interprétations a) Effet de taille L'ajustement polynomial, en début de simulation, nous montre que les points recensés sont répartis de manière très hétérogène sur l'environnement. Les flux sont fortement concentrés à certains endroits et leur taille est très petite comparée à la taille de l'espace d'étude. Ce point concorde avec nos observations puisque nous avons vu qu'en début de simulation, les taxis vont chercher les villageois à proximité des marchés. Leurs tournées sont donc concentrées autour de ces points.

Ils permettent de suivre statistiquement et très précisément l'évolution d'un système, et la structuration des formes s'y observe de manière intuitive. Pourtant, ce sont des outils beaucoup moins pertinents lorsqu'il s'agit de quantifier l'évolution de ces formes. Le calcul de dimension fractale étant une méthode reconnue pour analyser la forme des réseaux à travers les échelles (Genre-Grandpierre C. 2010), nous proposons dans cet article de l'articuler avec un modèle de trafic simulé en SMA. L'étude essayera, en complément de l'analyse visuelle classique sur l'interface de simulation, de quantifier et de mieux comprendre la structuration des flux sur un réseau, à travers plusieurs niveaux d'observation. Dans notre cas purement théorique, il est difficile de parler d'échelles. Nous essayerons, néanmoins, d'évaluer l'apport d'une approche multiscalaire, ou du moins multi-dimensionnelle, pour la simulation d'un service de transport en SMA. La capacité descriptive de la méthode, ainsi que sa facilité d'application et son caractère reproductible seront jugés. ******