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ABSTRACT. The bioaccumulation and retention capacities @ihe key local
contaminants of the New Caledonia lagoon (Ag, As, Co, Cr, Cu, Mn, Ni and Zn)
have been determined in the oysteognomon isognomoand the edible clam
Gafrarium tumidunduring transplantation experiments. In a first gfeéxperiments,
oysters and clams from a clean site were tranggdanto contaminated sites. Uptake
kinetics determined in the field indicated that @rand Cu in oysters and Co, Ni, and
Zn in clams, concentrations in transplanted bivalveached those of resident
organisms after 100d, whereas for the other elesn@&nivould require a longer time
for transplanted bivalves to reach the same lea®ls the resident populations (e.g.,
up to 3 years for Cd). However, the slow uptake fat metals observed in the latter
transplantation is rather related to low bioavaiigbof metals at the contaminated
sites than to low bioaccumulation efficiency of theganisms. Indeed, results of a
second transplantation experiment into two highdptaminated stations indicated a
faster bioaccumulation of metals in both bivalvBgsults of both transplantations
point out that the clanG. tumidumis a more effective bioindicator of mining
contamination thah isognomonsince it is able to bioaccumulate the contaminemts
a greater extent. However the very efficient metédntion capacity noted for most
elements indicates that organisms originating fimontaminated sites would not be
suitable for monitoring areas of lower contaminatislence, geographical origin of

animals to be transplanted in a monitoring perspeshould be carefully selected.

Keywords: Molluscs, Oyster, Clam, Bioaccumulation, Biomonihg, Metals
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l. Introduction

New Caledonia is a small South Pacific island whiosen economic resources are
derived from nickel exploitation. Among other, lbcaining activities result in large
anthropogenic inputs of metals into the SW lagood thereby constitute a potential
threat to the local coastal marine ecosystems, (Bigd et al. 1984) but it is only
recently that relevant information was made avélategarding levels of metal
contamination and their possible impacts on theallanarine ecosystems (e.g.,
Hédouin et al. 2009, Metian et al. 2008a). Theeeforonitoring of environmental
contamination originating from mining activities ithhe lagoon still needs some

significant scientific inputs.

Among the common approaches used to study envinotaneontamination, the use
of bivalve molluscs as bioindicator species hasvgdoto be a valuable and
informative technique (e.g., Mussel Watch, Goldbetrgl. 1983). This approach has
been particularly developed in temperate areasyemsein sub-tropical and tropical
areas the scarcity of available information makes ilentification of species that
could be used as suitable bioindicators difficelig(, Phillips 1991). However, the
screening of metal concentrations in a variety afine organisms from several parts
of the SW lagoon of New Caledonia has identifiegl tlystedsognomon isognomon,
the edible clanGafrarium tumidumand the algd.obophora variegataas potential
bioindicators (Hédouin et al. 2009). It has beeopwsh recently that the alga.
variegatawas an efficient bioindicator of metals in seawateboth controlled anah
situ conditions (Hédouin et al. 2008, Metian et al. @90 In addition, recent
experimental works on the oystér isognomonand the clam G. tumidumhave
indicated that these two species bioconcentratesffiwiently retain several elements

when exposed via seawater, sediments or their biddiouin et al. 2010b). More
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importantly, both bivalve species were showrtdéocentrate As, Cd, Co, Cr, Mn, Ni,
and Zn in direct proportion to their concentratiamseawater and food (Hédouin et

al. 2007, 2010b).

Although the former experiments were carried outlarncontrolled conditions
simulating as closely as possible those in the raktenvironment, laboratory
experiments cannot reproduce exactly the conditiotise field. In this respeat situ
experiments offer a more ecologically-realistic i@ah, since they encompass all the
factors that actually occur in the field and maysbly interfere with or influence

bioaccumulation processes (e.g., Cain and Luom&,19&douin et al. 2008).

Active biomonitoring using transplantation of organs from one site to another is a
very efficient way to follow the degree of contatiion at various sites (e.g. Hédouin
et al. 2008). The main advantages over the traditipassive biomonitoring (viz.

monitoring of metal concentrations using resideattiral populations) are that (1) the
sites to monitor may be chosen independently ofptiesence of natural populations
and (2) the influence of external and internal dest(e.g. seasonal variation, size or
age) susceptible to induce bias in data compailsoeduced (Phillips and Rainbow

1993).

The aim of the present field study was to deterntivgerelevance of using the oyster
I. isognomorand the clant. tumidumas bioindicator species of metal contamination
in tropical waters. Through two different field misplantation experiments, the ability
of both species to bioaccumulate and depurateezteel elements (Ag, As, Cd, Co,
Cr Cu, Mn, Ni and Zn) under natural conditions baen assessed as well as their
ability to inform about the contamination statustledir surrounding environment. A
power analysis was also carried out to determieesdimple size required to allow

differentiating among realistic field contaminati@vels.
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[I. Materials and methods

Between March and June 2005, two series of trantgilan experiments were
performed in New Caledonia using the oydsmygnomon isognomoand the clam
Gafrarium tumidumBased on previous field results (Hédouin et A0 sampling
stations were selected according to their appalegitee of metal contamination. Maa
Bay (subtidal station for oysters) and Ouano Bdatiertidal station for clams) were
identified as clean stations with low element coricgions in bivalve tissues and
sediments for all elements except As. In contrBstylari Bay (for oysters) and
Grande Rade -GR- (intertidal station for clams) were designated faghly

contaminated stations (Fig. 1).
1.1 Experimental design

Since body size is well known to affect metal coriaions in marine invertebrates
(e.g. Boyden 1977), only individuals with shell ¢¢im longer than 70 mm fok.
isognomon(Metian 2003) and shell width greater than 35 non &. tumidum
(Hédouin et al. 2006) were considered in order toimize size-related variability.
Two types of transplantations were conducted. At fireciprocal transplantation
aimed at assessing metal bioaccumulation and diepurgrocesses in natural
populations living in two contrasted environmertgahditions (see Fig. 2). A second
transplantation was conducted to test the abilftypath selected species to inform
about the contamination level of their surroundéamyironment in a heavily polluted

area (unidirectional transplantation in Grande R&ig 2).

1.1.1. Experiment 1: Reciprocal transplantations
Eighty oysters and 80 clams were collected fromtte selected clean stations, Maa

Bay and Ouano Beach, respectively. A sub-sampl®airganisms from each station
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was used for determination of baseline concentrataf the 9 selected elements (Ag,
As, Cd, Co, Cr Cu, Mn, Ni and Zn) at the beginnafighe experiment. The remaining
oysters and clams (n = 70 per species) were tramga for 100 d to the heavily
contaminated stations, Boulari Bay and Grande R#G& intertidal station),

respectively. The reciprocal transplantation wadeutaken with another batch of 80
oysters and 80 clams collected in Boulari Bay ana@n@e Rade (GR), respectively,

and transplanted to the clean stations, Maa Bayd¥sters) or Ouano Beach (for

clams).

Organisms (transplanted and control resident iddi&is) at each station were placed
in plastic mesh cages (6060 cm; 2-cm mesh size), which allowed free exckaoig
seawater. The plastic cages containing the oysters placed at 5 m depth, which
corresponds to their natural habitat; those wittimd were fixed in an intertidal
position and inserted within the sediments in otdereproduce to the best the living
condition of the clams. In order to monitor possillatural variation in element
concentrations at the different stations, residaganisms (n = 5 per species) and
superficial sediments (top 3-cm layer) were sampsahultaneously with the
transplanted organisms (n = 7) from clean and coim@ed stations at different
times. Oysters were collected by SCUBA diving dmel¢dlams by hand picking at low

tide.

1.1.2. Experiment 2: Unidirectional transplantation in Grde
Rade
Grande Rade is locally influenced by anthropogenjuts from the ‘Société Le
Nickel' (SLN), a nickel processing plant. Two steits (GR and GR) were chosen in
Grande Rade for this experiment because they hé#dratit levels of metal

contamination (Migon et al. 2007). GRtation is a highly polluted site due to its
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proximity to the off-loading wharf of the SLN, wheas the second station &Rn the
opposite side of the Rade just in front of the Salttory, is less contaminated than

GR: (Fig. 1).

The bivalved. isognomorandG. tumidum(n = 140 per species) were collected from
the clean stations Maa Bay and Ouano Beach, reggkgctTwenty organisms were
used for element analyses in order to establistha&lseline concentrations of elements
at day O of transplantation; the remaining orgasigm = 120 per species) were
transplanted for 69 d into the two stations in @aRade (GRand GR, n = 60 per
station per species) and held in80 cm plastic cages (2-cm mesh size) immerged
at 5 m depth for both clams and oysters. Transpthaotganisms (n = 30 per species)
in GRyand GR, and resident organisms (n = 20) from the cleatiosts (Maa Bay for
oysters and Ouano Beach for clams) were collecye8iGlUBA diving after 35 and 69

d. Sediment samples (top 3-cm layer) were collestetiltaneously with organisms

from the clean and transplantation sites.

1.1 Sampling preparation and analyses

Back to the laboratory, the bivalves were keptZér in 30 | seawater from the same
sampling station to allow depuration of gut condeand of particulate material

present in the mantle cavity. Soft tissues wereokad from the shells and were
weighed (wet weight; wwt), dried at 60°C until ctarg weight, and weighed again
(dry weight; dwt). They were then stored in acidshwed, hermetically sealed plastic

containers until analysis.

Sediments were similarly stored in acid-washedmie¢ically sealed plastic bags and

frozen at -20°C. Sediments were then dried at 6@YC5 d. In order to eliminate
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heterogeneous materials (e.g., stones, fragmecdrafs), sediments were sieved (1-

mm mesh size) prior to analysis.

Aliquots of the biological samples (300 to 500 nwt)dand sediment samples (300
mg dwt) were digested using a 3:1 (v:v) nitric-loehloric acid mixture (65%
suprapur HN@ and 30% suprapur HCI, Merck). Acid digestion o damples was
carried out overnight at room temperature. Samplese then mineralized using a
CEM Corp. MARS 5 microwave oven (30 min with comshaincreasing temperature
up to 100°C for sediments and 115°C for biologicedterial, then 15 min at these
maximal temperatures). Each sample was subsequeiibed with milli-Q water

according to the amount of sample digested (10X80/mg).

Elements were analyzed using a Varian Vista-Pro@ES (As, Cr, Cu, Mn, Ni, and

Zn) or a Varian ICP-MS Ultra Mass 700 (Ag, Cd arm).(’hree control samples (two
Certified Reference Materials - CRM - and one bjaimkated and analyzed in the
same way as the samples were included in eachteahlpatch. The CRM were

dogfish liver DOLT-3 and lobster hepatopancreas T@RINRCC). The results for

CRM indicated recoveries of the elements rangiognfi81 % (Ni) to 113 % (Zn)

(Table 1). The detection limits were 31.0 (As), (C3), 3.8 (Cu), 0.15 (Mn), 1.1 (Ni)

and 2.4 (Zn) pg §dwt for ICP-OES and 0.1 (Ag), 0.15 (Cd) and 0.b){ig g* dwt

for ICP-MS. All element concentrations are givenaodry weight basis (g gdwt).

1.2. Data treatment and statistical analyses

The uptake kinetics of the elements examined weseribed using either a simple

linear regression model (eq. 1) or a saturatioroegptial model (eq. 2):
Ci=C+kit(eq. 1)

Ci=GCo+C (1-e*) (eq. 2)
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where G and G are the element concentrations in organisms at tifd and O,
respectively (ugQ); C. + Gyis the concentrations at steady state; (€g g'); k. is
the uptake rate constant (ug @*) and k is the depuration rate constant(d

(Whicker and Schultz 1982).

Depuration kinetics of elements was described liyeeia simple linear regression

model (eq. 3) or a single-component exponentiahgu (eq. 4):
Ci= G- ket (eq. 3)
Ci=GCoe™e'+ A(eq. 4)

where A is a constant (ug'p.

Model constants and their statistics were estimétgdterative adjustment of the
model and Hessian matrix computation using theineal curve-fitting routines in

the StatisticA”" software 5.2.1.

Element concentrations of sediments and contrarasgns were plotted against time
and fitted using simple linear regression. Statdtianalyses of the data were
performed using 1l-way analysis of variance (ANOWa)lowed by the multiple

comparison test of Tukey (Zar 1996). The levelighdgicance for statistical analyses

was always set at= 0.05.

A power analysis was performed using the wholeoc$atata in order to assess the
minimal sample size of organisms (oysters and clamguired to detect realistic
(field-observed) differences in element concentratvith statistical significance (p <

0.05) (Zar 1996).
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1.  Results

11.1.  Experiment 1. Reciprocal transplantations

.1.1. Sediments
Comparison of element concentrations in sedimewt® the two stations naturally
inhabited by the oystetsisognomonMaa Bay and Boulari Bay) indicated that levels
of As, Co, Cr, Mn and Ni in sediments collectedhir8oulari Bay were significantly
higher (pukey < 0.0008) than those collected from Maa Bay, wheoesentrations
of Cu and Zn were significantly highert(gy < 0.0002) in Maa Bay compared to
Boulari Bay (Table 2). No significant difference svaobserved between Cd

concentrations in sediments from the two bays.

Element concentrations measured in sediments froen tivo stations naturally
inhabited by the clam&. tumidumshowed that concentrations of all elements in
sediments collected in Grande Rade (fRontaminated station,) were significantly
higher (pukey always< 0.0002) than those from Ouano Beach (clean sta(itaible

2).

Element concentrations in sediments collected ftloenfour stations at the different

times showed no significant variation with time.

.1.2. Oysters I. isognomon
At the beginning of the experiment, concentratiohsll elements in oysters from
Boulari Bay were significantly higher {gey < 0.0002, except for Zn: p = 0.006) than
those collected from Maa Bay, except for As, Cd dd for which no significant

difference was found.

10
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Resident populations ¢f isognomorfrom Maa Bay and Boulari Bay did not exhibit
any significant variation in concentrations of aigment during the experiment time

course.

In oysters transplanted to the Boulari Bay stattbe,concentrations of Cr, Cu and Ni
showed a significant linear increase: (8.054, 0.065 and 0.031 ug'g™; p < 0.003;

R2 = 0.14-0.24) with time (Fig. 3). At the end b&texperiment, Ni concentrations in
oysters were significantly lower {gey = 0.046) than those in resident oysters from

the Bay. No significant difference was found fora@d Cu.

In oysters transplanted to the clean station (Mag)Bonly Ag, Co and Ni showed
significant depuration. Ag and Co concentrations/gd a significant linear decrease
over time (l 0.059 and 0.013 pg§d™® p < 0.03; Rz 0.08 and 0.10, respectively;
Fig. 4). The depuration kinetics of Ni in oysterftstissues was best fitted by an
exponential model ¢k0.19 d', R2 = 0.54, p < 0.0001). The concentrations of @g,
and Ni in transplanted oysters at the end of theeement were still significantly

higher (pukey always< 0.0001) than those in resident oysters.

1.1.3. Clams G. tumidum
At the beginning of the transplantation experiméaaty 0), concentrations of all
elements in clams from Ouano Beach were signifigdatver (prukey < 0.001, except
for Mn and Zn, p< 0.02) than those from Grande Rade (gRThe only exceptions
were As for which the highest concentration, g = 0.0003) was measured in clams
from Ouano Beach, and for Cd for which no significdifference was found between

the clams of the two stations.

Control residen6. tumidumin Ouano Beach and Grande Rade showed no sigmtifica

variation for any element along the duration of éperiments.

11
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In clams transplanted to the contaminated stati®R,(), the concentrations of Ag,
Cd, Co, Cr, Cu and Zn displayed a significant Imeerease (Ag, Cu and Zn;:k
0.092, 0.105 and 0.21 ug'gl™, respectively; p < 0.0001; R2: 0.26 - 0.83; Cd,aDd
Cr ks 0.0014, 0.02 and 0.019 pg'g?, respectively; p < 0.02; R 0.12) (Fig. 3).
The uptake kinetics of Ni in clam soft tissues Wast fitted by an exponential model
(R2 = 0.65, p < 0.0001) for which the estimatedaldptrate constant, kwas 1.28 ug
g' d*. The uptake rate of Ag, Cu, Ni and Zn was highgeobe order of magnitude

compared to that of the other elements (Fig. 3).

When clams from GR were transplanted to the clean station, Ouano lBe&g and
As concentrations displayed a significant linearéase (k 0.078 and 0.541 pugg
d*: p < 0.001; Rz 0.17 and 0.56, respectively) (Fp. For the other elements, no

significant depuration was observed.

When a significant increase/decrease in elementcerdgration was observed,
concentrations in transplanted organisms were cogdpdo those of resident
organisms. Statistical analyses indicated thateend of the experiment, Ag, Cd, Cr
and Cu concentrations in clams transplanted tg:®Rre significantly lower ey
< 0.005, except for Ag, p = 0.047) than in residdams from GR; (up to 3.9 fold
lower for Cd and Cr). No significant difference wésund for Co, Ni and Zn

concentrations between transplanted and residamtscl

At the end of the experiment, Ag concentrationscliams transplanted to Ouano
Beach were significantly higher {(pey = 0.0001) than those in resident clams at

Ouano Beach, whereas for As, the opposite was wdb€pr,key = 0.0003).

12



287

288

289

290

201

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

[11.2.  Experiment 2: Transplantation in Grande Rade

.2.1. Sediments
Sediments collected from Ouano Beach, Maa Bay; &Rl GR revealed that
concentrations of all elements were significantighler (1 to 3 orders of magnitude
higher) in sediments from GRpruey always< 0.0002) compared to the other three
stations, except for As that reached its highestentration in GR (Prukey = 0.0002)

(Table 2).

.2.2. Oysters I. isognomon
Element concentrations in resident oysters from NBay showed no significant

variation over the duration of experiment.

At the most contaminated station (i.e., {gRCo, Cr, Cu and Ni concentrations at 35
and 69 d were significantly higher than those @t @rukey < 0.0006 for Co, Cr, and
Cu and p = 0.005 for Ni; Fig. 5). Among these fougtals, only Ni concentrations
after 69 d were significantly higher than thoseeaf85 d of transplantation. Ag
concentration after 69 d was significantly highlkart those at 0 d and after 35 d
(Prukey = 0.03), but no significant difference was fouretvieen concentrations at 0 d
and after 35 d of transplantation. Concentration8s) Cd, Mn and Zn exhibited no
significant differences in the oysters at statioR;®ver the entire transplantation

period.

At station GR, which displays a lower degree of contaminaticentiGR according

to the element concentrations in sediments (Tapl&l2concentrations after 35 and
69 d were significantly higher than those at 0 d aoncentrations after 69 d were
significantly higher than those after 35 dgy < 0.0001). Concentrations of Cr and

Cu after 35 and 69 d were significantly higher titfamse at O d (Rkey < 0.0001), but

13
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no significant differences were found between 3% 6® d. Ag concentrations after 69
d were significantly higher than those at O ¢,(g = 0.0002) and after 35 d(Rey =
0.02), but no significant difference was found begw concentrations at O d and after
35 d. No significant difference was found for thencentrations of As, Cd, Co, Mn

and Zn in oysters over the entire transplantateniop in GR.

After 35 d, oysters transplanted into Gdsplayed concentrations of Co, Cu and Ni
significantly higher than those at Gpruey < 0.0001) whereas concentrations of Ag
and Zn in GRoysters were significantly lower than those at;@Rukey = 0.02 and
0.048, respectively). After 69 d of transplantatioancentrations of Co, Cr, Cu, Mn
and Ni were significantly higher in oysters tram@syéd at station GRhan those at
GRy (Prukey < 0.002 for Co and Cu, and < 0.04 for Cr, Mn and, Mihereas Ag

concentrations at GRvere significantly lower than those at &®rukey = 0.009).

1.2.3. Clams G. tumidum
Element concentrations in resident clams from OuAeach showed no significant

difference over time.

At the most contaminated station (i.e., {gFAg, Co and Ni concentrations after 35
and 69 d were significantly higher than those ianmd measured at 0 dy{Ry <
0.0001 for Ni andk 0.02 for Ag and Co) (Fig. 6) and concentratiortera69 d were
significantly higher than those after 35 d of tyalastation. Concentrations of Cr and
Cu after 69 d were significantly higher than thas@ and after 35 d {fey< 0.0003),
whereas no significant difference was found betwi#enconcentrations at 0 d and
after 35 d of transplantation. No significant difece was found between the

concentration of As, Mn and Zn after 35 and 69 d.

14



334 At the second station, GRAg and Ni concentrations after 35 and 69 d were
335 significantly higher (puey < 0.0005) than those at O d, and concentrations 68el

336 were significantly higher than those after 35 ¢g= 0.0005 and 0.03 respectively).
337 Cr concentrations after 35 and 69 d were signifigamgher (prukey < 0.0001) than
338 those at the beginning of the transplantation, matsignificant differences were
339 observed between 35 and 69 d. Cu and Mn concenrtsadifter 69 d of transplantation
340 were significantly higher {pwey = 0.039 and 0.041) than those at the start of the
341 experiment. No significant difference was found @ and Zn concentrations at 0O,
342 and after 35 and 69 d. In contrast, As concentnatiafter 69 d were significantly

343 lower than those at day Or(jey = 0.014).

344 Element concentrations after 35 and 69 d of traamgption were compared between
345 stations GRand GR. Results indicated that after 35 d, Co, Cu anddxicentrations
346 in clams at GRwere significantly higher than those at SfRrukey < 0.0002, except
347 for Cu: p = 0.01). For the other elements, no $icgmt difference between GRnd
348 GR, was found after 35 d. After 69 d of transplantatithe concentrations of Cd, Co,
349 Cr, Cu and Ni in clams at GRvere significantly higher fkey always< 0.0002) than

350 those at GR

351 [11.3. Estimation of the minimum sample size required to

352 detect a significant difference in concentrations

353 A power analysis was performed to determine thammum sample size necessary to
354 detect a significant difference & 0.05) between concentrations of a given elenment
355 two batches of clams or oysters. The variability tbé data was shown to be
356 dependent upon the element, the species, the rdagiod the concentration levels.

357 The highest variance was observed in the samplaplaging the highest
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381

concentrations, consequently, minimum and maximamawce of the transplanted
batches were used to determine the range of mirsaraple size necessary to detect
given differences of concentrations with statidticsignificance. Considered
differences of concentrations were selected to dpgesentative of those that are
actually encountered in the field (Table 3). Gelhgra sample of size 50 organisms
would be required to detect realistic differencesiement concentrations, ranging

from 0.5 (Cd) to 150 (As) pg gdwt.

V. Discussion

This field study investigated the situ accumulation and depuration of 9 selected
elements in two tropical bivalves in order to vatel their relevance as biomonitoring
species. Element concentrations in resident coongdnisms from each site showed
no significant variation with time during the trghantation time course, indicating

that any increase (or decrease) of element coratants in tissues of the transplanted
individuals would actually reflect a higher (oraaMer) metal contamination level at a

given site, and should not be due to seasonalrfacto

When the oysters and clams from the clean sitese wensplanted into the

contaminated sites (Experiment 1), the uptake ef shlected elements displayed
different trends (Figs 3 and 4). At the end of tfa@splantation period, concentrations
observed in the organisms were either lower thasimilar to those measured in
resident populations of the contaminated site, idrribt change compared to their

initial levels.

Concentrations of Cr and Cu in oysters and Co, i An in clams reached values
similar to those measured in resident organismsnil&i findings have been

previously reported for Cu and Zn in the soft tesswf the musseM. edulis
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398

399

400

401

402

403

404

405

transplanted to a temperate polluted bay (Roesgtdl. 1984). However, since metal
uptake displayed linear kinetics over the trangpl@on period, the concentrations of
these elements would most probably have continoedctease if the duration of the
experiment was longer. This hypothesis is suppdriethe observations made in the
second transplantation experiment, in which clanassplanted to GRand GR

displayed Co and Ni concentrations (up to 15.7 & @nd 140 + 46 pg gdwt,

respectively) exceeding those of the resident clrora Grande Rade (7.2 £ 2.3 and

63.2 + 13.5 pg g dwt for Co and Ni, respectively).

In contrast, concentrations of Ni in transplantggters and, Ag, Cd, Cr, Cu in
transplanted clams significantly increased during transplantation period but did
not reach the values measured in resident organigaking into account the
measured uptake rate constants of these elemerdgsters and clams, it can be
estimated that reaching the resident concentratiansd require, for example, about
6 months for Ni in oysters and approximately 3 gefar Cd in clams. Comparable
results have been previously reported for the oys@rassostrea rhizophorae
(Wallner-Kersanach et al. 2000), the clddacoma balthicgCain and Luoma 1985)
and the mussd\l. edulisfrom Greenland (Riget et al. 1997). However, asuits
from the second transplantation (Experiment 2)datdid that when both species were
transplanted to a more contaminated site ()& cumulation of Ni in oysters and Cr
in clams was faster than during the first transialton experiment. Therefore, the
slow uptake rate of Ni in oysters and Cr in clarhsesved in the latter transplantation
is rather related to low bioavailability of theseot metals at the contaminated site
(Boulari Bay and GR; for oysters and clams, respectively) than to low

bioaccumulation efficiency of the organisms.
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In the case of Ag, As, Cd, Co, Mn and Zn in oystensl As and Mn in clams,
concentrations did not show a significant incrediseng the transplantation from the
clean site to the polluted one (Experiment 1). Etreugh similar observations were
made for Cd and Zn concentrationsGnenomytilus grayanuafter two months of
transplantation (Shulkin et al. 2003), oppositendise have also been observed. For
example, after 120 days of transplantation, a 8aamt bioaccumulation of Cd and
Zn was measured in tissues of oysters, clams ackleso(Baudrimont et al. 2005).
Therefore, the lack of bioaccumulation of some @ets in oysters and clams as
observed in our study suggests that these elememesrather poorly bioavailable for
the bivalves or that oysters and clams have efficieegulation mechanisms
preventing these metals from being accumulatedfatt, when organisms were
transplanted to GRand GR (Experiment 2), concentrations of Ag and Co intess
and Mn in clams were actually efficiently bioaccuatad. In addition, in laboratory
controlled conditions, metals including Co and Merw efficient accumulated in
oyster and clam tissues (Hédouin et al. 2010a)refbee, these results support the
low bioavailability hypothesis, at least for Ag afb in Boulari Bay and Mn at

Grande Rade GR.

When organisms were transplanted to a clean stafexperiment 1), the
concentrations of all elements in both bivalvesevaimost the same after 100 d of
transplantation, except for Ag, Co and Ni in oystewhich showed a low but
significant decrease with time. However, Ag, Co atidconcentrations in oysters
were far from reaching the concentrations measuredtural resident populations by
the end of the experiment. Such incomplete metalightion has been reported by
several authors when organisms from polluted aneae transplanted to clean areas

(e.g., Zn in the muss#ytilus edulis,Roesijadi et al. 1984, Simpson 1979; Cd and Cu
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450
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452
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455

in the oysterCrassostrea gigasGeffard et al. 2002; Cr, Cu and Zn in the clam
Mercenaria mercenariaBehrens and Duedall 1981). The biological h#df (ily.,) of
these elements has been previously determined femhotracer experiments ih
isognomonand G. tumidum(Hédouin et al. 2007, 2010b). Although, elemeiis |
Ag, Cd, Ni and Zn were very efficiently retainedthwiT,,, > 5 months, the other
elements displayed pJ, ranging from 1 to 3 months in both bivalve species,
independently of the uptake pathway tested (seawdtwd or sediments).
Comparison of the data indicates that, in the fileburation processes would take
longer for some metals than those previously eséch&rom laboratory experiments.
This confirms that laboratory results cannot alwdnes extrapolated directly to
environmental situations, probably due to physimalgadaptations of organisms
living in contaminated conditions (e.g. sequestratnechanisms). Since oysters and
clams showed very low depuration for most of thedtd contaminants, bivalve
tissues would be able to retain information of eomnhation events over very long
periods of time. However, the subsequent drawbactks biomonitoring perspective
are that (1) the element concentrations in tramg@thorganisms are not actually able
to reflect the lower contamination levels occurrai@g given location over a medium-
scale time period (i.e., 3 months), and (2) thenel& concentrations in organisms
collected from natural areas can reflect past comation which is no longer
occurring rather than actual contamination. Thesevidacks arise from the fact that
depuration is influenced by the past contaminatigtory of the organisms. It was for
example shown that Cu was more easily eliminatéi®o(&after 30 d) by oysters
temporarily transplanted into a metal-rich area@0rd, than by resident oysters from
the same metal-rich area (decrease limited to 986 a0 d) (Wallner-Kersanach et al.

2000). This suggests that our specimens from thee montaminated area, which
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were exposed to high metal concentrations possdilytheir whole life, may have
developed more efficient sequestrating processesiaifils to store them in their
tissues as non-toxic forms (e.g. in granules, Maswh Jenkins 1995). Such adaptive
mechanisms could occur in both studied species, ramte explain the efficient
retention observed in the field. Therefore, furtstrdies should be focused on the
long-term depuration of elements in both bivalvesif contaminated and clean sites,
in which bivalves would be previously exposed tateminants in the field for 2-3
months before being transplanted into clean siteach experiments would
demonstrate whether the past contamination hisibtyisognomorand G. tumidum

plays a role in the strong retention of elementseoled in the field.

Interestingly, when clams from Grande Rade (@Rvere transplanted to Ouano
beach (Experiment 1), a significant bioaccumulatadnAs was observed in clam
tissues, although lower As concentration was reglart sediments from Ouano beach
(3.1 pg & dwt). High level of As in clam tissues from Ouareach has been recently
reported (Hédouin et al. 2009), and the authorgyestgd that food was the main
pathway of As uptake in clams. Our transplantagaperiment from Grande Rade
(GRnt) to Ouano beach showed that As was highly bioalktel for clams in OQuano
beach. In addition, due to the low levels of Asediments from Ouano beach, this
result supports the assumption that the high lewdlsAs are most probably
bioaccumulated from the diet of the organisms (8en@t al. 1989, Warnau et al.
2007, Hédouin et al. 2009). Since the cl@mtumidumis a seafood product in New
Caledonia and that its tissues showed high levielsspthe sources of As in OQuano

Beach and the potential toxicity of As for consusnglnould be further investigated.

In the second transplantation (Experiment 2), etgno®ncentrations in sediments

clearly indicated that GRs the most contaminated site, reaching very higfell of
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Co, Cr, Mn, and Ni (up to 10,500 pg Nf gwt). These high concentrations in metals,
and more specifically in Ni, concur with the veinglinconcentration of Ni observed in
the particulate phase within the water column (Migo al. 2007). Ag, Co, Cr, Cu and
Ni were efficiently accumulated in transplantedteys and clams. In addition, results
indicate that bioaccumulation was dependent on Bagjocation and species, and
difference in the contamination level of the twatsins was easier to observe when
organisms were transplanted for a longer time 3% d). For example, our results
showed that the concentrations of 5 elements ial®vtissues (Co, Cr, Cu, Mn and
Ni in oysters and Cd, Co, Cr, Cu and Ni in clamgravsignificantly higher at GR
than at GR after 69 d, whereas differences were significamy éor 3 elements (Co,

Cu and Ni) after 35 d.

In this second transplantation experiment, oysteis clams were transplanted to the
same stations, hence exposed to the same envirteimeanditions. Their
bioaccumulation capacities can thus be directlymaned. Clams were more efficient
than oysters in bioaccumulating the selected elésn@ng., concentrations measured
after 69 d of transplantation increased by a factan oysters and by a factor 40 in
clams). These findings were surprising consideprgyious results from laboratory
radiotracer studies (e.g., Hédouin et al. 2010ajchvlindicated a more efficient
bioconcentration capacity in oysters than in clamisen exposed to dissolved
elements (concentration factors were higher by regéweders of magnitude). Such a
difference between laboratory amd situ experiments strongly suggests that the
seawater pathway is not the major route of accutoulariving global metal uptake
in these organisms. Rather, ingestion of partieulaiaterials would be the main
pathway for metal uptake, an hypothesis that igpstpd by a previous study of Cd,

Co and Zn bioaccumulation modeling inisognomonand G. tumidum(Hédouin
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2006, 2010b). This may indeed explain the highetaievels inG. tumidumwhich
lives buried in the sediment, and feeds mainly wyanic (and metal)-rich particles at

the seawater-sediment interface.

Combining the results from transplantations 1 amdethonstrated the usefulness of
bioindicator species to assess the degree of camafion present in the marine
environment. Indeed, for some elements, the higlelde of metals reported in
sediments were reflected in organism tissues (€g. Ni) and a significant
bioaccumulation of these metals was observed intifseles of the clams and the
oysters during the transplantation experiments. ¢l@n, for some elements, the
metal bioaccumulation trends observed in clamsosters were different from those
expected based on metal concentrations found imeedtls at the different sites of
transplantation. For example, in sites charactdrizgh low As concentrations in
sediments (Ouano beach), efficient bioaccumulatbbrAs was observed in clam
tissues (Experiment 1), suggesting that other ssuof As uptake are available for
organisms (e.g. food, see discussion above). Itrastnfor Mn, although high levels
were measured in sediments, almost no bioaccuronlatas observed in organism
tissues (Experiment 2). This clearly points outttbaly a fraction of the metals
present in the sediments is bioavailable for orgasi Mn bound in the lattice of
naturally occurring Mn-rich ores (e.g., lateritedagarnierite) may be less available
for uptake by marine organisms compared to watkmh$® forms. The different
patterns of metal bioaccumulation observed in cland oysters during the two
transplantation experiments carried out in this kwpointed out that the metal
contamination status cannot be based solely onl mwesdysis from the sediments and
this is the reason why the use of bioindicator E®ets an important asset to better

characterize the contamination status of a pasdicsite. In addition, although it was
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not performed in the present study, metal analysiseawater is also a useful
complementary information to those obtained frondirsents and organisms.
However accurate analysis of metals in seawatemeasy and expensive, and is
therefore generally not integrated in biomonitoripgogrammes. Nevertheless,
nowadays the development of techniques such adiffasive gradients in thin films
(DGT) (e.g., Davison and Zhang 1994, Webb and Ked@02) brings new insights
to obtain time-integrated information on metal camication in seawater. Ideally
analysis of metals in sediments, seawater and mmanwill be recommended for
biomonitoring purposes since such combination ecésrour understanding of the
contamination status present in the marine envisnmbut also brings additional
information for identifying the source of contamtioa.

In order to obtain accurate and reliable data iom@nitoring programmes, the
determination of optimal sample size to be colléeteof fundamental importance. In
this context, the present study has investigatedhtmimum sample size required to
detect a given difference in concentration. Ressliswn in Table 3 indicate that the
detection of a 0.5 pggdwt difference in tissue concentrations in thehhig
contaminated organisms required the largest saspée Relatively large variability
in metal concentrations in organisms within a bas frequently been reported (e.qg.,
Daskalakis 1996, Gordon et al. 1980). In the prestndy, the concentration
variability was higher with increasing average antcation. Consequently, detecting
small differences in concentration among organigmtis higher metal concentrations
will require an increase in sample size. Nevergglé is important to keep in mind
that to be feasible, the sample size required boanonitoring programme should

always remain realistic.
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Compared to the actual metal concentration rangasured in the New Caledonia
lagoon waters and sediments, the minimum differanceoncentrations detectable
with sample sizes of 50-60 organisms would allow da efficient differentiation
among sites naturally inhabited by the two targebedalves. For example, a
difference of 2 pg Ni g dwt can be detected with a sample size of 7 aysted 36
clams in a population showing low Ni levels (TaBle However, 62 oysters and 30
clams would be necessary to detect difference® @@ 8 g g dwt, respectively, in

a population characterized by high Ni concentraiffable 3). A sample size of 50-
60 organisms was similarly recommended by othenaastin order to facilitate the
detection of significant changes in concentratigg. Gordon et al. 1980, Topping
1983). In current biomonitoring programmes, orgarsi<ollected (20 oysters and 30
mussels for the NOAA Mussel Watch, Beliaeff etl#198; 10 oysters and 50 mussels
for the French RNO, Claisse 1989) are pooled bedosdysis in order to reduce costs
of sample preparation and analysis. However, pgdiads to the loss of statistical
information on inter-individual variability, whicks obviously an important issue to
assess significance of concentration differencesngmsamples. These economic
constraints are obvious in the case of large nakiand international biomonitoring
programmes that assess the levels of numerous tesm®ments and organic
contaminants in many stations. However, in New @aéa, which is mainly
impacted by mining activities, metal and metalloade the contaminants of major
concern. Therefore, analytical costs would be reducompared to biomonitoring
programmes that include the very expensive anabfs@ganic compounds. Hence,
in the specific context of the New Caledonia lagoibns highly recommended to

analyze individual samples in order to obtain infation on inter-individual
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variability that would provide scientifically-supged best practices in environmental

management.

V. Conclusion

This study clearly indicates that the cla®n tumidumcan be recommended for an
active monitoring of contaminants in subtidal amdertidal stations of the New
Caledonia lagoon on a spatiotemporal scale. Biotaong studies using transplanted
organisms would be an efficient solution to sureeyironmental levels of key local
metal contaminants in areas lacking resident beslvlThe advantage of using
transplanted organisms (active biomonitoring) osampling resident populations
(passive biomonitoring) is that it allows selectiogganisms of uniform initial

element concentrations, of common origins and pastory, and thus ensures
comparable biological samples. However, if furtbierdies confirm the observed very
long element retention times in these organismgarsms from sites displaying a
low contamination will have to be used in order geevent bias in element
concentrations due to physiological adaptation ojanisms (e.g. sequestration

mechanisms).
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730 Figure 1.Map showing the stations selected for transplamtatixperiments.
731 OUANO: Ouano Beach; MAA: Maa Bay; BOULARI: BoulaBay; GR,: Grande
732 Rade Interdital station; GRGrande Rade subtidal site 1; &SBrande Rade subtidal
733 site 2; SLN : « Société Le Nickel » Nickel ore pgesing plant.
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Figure 2. Element concentrations (mean + SD; piydwt; n = 7 for transplanted

organisms and n = 5 for control organisms) in agstsognomon isognomoand

clamsGafrarium tumiduntransplanted from clean stations, Maa Blayspognomo

and Ouano BeachG( tumidun), to the contaminated stations, Boulari Bay and

Grande Rade (GR), respectively.

(only data showing a significant regression, pG5Qare presented)
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Figure 3. Element concentrations (mean + SD; piydwt; n = 7 for transplanted
organisms and n = 5 for control organisms) in agstsognomon isognomoand
clamsGafrarium tumiduntransplanted from the contaminated stations, Bo@ay

(. isognomoi and Grande Rade (GRG. tumidun), to reference stations, Maa Bay
and Ouano Beach, respectively. (only data showisigmificant regression, p < 0.05,

are presented)
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752 Figure 4. Element concentrations (mean + SD; piydwt; n = 30 for transplanted
753 organisms and n = 20 for control organisms) in @eggdsognomon isognomadnom Maa
754 Bay transplanted into stations &&hd GR in the Grande Rade.

755 (stars indicate that the concentration is signifibadifferent from those in organisms

756 at0d;*p<0.05,*p<0.001)
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760 Figure 5. Element concentrations (mean + SD; jidyt; n = 30 for transplanted
761 organisms and n = 20 for control organisms) in el@afrarium tumidumfrom

762 Ouano Beach transplanted into the stations &/ GR in the Grande Rade.

763 (stars indicate that the concentration is signifibadifferent from those in organisms

764 at0d;*p<0.05, **p<0.001)
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Table 1.ICP-OES and ICP-MS analysis of certified referemegerials: certified values and measured valuestrt SD pg ¢ dwt)

TORT-2 DOLT-3
Element Method Found Certified % Found Certified %

Mean +SD Mean +SD  Recovery| Mean +SD Mean +SD  Recovery
Ag ICP-MS No certified value 1.07 £0.092 1.20+0.07 89.3
As ICP-OES 22.28 £2.22 21.60 £1.80 103.2 9.45 +0.9710.20 £ 0.50 92.7
Cd ICP-MS 26.42 £ 3.75 26.70 £ 0.60 99.0 17.01 + 3.1219.40 + 0.60 87.7
Co ICP-MS 0.52 £ 0.089 0.51 £0.091 101.5 No certifiatlie
Cr ICP-OES 0.66 £0.19 0.77 £0.15 85.3 No certifiatlie
Cu ICP-OES | 98.40+11.17 106.0 £ 10.0 92.8 31.23€2.431.20+1.00 100.1
Mn ICP-OES 12.46 +1.19 13.60 +1.20 91.6 No certifiatlie
Ni ICP-OES 2.02+0.35 2.50+0.19 80.9 3.05+0.76 7220.35 112.1
Zn ICP-OES 187.6 +19.6 180.0+6.0 104.2 97.67 £ 6.9B6.60 £ 2.40 112.8
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774 Table 2.Element concentrations (mean + SD; [fgdwvt, n = 3) in sediments collected in six sampbitgs.

775 GR: Grande Rade Interdital station; @&rande Rade subtidal site@R,: Grande Rade subtidal site 2

Ouano beach Maa bay Boulari bay GRnt GR; GR
Ag 0.019*+0.028 0.013*+0.014 0.06*+0.04 0.35043  0.17*+0.09 0.018* £ 0.015
As 3.1*+1.2 6.4*+0.3 16.7*+1.3 8.0*+1.2 7.0*%9 15.4 + 0.5*
Cd 04+0.2 1.0+0.2 1.1+0.3 25+0.2 3.7+1.2 .8980.1
Co 0.8+04 4.4 +23 154+11.1 492 +£5.2 366 & 14 6.1+0.9
Cr 7824 46.9+4.0 71.5+10.2 309 + 39 1,294 4 246+29
Cu 1.4*+0.7 7.0x0.5 0.9*+0.1 27.0+3.6 9.6 83. 28*+04
Mn 44.7 +14.9 134 +6.7 545 + 53.0 304 + 15 1,600& 6 76.7 £ 8.1
Ni 56+3.0 69.2+5.6 101 +12.9 848 + 78 10,50Q368 66.4 + 15.8
Zn 3.5+20 16.3+1.3 7.1+1.6 148 +£11.0 73.3 #22 128 +1.38

776 *:inferior to detection limit.
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777 Table 3.Minimal sample size of the oystesognomon isognomaand the clanGafrarium
778 tumidumnecessary to detect with 90 % significance a idiffee (p < 0.05) of concentrations
779 between two groups of organisms
780 Observed range of element concentrations represemisentrations that have been
781 measured in the two species resident from diffeséattons along the New Caledonia coast;
782 number between brackets represents concentratibas Have been reached during
783 transplantation experiments.
Samplesize
(number of individualsrequired)
| isognomon G. tumidum
Observed Difference
Element Species Concentration range 1 Concentration Concentration
in tissues* (Hg g* dwi)
Low High Low High
Ag Oyster 1.5-32.8 1 21 110 <3 43
Clam 0.02-33.1 3 4 14 <3 6
10 <3 <3 <3 <3
30 <3 <3 <3 <3
As Oyster 21.6 -76.6 10 32 111 3,713 8,260
Clam 37.4 - 441 20 9 29 921 2,065
40 4 8 231 517
80 <3 <3 59 130
150 <3 <3 18 38
350 <3 <3 5 8
Cd Oyster 1.2-25 0.2 220 894 4 160
Clam 0.17-1.8 0.5 36 144 <3 27
1 10 37 <3 8
2 4 10 <3 4
Co Oyster 05-25 0.2 8 170 780 > 10,000
Clam 1.1-7.2(15.7) 0.5 <3 28 126 1,945
1 <3 8 32 487
2 <3 <3 9 122
5 <3 <3 <3 21
10 <3 <3 <3 6
Cr Oyster 1.6-9.0 1 9 54 7 993
Clam 1.1-10.5(17.4) 2 4 15 <3 248
4 <3 5 <3 63
8 <3 <3 <3 17
15 <3 <3 <3 8
Cu Oyster 31-17.3 2 6 153 15 184
Clam 5.6 - 88.2 4 <3 39 5 47
8 <3 11 <3 12
15 <3 4 <3 5
30 <3 <3 <3 <3
60 <3 <3 <3 <3
Mn Oyster 17.0-34.7 2 260 1,938 727 8,590
Clam 55-187.4 4 66 485 183 2,148
8 18 122 47 538
15 6 36 14 154
30 <3 10 5 40
60 <3 4 <3 11
120 <3 <3 <3 4
Ni Oyster 2.2-16.0(32.4) 2 7 963 36 6,505
Clam 8.1-63.2 (140) 4 <3 242 10 1,627
8 <3 62 4 410
15 <3 19 <3 117
30 <3 5 <3 30
60 <3 <3 <3 9
120 <3 <3 <3 4
Zn Oyster 1700 - 13,820 5 >10,000 >10,000 14 248
Clam 55.6 - 154 10 722 4,180 5 63
50 182 1,045 <3 4
100 9 43 <3 <3
500 4 12 <3 <3
10,000 <3 <3 <3 <3
784 * from Breau 2003, Hédouin et al. 2008a, Presarntyst
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