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Abstract

The coordinated development of multicellular organisms is driven by in-

tercellular communication. Differentiation into diverse cell types is usually

associated with the existence of distinct attractors of gene regulatory net-

works, but how these attractors emerge from cell-cell coupling is still an open

question. In order to understand and characterize the mechanisms through

which coexisting attractors arise in multicellular systems, here we systemati-

cally investigate the dynamical behavior of a population of synthetic genetic

oscillators coupled by chemical means. Using bifurcation analysis and numer-
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Preprint submitted to Journal of Theoretical Biology November 16, 2009



Acc
ep

te
d m

an
usc

rip
t 

ical simulations, we identify various attractors and attempt to deduce from

these findings a way to predict the organized collective behavior of growing

populations. Our results show that dynamical clustering is a generic prop-

erty of multicellular systems. We argue that such clustering might provide a

basis for functional differentiation and variability in biological systems.

Key words:

Multicellular systems, clustering, collective behavior, inhibitory cell-to-cell

communication, cellular differentiation
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1. Introduction1

The coordinated behavior in multicellular systems results from a coop-2

erative response arising from an integrated exchange of information through3

cell-cell communication. Various mechanisms for intercellular coupling have4

been identified in nature, basically relying on the broadcasting of individ-5

ual cellular states to neighboring cells via intercellular signals, which are6

further integrated to generate a global system’s response (Heinlein (2002);7

Perbal (2003)). It is known, for instance, that bacteria display various types8

of collective behavior driven by a type of chemical cell-cell communication9

mechanism known as quorum sensing (Taga and Bassler (2003)). This ability10

of living systems is an absolute requisite to ensure an appropriate and ro-11

bust global cellular response of an organism in a noisy environment. Hence,12

characterizing the dynamics of multicellular systems should lead to an im-13

provement of our knowledge about cellular behavior and biological mecha-14

nisms that occur on a population-wide scale, such as cellular differentiation,15

adaptability of the system to different environment conditions, etc.16

In order to understand the basic mechanisms of cell-to-cell cooperative be-17

havior, several theoretical models have been successfully developed and inves-18

tigated by studying both natural and synthetic genetic networks (McMillen19

et al. (2002); Taga and Bassler (2003); Kuznetsov et al. (2004); Garćıa-Ojalvo20

et al. (2004); Ullner et al. (2007); Balagadde et al. (2008); Tanouchi et al.21

(2008)). A synchronization scheme has been proposed, for instance, in an22

artificial network of synthetic genetic oscillators that produces and responds23

to a specific, small signaling molecule (acylated homoserine lactone), known24

as an autoinducer (AI) (Garćıa-Ojalvo et al. (2004)). This small molecule is25

3



Acc
ep

te
d m

an
usc

rip
t 

free to diffuse through the cell membrane, which provides a means for chem-26

ical communication between neighboring cells. The resulting synchronized27

behavior leads to a macroscopic genetic clock. By further manipulations of28

this synthetic network, we were able to show (Ullner et al. (2007, 2008))29

that this communication scheme can be re-engineered to produce a very di-30

verse dynamics and exhibit a high adaptability typical to natural systems.31

Other modification of the same network (Garćıa-Ojalvo et al. (2004)) was also32

published recently (Zhou et al. (2008)), but it still waits futher dynamical33

investigations.34

In this paper, we investigate systematically the global cooperative behav-35

ior of a population of synthetic genetic oscillators called repressilators, cou-36

pled via quorum sensing mechanism (Ullner et al. (2007)), and thus showing37

the emergence of a rich variety of clustering behavior that might be inter-38

preted as a mechanism of dynamical differentiation. Such an interpretation39

was pioneered by Turing (Turing (1952)) in his investigations of inhomo-40

geneous steady states in reaction-diffusion systems, and has been further41

extended by Kaneko (Kaneko and Yomo (1994)), who proposed clustering in42

coupled map dynamics as a physical background of biological differentiation.43

Moreover, it was recently shown (Nakajima and Kaneko (2008)) that bifur-44

cations driven by cell-cell interaction may mediate differentiation processes.45

Here we use numerical simulations and bifurcation analysis to study the46

dynamics of a population of coupled genetic oscillators for increasing sizes47

of the population, ranging from a two-cell to a multicellular system, thus48

proposing a general explanation for the emergence of cooperative behavior49

in large cellular systems. In our previous work (Ullner et al. (2007, 2008))50

4



Acc
ep

te
d m

an
usc

rip
t 

we investigated and defined the necessary coupling conditions leading to a51

complex dynamical behavior in the system, and furthermore clasified its dy-52

namical structure using a minimal system of N = 2 oscillators. In addition to53

those earlier results, here we show that the extended system exhibits various54

attractors with complex phase relations, and through their characterization55

we attempt to (i) deduce the underlying mechanism that determines the most56

likely visited dynamical regimes, and (ii) identify stable cluster distributions,57

in order to predict the behavior of the system on a global scale. The bifurca-58

tion analysis and numerical investigations presented here also aim to charac-59

terize the robustness of the dynamical structure of the system with respect60

to parameter variations, and relate these findings to biological processes. We61

stress here the importance of investigating dynamical clustering in multicel-62

lular populations with cell-cell communication, since such coupling generates63

qualitatively new cellular states different from the single-cell dynamics, thus64

providing the basis for functional differentiation and variability.65

Moreover, in (Ullner et al. (2008)) we identified a biologically relevant66

parameter interval where chaotic behavior of the coupled genetic units was67

observed. As previously suggested, this could implicate chaos as an addi-68

tional source of uncertainty in gene expression, drawing attention on possi-69

ble alternative sources of uncertainty in genetic networks, besides the already70

well-established ones. It is therefore important to investigate the dynami-71

cal behavior of cell populations in the chaotic regime, and identify possible72

groupings of genetic oscillators and their relations within, as a base for en-73

visioning an experimental protocol to detect chaotic behavior in synthetic74

genetic networks.75
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2. Model of a synthetic multicellular system76

The model considered here consists of a population of repressilators cou-77

pled via quorum-sensing mechanism as proposed in (Ullner et al. (2007)).78

The repressilator consists of three genes whose protein products repress the79

transcription of each other in a cyclic way (Elowitz and Leibler (2000)). In its80

original experimental implementation, the gene lacI expresses protein LacI,81

which inhibits transcription of the gene tetR. The product of the latter, TetR,82

inhibits transcription of the gene cI. Finally, the protein product CI of the83

gene cI inhibits expression of lacI and completes the cycle (see Fig. 1). An84

additional feedback loop involving the two proteins LuxI and LuxR, which85

might be placed on a separate plasmid, realizes the cell-to-cell communication86

(McMillen et al. (2002); You et al. (2004); Garćıa-Ojalvo et al. (2004)). LuxI87

is responsible for the biosynthesis of a small signaling molecule, known as au-88

toinducer (AI), which diffuses through the cell membrane and thus provides89

a means of intercellular communication. By forming a stable AI − LuxR90

complex, the transcription of a second copy of the repressilator gene lacI is91

activated. Placing the gene luxI under inhibitory control of the repressilator92

protein TetR (Fig. 1) introduces a rewiring between the repressilator and93

the quorum sensing through an additional loop, which competes with the94

overall negative feedback loop along the repressilator ring and results in an95

inhibitory, phase-repulsive intercellular coupling.96

The mRNA dynamics is described by the following Hill-type kinetics with

Hill coefficient n:

ȧi = −ai +
α

1 + Cn
i

(1)
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ḃi = −bi +
α

1 + An
i

(2)

ċi = −ci +
α

1 + Bn
i

+ κ
Si

1 + Si

(3)

where the subindex i denotes the cell (i = 1, .., N , N being the total num-

ber of cells in the ensemble), and ai, bi and ci represent the concentrations

of mRNA molecules transcribed from tetR, cI and lacI, respectively. The

model is made dimensionless by measuring time in units of the mRNA life-

time (assumed equal for all genes) and the mRNA and protein levels in

units of their Michaelis constants (assumed equal for all genes). The mRNA

concentrations are additionally rescaled by the ratio of their protein degra-

dation (different among the genes) and translation rates (assumed equal for

all genes). After rescaling, α is the dimensionless transcription rate in the

absence of a repressor, κ is the maximum transcription rate of the LuxR pro-

moter, and the parameters βa,b,c describe the ratios between the mRNA and

protein lifetimes (inverse degradation rates). We assume different lifetime

ratios for the protein/mRNA pairs, which results in a weak relaxator-like

dynamics of the repressilator (Ullner et al. (2007)). Ai, Bi, and Ci denote

the concentration of the proteins TetR, CI, and LacI, whose dynamical be-

havior is given by:

Ȧi = βa(ai − Ai) (4)

Ḃi = βb(bi − Bi) (5)

Ċi = βc(ci − Ci) (6)

Assuming equal lifetimes and dynamics for both the CI and LuxI pro-

teins (since they are both repressed by TetR), we use the same variable to
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describe the dynamics of both proteins. The AI concentration Si in the i−th

cell (rescaled additionally by its Michaelis constant) is proportional to Bi,

i.e. the concentration of LuxI in it, and is further affected by an intracellular

degradation and diffusion toward or from the intercellular space:

Ṡi = −ks0Si + ks1Bi − η(Si − Se) (7)

Se = QS̄ (8)

S̄ =
1

N

N∑

i=1

Si (9)

The diffusion coefficient η depends on the permeability of the membrane97

to the autoinducer. Due to the fast diffusion of the extracellular AI (Se)98

compared to the repressilator period, we can apply the quasi-steady-state99

approximation to the dynamics of the external AI and replace it by the mean100

field of the internal AI, S̄. The parameter Q is defined as Q = δN/Vext

kse+δN/Vext
101

(Garćıa-Ojalvo et al. (2004)), with N being the total number of cells in102

the ensemble, Vext the total extracellular volume, kse the extracellular AI103

degradation rate, and δ the product of the membrane permeability and the104

surface area. In more general terms, Q is proportional to the cell density,105

and can be varied in a controlled way between 0 and 1 in experiment, thus106

making it a reasonable choice to follow the dynamical changes of the system107

with respect to Q.108

Previous investigations carried on a minimal system of two repressilators109

coupled via repulsive cell-to-cell communication (Ullner et al. (2008)) have110

identified a variety of collective regimes, including constant level protein pro-111

duction (homogeneous steady state solution, HSS, Fig. 2a), an inhomoge-112

neous steady state characterized by different stationary protein levels (IHSS,113
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Fig. 2b), and self-sustained oscillations. Within the latter case, we have iden-114

tified out-of-phase oscillations with different phase shifts (see e.g. Fig. 2c, for115

which the phase shift is π
2
), as well as a complex inhomogeneous limit cycle116

(IHLC) characterized by one cell exhibiting very small oscillations around117

a high mean protein level, whereas the second cell oscillates in the vicinity118

of the steady state with an amplitude just slightly smaller than that of an119

isolated oscillator (Fig. 2d).120

The previous results correspond to a fixed value N = 2. However, in121

vivo bacterial colonies proliferate and expand. In order to understand and122

characterize the cooperative behavior in growing populations, it is certainly of123

outmost significance to investigate the influence of the size of the population124

on its dynamics. To that end, we performed a simple numerical experiment:125

we computed 1000 time series with different random initial conditions for126

a minimal (N = 2 cells), and a system with intermediate size (N = 18),127

using a uniform distribution in the range [0, 220] for the mRNA and protein128

initial conditions and [0, 1.2] for the AI initial conditions. Figure 3 shows129

the histograms of detectable stable regimes in both systems for increasing130

coupling coefficient Q.131

As shown in Fig. 3, already a small increase in the system size (from132

N = 2 to N = 18 cells) alters the balance between the coexisting regimes:133

the stability regions of IHLC and IHSS are significantly increased at the134

expense of the HSS. This fact underlines the connection between the size of135

the population and its dynamical behavior, implying that a detailed analysis136

of these correlations is necessary in order to reveal and formulate (predict) a137

general statement about the cooperative behavior of growing populations.138
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3. Clustering in the inhomogeneous regimes139

It is well known that genetically identical cells may exhibit diverse phe-140

notypic states even under almost identical environmental conditions. Thus,141

populations comprised of identical cellular units can display heterogeneity,142

manifested by the existence of several subgroups or clusters where cells ex-143

hibit organized collective behavior, with or without complex relations among144

them. The size of the population plays a crucial role in determining which145

dynamical behavior is most likely to be dominant, depending of course on146

the environmental conditions as well as on the coupling strengths.147

We now show that the parameter stability intervals for given solutions148

increase significantly as a function of N , with respect to the equivalent stabil-149

ity intervals in the minimal model of two coupled cells (Ullner et al. (2008)).150

These changes in the dynamical structure of the model occur in general151

due to the increased possibility for cluster formation in growing populations.152

Clustering can be defined as a stable dynamical state characterized by the153

coexistence of several subgroups where the oscillators exhibit identical (or154

nearly identical) behavior. Clustering is a well known property, especially155

for globally coupled systems, and has been investigated for identical phase156

(Golomb et al. (1992); Okuda (1993)), salt-water (Miyakawa and Yamada157

(2001)) or electrochemical oscillators (Wang et al. (2001); Kiss and Hudson158

(2003)), in synthetic genetic networks (Koseska et al. (2007)), and in popu-159

lations of chaotic oscillators (Kuznetsov and Kurths (2002); Manruiba and160

Mikhailov (1999); Osipov et al. (2007)), among other cases. The presence of161

clustering and the complex phase relations between cells produced therewith162

can be very important in the construction of synthetic genetic networks and163

10



Acc
ep

te
d m

an
usc

rip
t 

the mechanisms behind cell differentiation. Therefore, our attention will be164

mainly devoted to clustering that occurs in the inhomogeneous states (steady165

or oscillatory), and which could be related to biological mechanisms of dy-166

namical differentiation. Moreover, different groupings that occur mainly in167

the chaotic regime and contribute significantly to the complex dynamical be-168

havior on a population-wide scale will be also of significant interest to us.169

This is because such groupings can be also seen as a mechanism for temporal170

mixing that enhances the diversity in the system, while mostly maintaining171

the advantages of a synchronized (ordered collective) behavior.172

As a first step, a minimal extension to N = 3 identical cells was intro-173

duced, in order to classify the dynamical changes leading to clustering. We174

now present bifurcation diagrams for that case, with the coupling strength175

Q as the bifurcation parameter. As discussed above, Q is proportional to the176

extracellular cell density and can be changed experimentally in chemostat177

experiments in the range between zero and one. Values beyond this range178

do not have a biological meaning but can be helpful for the understanding179

of the bifurcation analysis and the controlling of desired regimes. Although180

the complete bifurcation analysis was performed using the Xppaut package181

(Ermentrout (2002)), the diagrams presented here depict only those bifurca-182

tion branches and points central to the corresponding discussion, in order to183

avoid making the bifurcation charts incomprehensible.184

The bifurcation analysis revealed a significant enlargement of the stability185

interval for the IHSS (Q ∈ [0.29 − 0.66], Fig. 4(b)), in comparison to the186

minimal case of N = 2 coupled oscillators (Q ∈ [0.36− 0.55]) (Fig. 4(a) and187

in (Ullner et al. (2008))). The IHSS is stabilized via a Hopf bifurcation, thus188
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displaying no qualitative changes in the mechanism of occurrence with respect189

to the minimal model. However, the significant increase of the stability region190

in this case (≈ 50% in comparison to N = 2) is a result of clustering, or more191

specifically, of the increased number of possible distributions of the oscillators192

between the two stable protein levels through which the IHSS is defined. In193

general, given N total number of cells, the oscillators can have N−1 different194

distributions between the clusters (considering that the IHSS, as well as the195

IHLC discussed below, are characterized by two-cluster decompositions).196

In what follows, we will define the different cluster states by the notation197

mL | (N −m)U , which denotes a cluster of m oscillators in the low-protein198

concentration state L, while the remaining N − m oscillators populate the199

upper state U , characterized by higher protein concentration. For N = 2200

cells, there is only one possible distribution of the oscillators in the IHSS201

regime: 1L | 1U - one oscillator populates the lower, where the second one202

populates the upper state. However, for an increased number of cells, N = 3,203

there are 2 different combinations, namely 1L | 2U (Fig. 4b, left stable branch204

(solid (green) line)) and 2L | 1U (Fig. 4b, right stable branch (solid (green)205

line)). Note that different stable cluster distributions are located on separate206

branches of the bifurcation continuation, thus resulting in the increase of207

the parameter interval where IHSS exists. In the case of N = 5 oscillators,208

for example, 4 different clusters are stable, as shown in Fig. 4(c). In that209

diagram the cluster types are, from left to right: 1L | 4U , 2L | 3U , 3L | 2U210

and 4L | 1U . This particular structure of cluster distribution is typical for211

any number of oscillators: clusters of the type 1L | (N −1)U require small Q212

values, while the (N−1)L | 1U exist for large Q. In order to understand this213
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behavior, let us define the ratio of the oscillators distributed in the upper214

versus lower Bi states as r = N−m
m

. Suppose that under small Q, r is larger215

than one (r > 1 means that the majority of the oscillators in the system216

are located in the upper B state). Let us know assume that the value of217

r decreases, until r < 1. This means that the total concentration of the218

protein CI (B) in the system is decreased. Moreover, since the dynamics of219

the AI follows closely the dynamics of the protein B (both expressions, that220

of protein B (cI) and of AI (luxI) are regulated in a same manner via tetR),221

the production of internal AI will also be decreased. In order to compensate222

for the lack of internal AI which will destabilze the IHSS, the re-influx of223

external AI needs to be increased. This will subsequently lead to higher Q224

values which means that in general, if r < 1, larger Q is necessary to observe225

stable IHSS distributions.226

The left and middle plots in Fig. 5 show time traces for two different clus-227

ter decomposition in the IHSS regime for N = 18. Each possible partition228

shows slightly different levels in the protein concentrations, and hence a fine229

tuning of the protein levels can be accomplished by choosing a specific Q in-230

terval for proper partition of the oscillators. This specific effect enhances, on231

the one hand, the biotechnological applications of synthetic genetic networks232

by providing a possible method for fine manipulation of the protein concen-233

tration level, and on the other hand it might be seen as typical adaptability234

of a cell population: when changes in the environmental conditions occur,235

the population can easily adjust its cell distribution, adapting optimally to236

the environment.237

The Hopf bifurcation through which the IHSS is stabilized gives rise also238
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to a branch of stable inhomogeneous limit cycles (IHLC), already introduced239

for the case of N = 2 oscillators in Fig. 2(d) (the corresponding bifurcation240

diagram is given in Fig. 6(a)). However, in comparison to that minimal case,241

the IHLC regime for higher population sizes is more complex, due to the242

increased number of possibilities for distributing the oscillators in the two243

clusters (a stable and an oscillating one).244

Analogous to the formation of IHSS clusters for N = 3, two distinct245

IHLC clusters can be observed here as well. We have identified these regimes246

as 1L | 2U (left solid (red) line in Fig. 6, (b)), and 2L | 1U (right solid (red)247

line in Fig. 6 (b)), emerging from the correspondent IHSS branches (Hopf248

bifurcations of the IHSS, HBs1 and HBs2 in Figs. 4(b), 6(b)). This results249

again in an interval where the IHLC regime is stable in comparison to the250

2-oscillator case (compare Figs. 6 (a) and (b)). Moreover, the IHSS and251

IHLC regimes coexist in certain Q ranges (for instance, Figs. 5 and 6). This252

new behavior is also a result of the formation of clusters for increasing system253

size. The possibility that one of the IHLC distributions will overlap with the254

IHSS from another cluster distribution (containing less elements in the lower255

level) increases significantly. Hence, we can state that the increase of the256

stability regions of the inhomogeneous states (IHSS and IHLC) unraveled257

by the numerical simulations (Fig. 3) is a result of the cluster formation for258

growing populations, as we have determined from the bifurcation analysis259

presented.260

Interestingly, the population displays even more complicated behavior261

when analysing the clustering effect in the IHLC regime. This complexity262

is manifested through the formation of sub-clusters in the lower (oscillatory)263
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state, where oscillators exhibit identical behavior within a single sub-cluster,264

but with various phase relations among them. The simplest case consists of265

only two oscillators located on the lower oscillatory level – they are organized266

in anti-phase. However, increasing the number of oscillators in the lower state267

reveals multitude of relations between the oscillators grouped in sub-clusters268

and hence, besides the distribution of oscillators between the upper and lower269

states, one needs to consider also the composition of the oscillatory sub-270

clusters in the lower protein level. Figures 7 to 9 illustrate some examples of271

possible combinations of partitions and phase relations in the sub-threshold272

oscillations for an ensemble of N = 18 oscillators which we discuss next.273

Due to the technical difficulty to handle a high-dimensional system with274

the Xppaut package, we present here only numerical findings. Please note275

the non-uniform distribution of the phase in some situations. The basic276

distribution of IHLC can be seen in Fig. 7(left), with only one element in277

the lower state. However, if an additional element is located in the lower278

state as well, (Fig. 7, middle), the phase-repulsive cell-to-cell communication279

evokes anti-phase oscillations, as already mentioned. In the situation where280

three cells are located in the lower state, stable out-of-phase oscillations with281

a phase-shift of 2π
3

between clusters (Fig. 7, right) are observed, since the282

phase-repulsive coupling maximizes their phase difference.283

Additional oscillators in the lower state contribute to the formation of284

more complex distributions. A fourth cell expressing a low CI protein con-285

centration can establish a separate sub-cluster, which leads to the regime286

(1 : 1 : 1 : 1)L | 14U (each sub-cluster is composed of isolated cells, as shown287

in Figs. 8, left and middle) or to a sub-cluster with more than one cell (e.g.288
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two sub-clusters are formed, each containing two cells, as in Fig. 9 middle).289

It is interesting to note, that the regime (1 : 1 : 1 : 1)L | 14U has two re-290

alizations with different phase relations between the self-oscillatory cells in291

the low CI level. The left panel of Fig. 8 shows a nearly equal spaced phase292

shift of about 2π
4

, while the middle panel shows the case of an inhomogeneous293

phase shift. In particular, the cells are observed to come close to each other294

(two of them), but they never merge to form a sub-cluster. The right panel295

in Fig. 8 shows a more complex phase relation in which 5 out of the 18 cells296

are in the low-protein state, oscillating separately with an inhomogeneous297

phase-difference. This phase-regime is similar to the one in the middle plot298

of Fig. 8, but with an additional oscillator in between the other four clusters.299

The corresponding six time series given in Figs. 7–8 correspond to the same300

parameter values, for N = 18 and a fixed coupling value Q = 0.2. Thus301

the different dynamical behavior observed here originates only from different302

initial conditions.303

It is important to note once again that a particular cluster distribution304

is characterized with a distinct level of protein concentration expressed in305

the cell. Namely, larger number of oscillators in the lower state reduces the306

protein concentration in the higher state. Moreover, we have also observed307

that the ratio (r = N−m
m

) of the number of oscillators in both levels affects308

the amplitude of the limit cycle oscillations located in the lower protein level:309

r < 1 results in increased amplitude values. Additionally, the ratio r con-310

tributes to the changes in the period of oscillation, having as a consequence311

a well pronounced multirhythmicity in the system. Table 1 lists the observed312

periods and phase relations for the different ratios in the cases discussed in313
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Figs. 7–8. In the present case of N = 18 and Q = 0.2, every additional314

oscillator in the lower CI level of the IHLC lengthens the period by ≈ 1.2315

time units, which leads to a significant change in the period between different316

distributions. A modification of the phase relation by a fixed partition ratio317

does not influence the period (left and middle panels of Fig. 8).318

Due to the dynamical complexity of the system, which as mentioned319

above is a direct consequence of the clustering, it is useful to look into the320

stability of the different regimes (HSS, IHSS, IHLC), in order to define321

a general prediction scheme to determine which solution is dominant under322

different conditions. We have therefore calculated 1000 time series for a323

growing population size N , with different random initial conditions for every324

parameter set, using the approach discussed in Sec. 2. These initial conditions325

cover the 7N -dimensional phase space of the system (7 degrees of freedom326

per oscillator) densely enough such that one can detect stable coexisting327

attractors with a significant basin of attraction. Figure 10 shows in detail the328

system size effect for two specific coupling values, (Q = 0.24 and Q = 0.3).329

In both cases, the results show a clearly monotonic increase of the probability330

that the IHSS is reached from random initial conditions at the expense of the331

HSS, as the size of the population grows. For ensembles larger than several332

hundred cells the IHSS is the dominant region, allowing us to speculate that333

the artificial differentiation of cells is strongly dependent on the size of the334

population, becoming more likely with proliferation (Koseska et al. (2009)).335

In other words, the stable inhomogeneous steady state resembles Turing’s336

dissipative structure (Turing (1952)), only without space variables. In a337

sense, instead of the spatial Turing structure, in IHSS we have a two cluster338
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decomposition present. This state, as discussed above, is characterized by339

two different stable protein concentration levels, which might be biologically340

interpreted as dynamical differentiation. Thus, one can further speculate341

that a robust dynamical differentiation of the cells strongly depends on the342

size of the population.343

4. Full-amplitude oscillatory regimes - Regular and chaotic attrac-344

tors345

For couplings smaller than a given critical value Qcrit ∼ 0.129 (the value346

of Qcrit slightly varies depending on N), the system can only exhibit self-347

oscillatory solutions: we have identified out-of-phase oscillations with a num-348

ber of different phase-shifts (e.g. π
2
, 3π

4
, etc.). In contrast to the IHLC so-349

lution, the attractors here share the same phase space. These full-amplitude350

oscillatory regimes, as we will further denote them, are dynamically very351

rich, displaying a diversity of sub-regimes for increasing coupling values. In352

particular, similarly to the minimal system of N = 2, we found two main353

types of behavior depending on the coupling strength Q:354

• regular oscillations with stable cluster formation;355

• chaotic self-oscillations with only a temporary cluster formation (we356

will denote this as grouping in the following discussion).357

In what follows, we investigate the general characteristics of these regimes358

by means of bifurcation and numerical analysis. However, in order to dis-359

tinguish between separate cluster formations for increasing population sizes360

via numerical simulations, we use the following definition: oscillators i and361
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j belong to the same cluster K at time t if the difference between the inter-362

nal AI concentrations Si(t) and Sj(t) at consecutive sampling time events is363

smaller than a pre-defined value ε = 0.001:364

[osci(t), oscj(t)] ∈ clustK(t)

if |Si(t)− Sj(t)| ≤ ε and

|Si(t−Δt)− Sj(t−Δt)| ≤ ε . (10)

The cluster sampling occurs every Δt = 64 time units, which is larger than365

the average period of the oscillations (the average period of oscillations is366

between 40 and 50 time units or approx. 200 min). Using these criteria, we367

classify the clustering of the oscillators, and present the resulting structures368

in the form of cluster plots (Figs. 12, 13, 15, 16), where the x-axes denote369

time, and the y-axes represent the oscillator index. There, we use different370

colors to encode the cluster number to which each element belongs (white371

color represents a free-running oscillator, which does not belong to any of372

the clusters). Although these plots do not show the dynamics of the self-373

oscillations in detail, they focus on the difference in the protein concentrations374

of separate cells over time, and therefore enable a visualization of the long-375

time cluster dynamics.376

4.1. Regular attractors377

Under small and intermediate couplings (0 ≤ Q � 0.55), the system378

demonstrates regular oscillations with a fixed unique amplitude and com-379

mon period for all oscillators (Fig. 12, top panel). In this case, the repulsive380

cell-to-cell communication evokes the preference of phase-shifted oscillations,381
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and small ensembles with N ≤ 4 show solutions without clustering and ho-382

mogeneously distributed phases (Fig. 2c). The phase shift here depends on383

the size of the system, and obeys the relation 2π
N

(a solution known also384

as a ”splay-phase” solution (Kaneko (1991); Watanabe and Strogatz (1993);385

Nicolis and Wiesenfeld (1992))). Hence, in a system of three coupled repres-386

silators, one can find stable full-amplitude oscillations phase-shifted by 2π
3

387

between HB1 (Q = 1.253) and TR1 (torus bifurcation for Q = 1.11), and388

from Q = 0 until TR2 = 0.55 (see Fig. 11). No other stable cluster decom-389

position was identified from the bifurcation analysis. For Q < 0.129, and as390

mentioned above, this is the only stable solution of the system, whereas for391

increasing coupling the full-amplitude regime coexists with HSS, IHSS, and392

IHLC states, as shown in Fig. 11.393

In systems where N > 5, clustering is observed in the regular oscillatory394

regime. Here, the 3-cluster decomposition dominates, with a nearly equal395

number of oscillators in each one (for details see Table 2), and a distinct phase396

relation between separate clusters. Morever, the periods of oscillation are397

slightly shorter than those of isolated elements, and decrease as Q increases398

(Table 2). We show here an example of a system of N = 18 cells. The399

onset of clustering can be seen in the cluster plot in the bottom panel of400

Fig. 12. After a long transient (about 1.200 time units, in this particular401

case) a distribution of three clusters is stabilized, with a 7 : 6 : 5 distribution402

of oscillators (cells) between the clusters, and a phase shift of about ∼ 2π
3

403

among them. Time series of the separate clusters (the oscillators within404

each cluster display synchronous behavior) are given in the top panel of405

Fig. 12 (the coloring coresponds to the cluster plot). The long transient in406
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the simulation looks unphysiological at first glance, but all simulations are407

drawn from random initial conditions with a very large diversity amongst408

the cells. We use those unrealistic initial conditions in order to underline409

the ability of the system to form stable clusters under any condition. After410

proliferation, the daughter cells are in a similar phase as the mother, which411

decreases the formation of stable clusters significantly.412

In the cases investigated, all the oscillators are identical and coupled via a413

mean field, hence there are no preferences amongst them to establish a given414

set of clusters. Thus the distribution of the oscillators between the clusters415

depends exclusively on the initial conditions. Several typical attractors ob-416

served for different system sizes and coupling values Q are listed in Table417

2, together with the values of their periods. As shown here, the 3-cluster418

decomposition with nearly equal distribution of oscillators between the clus-419

ters dominates for large system sizes and over wide ranges of coupling. An420

exception to this case, as discussed above, is the formation of clusters for421

N ≤ 4. In the case for N = 4, for instance, the 3-cluster decompositions422

lose stability, and stable 4-cluster decompositions are formed. Interestingly,423

the coupling Q has an inverse influence on the oscillation period. Normally,424

stronger coupling lengthens the period of coupled systems (Crowley and Ep-425

stein (1989); Volkov and Stolyarov (1994)), but the situation is different in426

the present case because Q controls the reinflux of AI and a higher internal427

AI concentration shortens the repressilator cycle. Compared to the coupling428

strength Q, the system size N and the cluster composition have a minor429

influence on the period.430
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4.2. Influence of parameter heterogeneity on the regular-attractor regime431

The previous investigations analyzed in detail the dynamics of the regu-432

lar attractors, as a first step in the understanding of the global cooperative433

behavior of large populations. However, the assumption that the elements434

of the system are identical (differing only in the initial conditions) is very435

strong, since cellular populations are heterogenous. It is therefore important436

to account for diversity among parameter values in separate cells by introduc-437

ing, for e.g. certain missmatch in the α parameter values. In particular, we438

consider here that for each cell i = 1, . . . , 11 different α’s are assigned from439

a defined set of values [210, 211, . . . , 220], which leads to variability larger440

than 3% in the oscillation periods. Introducing the diversity exactly in α441

is realistic, since this parameter defines the expression strength of the re-442

pressilator genes, which is proportional to the concentration of repressilator443

plasmids present in the cell. The control of the number of plasmid copies in444

experiments was discussed in (Paulsson and Ehrenberg (2001)), and it can445

be coordinated with the cell’s growth and division. Additionally, an increase446

in α lengthens the period of oscillations, as already mentioned.447

We have observed that even in the presence of diversity, the three-cluster448

decomposition is the most probable state in the system (an example for449

Q = 0.5 is given in Fig. 13). However, in contrast to the case of identical450

oscillators, some of the cells (in the case of Fig. 13, the two elements with451

the smallest parameter α, i.e. the cells with the shortest period), are not452

phase locked and jump periodically from one of the three stable clusters to453

the other one. Moreover, the heterogeneity introduced via the parameter454

mismatch breaks the symmetry present in the system of identical oscillators,455
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and leads to a situation where oscillators with similar properties (i.e. similar456

αi) group together in a cluster, preferentially.457

4.3. Irregular self-oscillations458

The bifurcation analysis we have performed on the model for N = 3 cells459

shows that for Q � 0.55, the system goes beyond the range of regular oscil-460

lations: the periodic branch loses its stability between two torus bifurcations461

(TR1 and TR2 in Fig. 11), which contributes to the appearance of oscilla-462

tions with strong variations of the amplitude. These irregular oscillations463

look very similar to chaotic time series (Fig. 15, top plot), however, in order464

to classify this as a chaotic behavior, certain criteria need to be fullfilled,465

e.g. at least one of the Lyapunov exponents of the system needs to be pos-466

itive. Therefore, we integrate forward in time a small perturbation of the467

trajectory, the random tangent vector, by means of the Jacobi matrix. The468

logarithm of the norm of the tangent vector is related to the maximal Lya-469

punov exponent (Eckmann and Ruelle (1985)) and we normalize it by the470

integration time. The result is plotted in the top panel of Fig. 14, and shows471

that for Q > Qchaos ≈ 0.6 (upper boundary of Q ≈ 1), clear chaotic behavior472

with a positive maximal Lyapunov exponent is observed. The bottom panel473

of Fig. 14 displays a bifurcation diagram computed as a series of Poincaré474

sections, with the ordinate showing the value of the B1 when the trajectory475

crosses A1 = 4.0. We avoid the tracking and evaluation of unstable attractors476

and numerical artifacts by adding small dynamical noise to the transcription477

dynamics of the tetR mRNA, i.e. we add the term ξi(t) to the rhs of Eq. 1.478

The local noise term ξi(t) is assumed to be Gaussian, with zero mean and479

intensity σ2
a defined by the correlation 〈ξi(t)ξj(t + τ)〉 = σ2

aδ(τ)δi,j . Beside480
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being technically useful, the noise is biologically relevant, as it is caused by481

random fluctuations in transcription due to the small number of involved482

mRNA (Elowitz and Leibler (2000)).483

In contrast to the case of the minimal system (N = 2), where a similar484

irregular dynamic with chaotic behavior was observed (Ullner et al. (2008)),485

the extended system studied here (N = 18 in Fig. 14) is characterized by486

the ability to build temporal clusters, which we refer to as grouping. The487

coupling Q changes the chaotic behavior gradually (top panel in Fig. 14).488

A first weak increase of the maximal Lyapunov exponent is followed by a489

fast rising interrupted by short collapse and a final decline to zero at Q ≈ 1.490

The degree of chaos influences the grouping ability, as chaos destabilizes and491

shortens the grouping. In the parameter range of Q where more irregular than492

simple periodic oscillations are observed, 0.55 � Q, temporal 2−, 3−, 4− or493

5− grouping decompositions with a significant lifetime have been observed,494

in contrast to the regular attractors, where the 3−cluster decompositions495

were the dominant ones.496

The example in Fig. 15 shows a weak chaotic dynamics of N = 18 os-497

cillators at Q = 0.6, with long-living 3- and 4-grouping constellations. The498

cluster plot (bottom panel of the figure) illustrates the interplay of long-time499

grouping and recurring transients with less ordered states, while a rearrange-500

ment to a new grouping happens. The groupings are long living up to 20, 000501

time units, i.e. about 4000 cycles. Due to the symmetry of the system in502

the case of identical elements, separate oscillators do not have local group-503

ing preferences. The bottom plot of Fig. 15 gives a detailed insight on the504

oscillatory dynamics at different times, and shows the long-living 3- and 4-505
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grouping constellations, and transients with a high degree of decomposition.506

However, once the oscillators are distributed in a long-living grouping state,507

they oscillate synchronously within the group and cannot be distinguished by508

their time series until the next decomposition occurs and spreads the phases.509

The second example of irregular chaotic self-oscillations (Fig. 16) illus-510

trates a regime of fully developed chaos at high coupling Q = 0.75. The max-511

imal Lyapunov exponent (Fig. 14) increases significantly above zero, which512

confirms the chaotic character of the dynamics. Interestingly, the temporal513

grouping of the oscillators is conserved, but with a significantly shorter life-514

time and faster mixing as compared to the weak chaotic dynamics discussed515

above (Fig. 15). Despite the fact that clusters are not stable in this param-516

eter range, some of the oscillators run in-phase over long time and fulfill the517

clustering condition (Eq. 10) temporarily. In this typical situation shown518

here for fully developed chaos at Q = 0.75 (Fig. 16) the grouping of the519

oscillators can last over a relatively long time and cover up to 5, 000 time520

units, i.e. more than 100 oscillations. The individual repressilators oscillate521

in an irregular manner with fluctuating amplitude and period. The top pan-522

els of Fig. 16 shows different snapshots of the time series, and the bottom523

panel of the figure shows the corresponding cluster plot and illustrates the524

interplay between grouping and decomposition. Note the larger maximal am-525

plitudes in the more ordered case than in the situation where higher degree526

of decomposition is observed.527

In general, it can be stated that inside the chaotic ensemble there exists528

an everlasting tendency to build and break temporal groups, which leads to529

their mixing. Many different temporal distributions of the oscillators into530
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groups are possible, which survive over several oscillation periods until the531

next mixing occurs. In the case investigated here in detail, N = 18 oscilla-532

tors, we have observed e.g. two temporal groups with a distribution 9 : 9 of533

the oscillators between them, three groups with distributions 7 : 6 : 5, and534

7 : 7 : 4, four temporal groups with distributions 8 : 6 : 3 : 1, 7 : 6 : 4 : 1,535

5 : 5 : 5 : 3, and 5 : 5 : 4 : 4, as well as several examples of five groupings536

decompositions, with distributions such as 6 : 5 : 4 : 2 : 1, 5 : 5 : 4 : 2 : 2,537

5 : 5 : 4 : 3 : 1 or 5 : 4 : 4 : 3 : 2. Several other examples with a538

higher degree of decomposition can be observed as well, however, they ex-539

hibit a much shorter lifetime. The observed clustering effects resemble the540

dynamical behavior of globaly coupled maps reported by Kaneko in (Kaneko541

(1990)). The transition from an ordered to a partially ordered and turbulent542

phase, where the number of clusters is significantly increased is similar to543

the case of a weak and well developed chaotic clustering decomposition or-544

dering, discussed in this section. Moreover, we show that a growing system545

size increases the possibility for grouping formation significantly, as well as546

the number of different distributions of the oscillators between the groups,547

which on the other hand enhances the flexibility of the system. This means548

that by varying environmental conditions, the population can switch between549

different distributions to adapt to its surroundings and improve its fitness.550

Although the chaotic dynamics observed here and the effect of intrinsic noise551

in synthetic oscillators (Elowitz and Leibler (2000); Stricker et al. (2008))552

have very similar manifestations despite their different origins, we intend to553

draw the readers’ attention to chaos as an alternative source of uncertainty554

in genetic networks.555
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The chaotic dynamics and the grouping phenomena appear graduately556

for increasing coupling Q, i.e. at cell densities which could be a cause for557

stress. One could speculate, that the population has the flexibility to respond558

to environmental stress by distributing its cells within stable clusters, and559

thus increasing the variability and diversity amongst the different cells to560

enhance the probability to survive the stress situation. The gradual chaotic561

behavior enables the population to adapt the mixing velocity and the degree562

of diversity to the stress conditions.563

5. Discussion564

The mechanism how a multicellular system assures a robust and coordi-565

nated response in a noisy and fluctuating environment is still an intriguing566

question. It has been suggested however, that the intercellular signaling plays567

one of the crucial roles in the establishment of cooperative functioning in568

populations. In that contex, we attempt here to characterize the dynamical569

behavior of multicellular systems using phase-repulsively coupled synthetic570

genetic repressilators [Eqs. (1)–(7)]. The focus in the current paper is on the571

dynamics of large and growing ensembles, but we also compare our results572

with the recent findings on the basic ensemble of two coupled repressilators,573

by means of numerical simulations of the dynamics and bifurcation analysis.574

We show that a multicellular population of synthetic genetic repressila-575

tors displays various dynamical behavior, e.g. full-amplitude self-oscillations,576

homogeneous steady state (HSS), inhomogeneous steady state (IHSS), and577

inhomogeneous limit cycle (IHLC). These regimes are present for all popu-578

lation sizes, and may in general coexist with each other. Moreover, the size of579
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the system affects the relative sizes of the basins of attraction of each regime.580

For instance, the inhomogeneous states become more likely for larger popu-581

lations. Interestingly, those inhomogeneous regimes can be associated with582

permanent artificial cell differentiation in synthetic genetic networks, and583

the simulations predict that a growing system size, e.g. due to proliferation,584

enhances the probability of differentiation. Additionally, large system sizes585

widen the parameter range of the IHLC and IHSS regimes significantly,586

and further enhance the differentiation probability.587

Furthermore, the understanding of cell differentiation (Kaneko and Yomo588

(1997); Furusawa and Kaneko (2001)) and its connection to the emergence589

of stable attractors from cell-to-cell coupling is still not clear. Here, we590

have investigated systematically the mechanisms through which coexisting591

attractors arise in the multicellular system. Namely, a closer look into the592

inhomogeneous regimes (IHLC and IHSS) shows a splitting of the single at-593

tractor that exists for two coupled elements into multiple coexisting solutions594

for many oscillators, and the number of stable attractors increases with the595

system size. A combination of numerical simulations and bifurcation analysis596

revealed that the different stable IHSS solution branches differ by the num-597

ber of elements in the high and low protein levels, and that each distribution598

implies a new attractor with different stability ranges and individual protein599

levels. The IHLC is on the other hand, directly bounded to the IHSS with600

the same distribution of the oscillators via a Hopf bifurcation. The ability of601

the IHLC regime to build oscillating clusters with different phase relations602

in the low protein level increases further the number of sub-regimes, and in-603

cludes multi-rhythmicity as a tunable clock (similarly to the tunability of the604
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IHSS regimes) because the attractors express different typical frequencies.605

One can further speculate that this feature can be seen as an example of606

the adaptability of a population to easily adjust its cell distribution when607

environmental changes occur, in order to respond and adapt optimaly to the608

surrounding.609

Similar behavior was observed in the full-amplitude self-oscillatory regime:610

various oscillatory clusters with different partitions of the oscillators amongst611

them. Moreover, the spectra of possible constellations increases with the sys-612

tem size. For small and intermediate coupling Q, stable self-oscillations char-613

acterized with a 3-cluster decomposition, and phase shifted by ∼ 2π
3

appear.614

These 3-cluster decompositions are very robust to perturbations, in the form615

of e.g. random initial conditions, dynamical noise or parameter heterogene-616

ity. The direct numerical investigations performed here can not guarantee617

the ”mathematical” stability of the discussed clustering regimes. However,618

taking in mind recent results (Ashwin et al. (2007)) we can suggest that these619

clusters belong to a heteroclinic network and demonstrate switching which is620

manifested more effectively in the presence of detuning. This question itself621

deserves further attention but in any case, the regimes observed here have622

very long life times which certainly makes them interesting and important623

for biology.624

Furthermore, an increasing cell density caused by cell growth and pro-625

liferation increases effectively the coupling Q, and up to a critical coupling626

Qcrit ≈ 0.6 the regular self-oscillations become unstable, turning into chaotic627

oscillations with high variability in their amplitude and frequency. Interest-628

ingly, also in the presence of chaos the population tends to build temporal629
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clusters, which we refer to as groups. These temporal groups of co-jointly630

oscillating repressilators have a significant lifetime, depending on the degree631

of chaos, and are interrupted by recurring decomposition of the groups and632

a reassembling into different groups. The chaotic dynamics appears gradu-633

ally with Q, and allows the population to respond flexibly and sensitively to634

increasing stress via a higher dynamical diversity inside the ensemble.635

In summary, our results show that a population of synthetic genetic clocks636

coupled via the mean field exhibit a significantly enhanced range of possi-637

ble dynamical regimes with very different properties. One could speculate638

that the observed multi-stability and multi-rhythmicity, which increase with639

the system size, enhance the fitness of the cellular population under envi-640

ronmental stress, and optimize the adaptation of the colony by a sensitive641

adjustment of the protein dynamics.642
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Figure Legends747

Figure 1.748

Scheme of the repressilator with repulsive quorum sensing cell-749

to-cell communication.750

Figure 2.751

Time series for different dynamical regimes for the minimal cou-752

pled system of N = 2: a) Q = 0.4, homogeneous steady state; b)753

Q = 0.4, inhomogeneous steady state; c) Q = 0.1, full amplitude754

oscillations and d) Q = 0.3, inhomogeneous limit cycle. The other755

parameters are: n = 2.6, α = 216, βa = 0.85, βb = 0.1, βc = 0.1, κ = 25,756

ks0 = 1.0, ks1 = 0.01, η = 2.0.757

Figure 3.758

Influence of the system size (N = 2 in the left plot and N = 18759

in the right plot) on the relative regime separation versus coupling760

strength Q. Other parameters as in Fig. 2.761

Figure 4.762

Bifurcation chart depicting stable IHSS for: (a) N = 2; (b) N = 3763

and (c) N = 5 oscillators. Other parameters as in Fig. 2. Here, thick764

(green) solid lines denote stable IHSS cluster decompositions, and765

dashed lines denote unstable steady state. Note that the bifurca-766

tion charts are not complete, depicting only those parts relevant767

for the current discussion.768
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Figure 5.769

Time series of protein CI (Bi) for the IHSS in two different770

cluster distributions: 1L | U17 (left plot) and 6L | 12U (middle771

plot) and an example of IHLC (right plot) coexisting for the same772

parameters, with fixed system size N = 18 and Q = 0.3. The IHLC773

example contains 6 oscillators in the upper CI state and 12 in the774

lower one.775

Figure 6.776

Bifurcation structure of the IHLC regime for (a) N = 2, solid777

(red) line, and (b) N = 3 oscillators - the left solid (red) line denotes778

stable 1L | 2U distribution, whereas the right one denotes stable 2L |779

1U distribution. Other parameters as in Fig. 2. Due to the large780

stiffness of our multidimensional model and the proximity to the781

bifurcation point, the correct continuation could not be performed782

with the Xppaut package. Therefore, the bifurcation branches on783

this figure are not closed.784

Figure 7.785

Examples of different IHLC distributions in an ensemble of N =786

18 cells for the same coupling Q = 0.2. Every oscillatory sub-cluster787

consists of only one cell: 1L | 17U (left), 1 : 1L | 16U (middle), and788

1 : 1 : 1L | 15U (right). The insets show a detail of the low-level789

oscillations after transients. Other parameters as in Fig. 2.790
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Figure 8.791

IHLC states exhibiting oscillatory low-protein-level sub-regimes792

with four (left and middle) and five (right) elements in an ensemble793

of N = 18 cells. Every sub-cluster in the oscillatory state consists of794

only one cell. Here Q = 0.2 and other parameters as in Fig. 2. The795

left figure depicts the situation with equal phase distance between796

the oscillating repressilators in the low protein B level, while in the797

middle and right plots the phase distances are different. The insets798

belong to the same time series and show a detail of the oscillatory799

sub-clusters.800

Figure 9.801

Examples of IHLC states with complex phase relations between802

the oscillatory sub-clusters in an ensemble of N = 18 cells. The803

insets show in detail the small limit cycle oscillations in the lower-804

protein state. Parameters are Q = 0.2 with (2 : 1)L | 15U (left),805

Q = 0.24 with (2 : 2)L | 14U (middle), Q = 0.24 with (2 : 2 : 1)L | 13U806

(right). Other parameters as in Fig. 2.807

Figure 10.808

Distribution of dynamical regimes (HSS, IHSS, IHLC) for in-809

creasing cell numbers. The coupling strength is fixed to Q = 0.24810

(top) and Q = 0.3 (bottom). Other parameters as in Fig. 2.811

Figure 11.812

Bifurcation diagram of 3 coupled repressilators for increasing813

Q, illustrating the stability of different steady-state and periodic814
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branches. Due to limitations of the Xppaut package to produce a815

complete bifurcation diagram of the system, we have used here a816

small diversity in the α parameter values of different oscillators817

in the range of 10−3. This does not qualitatively change the re-818

sults, but is a sufficient condition to obtain the complete bifur-819

cation structure of the system. For convenience, we have plotted820

here only one of the oscillators, although the full analysis has been821

performed.822

Figure 12.823

Top: time series of the protein Bi concentration in the regu-824

lar oscillating regime, exhibiting three cluster decompositions with825

7 : 6 : 5 distribution of cells between them. After a transient, a syn-826

chronous behavior inside each cluster emerges and the individual827

dynamics of the cells inside each cluster are indistinguishable. Bot-828

tom: cluster-plot representation of the case above. The parameters829

are those of Fig. 2, except Q = 0.3.830

Figure 13.831

Cluster plot of N = 11 non-identical repressilators in the self-832

oscillatory regime. A small diversity in parameter αi makes the833

oscillators non-identical. αi increases from bottom to top. The834

parameters are: n = 2.6, αi = 210, 211 . . .219, 220, βa = 0.85, βb = 0.1,835

βc = 0.1, κ = 25, ks0 = 1.0, ks1 = 0.01, η = 2.0, and Q = 0.5.836
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Figure 14.837

Maximal Lyapunov exponent (top) and a numerical bifurcation838

plot for the full amplitude oscillations (bottom) for increasing cou-839

pling Q. The simulations have small genetic noise σ2
a = 10−8 to avoid840

tracking unstable orbits. N = 18, and other parameters are as in841

Fig. 2.842

Figure 15.843

Time series (top panels) and the corresponding cluster plots844

(bottom panel) in the self-oscillatory regime of N = 18 oscillators845

with weak chaotic behavior and long lasting grouping. Parameters846

are: n = 2.6, α = 216, βa = 0.85, βb = 0.1, βc = 0.1, κ = 25, ks0 = 1.0,847

ks1 = 0.01, η = 2.0, σ2
a = 10−10, and Q = 0.6.848

Figure 16.849

Time series (top panels) and the corresponding cluster plot (bot-850

tom panel) in the self-oscillatory regime for N = 18 oscillators with851

strong chaotic dynamics and short-lived time grouping, for N = 18852

repressilators. The parameters are: n = 2.6, α = 216, βa = 0.85,853

βb = 0.1, βc = 0.1, κ = 25, ks0 = 1.0, ks1 = 0.01, η = 2.0, σ2
a = 10−10, and854

Q = 0.75.855
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Table 1: Examples of the dependence of the IHLC oscillation period on the oscillators

distribution between the high- and low-protein levels for N = 18 and Q = 0.2.

# high # low phase figure period

17 1 - 7 left ≈ 31.7

16 2 equal 7 middle ≈ 32.9

15 3 equal 7 right ≈ 34.0

14 4 equal 8 left ≈ 35.3

14 4 complex 8 middle ≈ 35.3

13 5 complex 8 right ≈ 36.5
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Table 2: Examples of the clustering of the full amplitude oscillations.

Q cluster phase period

N = 2

0.1 1:1 equal 51.3

0.15 1:1 equal 50.0

0.2 1:1 equal 49.4

0.3 1:1 equal 47.7

0.4 1:1 equal 46.0

0.5 1:1 equal 44.5

0.6 1:1 complex many

N = 3

0.1 1:1:1 equal 51.3

0.15 1:1:1 equal 50.7

0.2 1:1:1 equal 50.0

0.3 1:1:1 equal 48.8

0.4 1:1:1 equal 47.2

0.5 1:1:1 equal 46.1

0.6 1:1:1 complex many
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N = 4

0.1 1:1:1:1 equal 51.3

0.15 1:1:1:1 equal 50.7

0.2 1:1:1:1 equal 50.1

0.3 1:1:1:1 equal 48.8

0.4 1:1:1:1 equal 47.6

2:2 unstable -

0.5 1:1:1:1 equal 46.0

2:1:1 asymmetric 45.0

0.6 2:2 complex many

N = 5

0.0 - - 52.7

0.15 2:2:1 equal 50.7

0.2 2:2:1 equal 50.0

0.3 2:2:1 equal 48.6

0.4 2:2:1 equal 47.2

0.5 2:2:1 equal 45.5

3:2 unstable -

0.6 2:2:1 equal 44.1
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N = 6

0.2 2:2:2 equal 50.1

3:3 unstable -

0.3 2:2:2 equal 48.4

0.4 2:2:2 equal 47.3

N = 18

0.2 6:6:6 equal 50.0

7:6:5 equal 50.0

8:5:5 equal 50.0

7:7:4 unstable -

8:6:4 unstable -

9:9 unstable -

N = 100

0.4 34:34:32 equal 47.2

35:33:32 equal 47.2

35:34:31 equal 47.2

36:33:31 equal 47.1
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