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We investigate the decay properties of the mass

of the solutions of a fractional diffusion equation with nonlinear memory term. We show, using a suitable class of initial data and a restriction on the diffusion and nonlinear term, that the memory term determines the large time asymptotics, that is M (t) tends to zero as t → ∞.

Introduction and main result

In recent years, researchers have shown a considerable interest in the so called fractional calculus which allows us to consider integration and differentiation of any order, not necessarily integer. This interest is due to the applications of this theory to problems in different areas of physics and engineering. Important applications of this theory can be found in various fields like viscoelastic materials and heat conduction in materials with memory [START_REF] Mainardi | Fractional Calculus andWaves in Linear Viscoelasticity[END_REF][START_REF] Nunziato | On heat conduction in materials with memory[END_REF][START_REF] Zhang | Damping properties of the viscoelastic material described by fractional Kelvin-Voigt model[END_REF].

The purpose of this paper is to study the large time behavior of solutions of the fractional diffusion equation with a nonlinear memory term (1.1)

       u t + (-∆) β/2 u = - 1 Γ(1 -γ) t 0 (t -s) -γ |u| p-1 u(s) ds x ∈ R N , t > 0, u(x, 0) = u 0 (x) x ∈ R N ,
where u 0 ∈ C 0 (R N ) ∩ L 1 (R N ), N ≥ 1, 0 < β ≤ 2, 0 < γ < 1, p > 1 and the pseudo-differential operator (-∆) β/2 is defined by the Fourier transformation:

(-∆) β/2 v(x) := F -1 |ξ| β F(v)(ξ) (x) , v ∈ D((-∆) β/2 ) = H β (R N ).
Here H β (R N ) is the homogeneous Sobolev space of order β defined by

H β (R N ) = u ∈ S ; (-∆) β/2 u ∈ L 2 (R N ) if β ∈ N, H β (R N ) = u ∈ L 2 (R N ); (-∆) β/2 u ∈ L 2 (R N ) if β ∈ N,
where S is the space of Schwartz distributions. The terms F and F -1 are respectively the Fourier transform and its inverse. Γ is the Euler gamma function and C 0 (R N ) denotes the space of all continuous functions tending to zero at infinity.

As a physical motivation, the right-side of (1.1) might be interpreted as the effect of a classically diffusive medium that is nonlinearly linked to a super-diffusive medium. Such a link might come in the form of a porous material with reactive properties that is partially insulated by contact with a classically diffusive material. More details are given in a recent paper of Roberts and Olmstead [START_REF] Robert | Blow-up in a subdiffusive medium of infinite extent[END_REF]. Furthermore, nonlinear evolution problems involving fractional Laplacian describing the anomalous diffusion (or β-stable Lévy diffusion) have been extensively studied in the mathematical and physical literature [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF][START_REF] Droniou | Fractal first-order partial differential equations[END_REF][START_REF] Karch | Fractal Hamilton-Jacobi-KPZ equations[END_REF]. One of the possible ways to understand the interaction between the anomalous diffusion operator (given by (-∆) β/2 or, more generally, by the Lévy diffusion operator) and the nonlinearity in the equation (1.1) is the study of the large time asymptotics of solutions to such equations.

In this paper, we aim to give a contribution to this theory by generalizing a recent work of Fino and Karch in [START_REF] Fino | Decay of mass for nonlinear equation with fractional Laplacian[END_REF] for the approximate equation (1.1). The nonlinear memory term can be considered as an approximation of the nonlinear term of the classical semilinear parabolic equation

(1.2) u t + (-∆) β/2 u = λ|u| p-1 u, with λ = -1 since the limit lim γ→1 1 Γ(1 -γ) s -γ + = δ(s)
exists in the distributional sense where s + := max(0, s).

In [START_REF] Fino | Decay of mass for nonlinear equation with fractional Laplacian[END_REF], Fino and Karch have proved that, for Eq. (1.2) with λ = -1, lim t→∞ M (t) = M ∞ > 0 for p > 1 + β/N , where M (t) := R N u(•, t)dx, while M (t) tends to zero as t → ∞ if 1 < p ≤ 1 + β/N . The exponent 1 + β/N is called Fujita critical exponent [START_REF] Fujita | On the blowing up of solutions of the problem for ut = ∆u + u 1+α[END_REF].

The approach which allows to express the competition between diffusive and nonlinear terms in an evolution equation by studying the large time behavior of the space integral of a solution was introduced by Ben-Artzi and Koch [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF] who considered the viscous Hamilton-Jacobi equation u t = ∆u -|∇u| p (see also Pinsky [START_REF] Pinsky | Decay of mass for the equation ut = ∆u -a(x)u p |∇u| q[END_REF]). An analogous result for the equation u t = ∆u + |∇u| p (with the growing-intime mass of solutions) was proved by Laurençot and Souplet [START_REF] Ph | On the growth of mass for a viscous Hamilton-Jacobi equation[END_REF]. Such questions concerning the asymptotic behavior of solutions to the Hamilton-Jacobi equation with the Lévy diffusion operator were answered by Karch and Woyczyński in [START_REF] Karch | Fractal Hamilton-Jacobi-KPZ equations[END_REF].

For λ = +1, global existence and nonexistence solutions of equation (1.2) have been considered, using probabilistic approaches, by Nagasawa and Sirao [START_REF] Nagasawa | Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation[END_REF] and Sugitani [START_REF] Sugitani | On nonexistence of global solutions for some nonlinear integral equations[END_REF] respectively. Using properties of semigroup, local and global existence were studied by Weissler [START_REF] Weissler | Semilinear Evolution Equations in Banach Spaces[END_REF]. For the blow up of solutions we refer the reader to Kirane et al. [START_REF] Guedda | Criticality for some evolution equations[END_REF][START_REF] Kirane | Global nonexistence for the cauchy problem of some nonlinear reaction-diffusion systems[END_REF] and Fino and Karch [START_REF] Fino | Decay of mass for nonlinear equation with fractional Laplacian[END_REF] where the test function method was used.

1.1. The main result. We assume that u = u(x, t) is the nonnegative mild solution (see Definition 2.1) of problem (1.1) corresponding to the nonnegative initial datum

(1.3) u 0 ∈ C 0 (R N ) ∩ L 1 (R N ).
In fact, using Theorem 2.3 below, one can obtain a unique mild solution u ∈ C([0, ∞); C 0 (R N ) ∩ L 1 (R N )) of (1.1). Moreover, a maximum principle (see Proposition 3.2) shows that the solution u is nonnegative if the corresponding initial datum is so.

In this paper, we deal with equation (1.1) containing the absorbing nonlinearity memory term and we study the decay of the "mass"

(1.4) M (t) ≡ R N u(x, t) dx = R N u 0 (x) dx - t 0 R N J α 0|s (|u| p-1 u(x, • ))(s) dx ds,
where J α 0|s is given by (2.7) with α = 1 -γ ∈ (0, 1). The above equality can be obtained by integrating (with respect to x) the mild solution of (1.1) using Fubini's theorem, and by using (2.3) below.

Since we limit ourselves to nonnegative solutions, the function M (t) defined in (1.4) is nonnegative and non-increasing. Hence, the limit M ∞ = lim t→∞ M (t) exists and then we have either

M ∞ = 0 or M ∞ > 0.
We show that on some range of p, the mass M (t) converges to zero and this can be interpreted as the domination of nonlinear effects in the large time asymptotic of solutions of (1.1). One should notice here that in the case where u t +(-∆) β/2 u = 0, we get back the conservation of mass.

The main result can now be formulated as follows: let

(1.5) p γ = 1 + β(2 -γ) N and p * = max{p γ ; 2 -γ},
we have:

Theorem 1.1. Let 0 < β ≤ 2, 0 < γ < 1, N ≥ 1 and p > 1.
Assume furthermore that u 0 ≥ 0 is non-negative and satisfies (1.3). If u is the mild solution of (1.1) and if p < p * , then lim t→∞ M (t) = 0.

In the case β = 2, this result is extended to the case p = p γ .

The proof of this theorem is based on the so-called rescaled test function method used in [START_REF] Fino | Finite time blow-up for a wave equation with a nonlocal nonlinearity[END_REF][START_REF] Fino | Decay of mass for nonlinear equation with fractional Laplacian[END_REF][START_REF] Fino | Qualitative properties of solutions to a time-space fractional evolution equation[END_REF][START_REF] Guedda | Criticality for some evolution equations[END_REF][START_REF] Mitidieri | A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities[END_REF][START_REF] Qi | A blow up result for a nonlinear wave equation with damping: the critical case[END_REF] to prove the nonexistence of solutions to nonlinear elliptic, parabolic and hyperbolic equations.

1.2. Organization of the paper. This work is continuing in three sections: Section 2 introduces some definitions and terminologies. Section 3 is devoted to the proof of Theorem 1.1. Finally, conclusions and perspective results are given in Section 4.

Preliminaries

Here, we present some definitions and results concerning the fractional laplacian and fractional integrals. The linear fractional diffusion equation (2.1)

u t + (-∆) β/2 u = 0, β ∈ (0, 2], x ∈ R N , t > 0,
has a fundamental solution S β given by:

(2.2) S β (t)(x) := S β (t, x) = 1 (2π) N/2 R N e ix.ξ-t|ξ| β dξ.
It is well-known that S β satisfies the following properties:

(2.3) S β (1) ∈ L ∞ (R N ) ∩ L 1 (R N ), S β (t, x) ≥ 0 and R N S β (t, x) dx = 1,
for all x ∈ R N and t > 0. Let T (t) := e -t(-∆) β/2 , then since (-∆) β/2 is a positive definite self-adjoint operator on L 2 (R N ) one can deduce that T (t) is a strongly continuous semigroup on L 2 (R N ) generated by the fractional power -(-∆) β/2 (see Yosida [START_REF] Yosida | Functional Analysis[END_REF]). Moreover

T (t)v = S β (t) * v. Knowing that (-∆) β/2 is a self- adjoint operator, we have (2.4) R N u(x)(-∆) β/2 (v(x)) dx = R N (-∆) β/2 (u(x))v(x) dx, u, v ∈ H β (R N ).
We now present the definitions of mild and weak solutions.

Definition 2.1 (Mild solutions). Let u 0 ∈ C 0 (R N ), 0 < β ≤ 2, p > 1 and T > 0. We say that u ∈ C([0, T ], C 0 (R N )) is a mild solution of the problem (1.1) if u satisfies the following integral equation (2.5) u(t) = T (t)u 0 - t 0 T (t -s)J α 0|s (|u| p-1 u)(s) ds, t ∈ [0, T ]. Definition 2.2 (Weak solution). Let u 0 ∈ L ∞ Loc (R N ), 0 < β ≤ 2 and T > 0. We say that u is a weak solution of the problem (1.1) if u ∈ L p ((0, T ), L ∞ Loc (R N )
) and verifies the following formulation (2.6)

R N u 0 (• )ϕ(• , 0) - T 0 R N J α 0|t (|u| p-1 u)ϕ = T 0 R N u[(-∆) β/2 ϕ -ϕ t ],
for all compactly supported ϕ ∈

C 1 ([0, T ], H β (R N )) such that ϕ(• , T ) = 0.
The existence of solutions rely on the following result:

Theorem 2.3 (Local existence [START_REF] Fino | Qualitative properties of solutions to a time-space fractional evolution equation[END_REF]). Given u 0 ∈ C 0 (R N ) and p > 1, there exists a maximal time T max > 0 and a unique mild solution u ∈ C([0, T max ), C 0 (R N )) to the problem (1.1). Furthermore, either T max = ∞, or else T max < ∞ and

u(t) L ∞ (R N ) → ∞ as t → T max . Moreover, if u 0 ∈ C 0 (R N ) ∩ L r (R N ) for some 1 ≤ r < ∞, then u ∈ C([0, T max ), C 0 (R N ) ∩ L r (R N )).
The forthcoming definitions and technical arguments will be used in the proof of Theorem 1.1. For all f ∈ L q (0, T ) (1 ≤ q ≤ ∞), the left-handed and right-handed Riemann-Liouville fractional integrals J α 0|t f (t) and J α t|T f (t) of order α ∈ (0, 1) are defined respectively by (see [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF])

(2.7) J α 0|t f (t) := 1 Γ(α) t 0 (t -s) α-1 f (s) ds and (2.8) J α t|T f (t) := 1 Γ(α) T t (s -t) α-1 f (s) ds, for all t ∈ [0, T ].
Moreover, for every f ∈ L p (0, T ), g ∈ L q (0, T ) such that p, q ≥ 1 and 1 p + 1 q ≤ 1 + α (p = 1 and q = 1 in the case when 1 p + 1 q = 1 + α), we have the following integration by parts formula for fractional integrals (see [14, (2.1.50) 

p. 76]) (2.9) T 0 J α 0|t ϕ (t)ψ(t) dt = T 0 ϕ(t) J α t|T ψ (t) dt.
An important result concerning right-handed Riemann-Liouville fractional integrals is the following (see [14, (2.1.18) 

p.71]): if w 1 (t) = (1 -t/T ) σ + , t ≥ 0, T > 0 and σ 1, then (2.10) J α t|T w 1 (t) = C T α 1 - t T σ+α + . 3. Proof of Theorem 1.1
This section is devoted to the proof of the decay properties of the mass of the mild solutions of (1.1). We start with the following lemma:

Lemma 3.1. Let 0 < β ≤ 2 and T > 0. Consider u 0 ∈ C 0 (R N ), and let u ∈ C([0, T ], C 0 (R N
)) be a mild solution of (1.1), then u is also a weak solution of (1.1).

Proof. Let T > 0, 0 < β ≤ 2, u 0 ∈ C 0 (R N ) and let u ∈ C([0, T ], C 0 (R N
)) be a solution of (2.5). Given ϕ ∈ C 1 ([0, T ], H β (R N )) such that suppϕ is compact with ϕ(• , T ) = 0. Then by multiplying (2.5) by ϕ and integrating over R N , we get

R N u(x, t)ϕ(x, t) = R N T (t)u 0 (x)ϕ(x, t)- R N t 0 T (t -s)J α 0|s |u| p-1 u (x, t) ds ϕ(x, t).
So,

d dt R N u(x, t)ϕ(x, t) = R N d dt (T (t)u 0 (x)ϕ(x, t)) - R N d dt t 0 T (t -s)J α 0|s |u| p-1 u (x, s) dsϕ(x, t) =: A 1 -A 2 . (3.1)
Now, using (2.4) together with the following property of the semigroup

T (t) ([5, Chapter 3]) d dt (T (t)u 0 (x)) = -(-∆) β/2 (T (t)u 0 (x)),
we have

A 1 = R N A (T (t)u 0 (x)) ϕ(x, t) + R N T (t)u 0 (x)ϕ t (x, t) = R N T (t)u 0 (x)Aϕ(x, t) + R N T (t)u 0 (x)ϕ t (x, t), (3.2) 
and

A 2 = R N f (x, t)ϕ(x, t) + R N t 0 A (T (t -s)f (x, s)) dsϕ(x, t) + R N t 0 T (t -s)f (x, s) dsϕ t (x, t) = R N f (x, t)ϕ(x, t) + R N t 0 T (t -s)f (x, s) dsAϕ(x, t) + R N t 0 T (t -s)f (x, s) dsϕ t (x, t), (3.3) where A = -(-∆) β/2 and f := J α 0|t |u| p-1 u ∈ C([0, T ]; L 2 (R N )
). Thus, using (2.5), (3.2) and (3.3), we conclude that (3.1) implies

d dt R N u(x, t)ϕ(x, t) = R N u(x, t)Aϕ(x, t) + R N u(x, t)ϕ t (x, t) - R N f (x, t)ϕ(x, t).
We finally arrive to the result by integrating in time over [0, T ] and using the fact that ϕ(• , T ) = 0.

The non-negativity of the solutions is ensured by the next proposition.

Proposition 3.2 (Maximum principle). Let u 0 ∈ C 0 (R N ) and let u ∈ C([0, T ], C 0 (R N ))
be the mild solution of (1.1). If u 0 ≥ 0 then u ≥ 0.

Proof. It is clear that f := J α 0|t |u| p-1 u ∈ L 2 (0, T ; L 2 (R N )). It follows, using the maximal regularity (see for instance [START_REF] Lamberton | Equations d'évolution linéaires associées à des semi-groupes de contractions dans les espaces L p[END_REF]Theorem 1]), that

u ∈ L 2 (0, T ; H β (R N )) ∩ W 1,2 (0, T ; L 2 (R N )) and hence u -∈ L 2 (0, T ; H β (R N )) ∩ W 1,2 (0, T ; L 2 (R N ))
where u = u + -u -with u + := max(u, 0) and u -:= max(-u; 0). Multiplying (2.5) by u -, and using the same steps as in Lemma 3.1, we obtain

d dt R N u(x, t)u -(x, t) = - R N u(x, t)(-∆) β/2 u -(x, t) + R N u(x, t)(u -) t (x, t) - R N J α 0|t |u| p-1 u (t)u -(x, t),
which implies that

- d dt R N (u -(x, t)) 2 = + R N u -(x, t)(-∆) β/2 u -(x, t) - R N u -(x, t)(u -) t (x, t) + R N J α 0|t |u| p-1 u -(t)u -(x, t). Then d dt R N (u -(x, t)) 2 = - R N |(-∆) β/4 (u -(x, t))| 2 + 1 2 d dt R N (u -(x, t)) 2 - R N J α 0|t |u| p-1 u -(t)u -(x, t),
To estimate I 1 , we compute:

I 1 = C Ω(T,B) u(J α t|T ϕ) 1/p (J α t|T ϕ) -1/p ϕ -1 1 |(-∆) β/2 ϕ 1 |ϕ 2 ≤ ε Ω(T,B) u p J α t|T ϕ + C(ε) Ω(T,B) (J α t|T ϕ 2 ) -1 p-1 ϕ -p 1 |(-∆) β/2 ϕ 1 | pϕ p 2 = ε Ω(T,B) J α 0|t (u p )ϕ + C(ε) Ω(T,B) (J α t|T ϕ 2 ) -1 p-1 ϕ -p 1 |(-∆) β/2 ϕ 1 | pϕ p 2 , (3.6)
where we have used (2.9) and ε-Young's inequality

(3.7) ab ≤ εa p + C(ε)b p where pp = p + p, a > 0, b > 0, p > 1, p > 1, with a = u(J α t|T ϕ) 1/p , b = C(J α t|T ϕ) -1/p ϕ -1 1 |(-∆) β/2 ϕ 1 |ϕ 2 . Similarly I 2 = C Ω(T,B) u(J α t|T ϕ) 1/p (J α t|T ϕ) -1/p ϕ 1 |(ϕ 2 ) t | ≤ ε Ω(T,B) u p J α 0|t ϕ + C(ε) Ω(T,B) (J α t|T ϕ 2 ) -1 p-1 ϕ 1 |(ϕ 2 ) t | p = ε Ω(T,B) J α 0|t (u p )ϕ + C(ε) Ω(T,B) (J α t|T ϕ 2 ) -1 p-1 ϕ 1 |(ϕ 2 ) t | p. (3.8) 
Combining (3.5), (3.6) and (3.8), we conclude that

Ω B u 0 ϕ 1 -(1 + 2ε) Ω(T,B) J α 0|t (u p )ϕ ≤ C(ε) Ω(T,B) (J α t|T ϕ 2 ) -1 p-1 ϕ -p 1 |(-∆) β/2 ϕ 1 | pϕ p 2 + C(ε) Ω(T,B) (J α t|T ϕ 2 ) -1 p-1 ϕ 1 |(ϕ 2 ) t | p. (3.9)
Step3. (Rescaling and passing to the limit) At this stage, we have to distinguish three cases:

• p < p γ : Here, we take B = T 1/β . Hence, using (2.10) and the change of variables:

s = T -1 t, ξ = T -1/β x, we get, from (3.9), that Ω B u 0 ϕ 1 -(1 + 2ε) Ω(T,B) J α 0|t (u p )ϕ ≤ C(ε)T -δ 1 0 (1 -s) η-α p-1 ds |ξ|≤2 Φ(|ξ|) -p|(-∆) β/2 Φ(|ξ|)| p dξ + C(ε)T -δ 1 0 (1 -s) η-α+p p-1 ds |ξ|≤2 Φ(|ξ|) dξ ≤ CT -δ , (3.10) 
where δ := (α + p)/(p -1) -1 -(N/β). As (p < p γ ⇔ δ > 0) we pass to the limit in (3.10) as T goes to ∞, and we use the Lebesgue dominated convergence theorem to get

R N u 0 dx -(1 + 2ε) ∞ 0 R N J α 0|t (u p (x, • )dx dt ≤ 0, which implies using (1.4) that 0 ≤ lim T →∞ M (T ) = R N u 0 dx - ∞ 0 R N J α 0|t (u p (x, • )dx dt ≤ 2ε ∞ 0 R N J α 0|t (u p (x, • )dx dt ≤ 2ε u 0 L 1 (R N ) .
But ε > 0 can be chosen arbitrary small and this leads simply to lim t→∞ M (t) = 0.

• p < 2 -γ: Let B = R, where 1 R < T is chosen such that both T and R do not simultaneously tend to ∞. We then obtain from (3.9) and the change of variables:

s = T -1 t, ξ = R -1 x that Ω R u 0 ϕ 1 -(1 + 2ε) Ω(T,R) J α 0|t (u p )ϕ ≤ C(ε)T α1 R N -β p 1 0 (1 -s) η-α p-1 ds |ξ|≤2 Φ(|ξ|) -p|(-∆) β/2 Φ(|ξ|)| p dξ + C(ε)T 1-(α+p)/(p-1) R N 1 0 (1 -s) η-α+p p-1 ds |ξ|≤2 Φ(|ξ|) dξ ≤ C T α1 R N -β p + C T 1-(α+p)/(p-1) R N ,
where α 1 := 1 -α/(p -1). Taking the limit as T → ∞, we infer, as p < 2 -γ ⇔ α 1 < 0, that (3.11)

Ω R u 0 ϕ 1 -(1 + 2ε) ∞ 0 Ω R J α 0|t (u p )ϕ 1 ≤ 0.
Finally, computing the limit as R → ∞ in (3.11) we infer that lim t→∞ M (t) = 0 because ε > 0 can be taken arbitrarily small.

• p = p γ and β = 2: let B = R -1/2 T 1/2 with the same R introduced in the previous case. From (3.5), we have (3.12)

Ω B u 0 ϕ 1 - Ω(T,B) J α 0|t (u p )ϕ ≤ C ∆(T,R) u ϕ -1 1 |∆ϕ 1 |ϕ 2 + Ω(T,B) u|ϕ t | =: J + I 2 where ∆(T, R) = [0, T ] × x ∈ R N ; R -1/2 T 1/2 ≤ |x| ≤ 2R -1/2 T 1/2 ⊂ Ω(T, B).
Moreover, we consider the same estimate on I 2 as in the beginning of the proof. But to estimate J, we use the following Hölder inequality

∆(T,R) ab ≤ ∆(T,R) a p 1/p ∆(T,R) b p 1/ p , with a = u(J α t|T ϕ) 1/p , b = (J α t|T ϕ) -1/p ϕ -1
1 |∆ϕ 1 |ϕ 2 , then (using (2.9)):

J = C ∆(T,R) u(J α t|T ϕ) 1/p (J α t|T ϕ) -1/p ϕ -1 1 |∆ϕ 1 |ϕ 2 ≤ C ∆(T,R) u p J α t|T ϕ 1/p ∆(T,R) (J α t|T ϕ 2 ) -1 p-1 ϕ -p 1 |∆ϕ 1 | pϕ p 2 1/ p ≤ C ∆(T,R) J α 0|t (u p )ϕ 1/p Ω(T,B) (J α t|T ϕ 2 ) -1 p-1 ϕ -p 1 |∆ϕ 1 | pϕ p 2 1/ p . (3.13)
Combining (3.8) and (3.13), we get from (3.12) that

Ω B u 0 ϕ 1 -(1 + ε) Ω(T,B) J α 0|t (u p )ϕ ≤ C ∆(T,R) J α 0|t (u p )ϕ 1/p Ω(T,B) (J α t|T ϕ 2 ) -1 p-1 ϕ -p 1 |∆ϕ 1 | pϕ p 2 1/ p + C(ε) Ω(T,B) (J α t|T ϕ 2 ) -1 p-1 ϕ 1 |(ϕ 2 ) t | p.
Using the scaled variables:

τ = T -1 t ξ = B -1 x = (T /R) -1/2
x and the fact that (p = p γ , β = 2) ⇔ (δ = 0), we get

Ω B u 0 ϕ 1 -(1 + ε) Ω(T,B) J α 0|t (u p )ϕ ≤ C T -δ p R 1-N/2 p ∆(T,R) J α 0|t (u p )ϕ 1/p 1 0 (1 -s) η-α p-1 ds 1/ p |ξ|≤2 Φ(|ξ|) -p|(-∆) β/2 Φ(|ξ|)| p dξ 1/ p + C(ε)T -δ R -N/2 1 0 (1 -s) η-α+p p-1 ds |ξ|≤2 Φ(|ξ|) dξ ≤ C R 1-N/2 p ∆(T,R) J α 0|t (u p )ϕ 1/p + C R -N/2 . (3.14) Now, from (1.4), we have ∞ 0 R N J α 0|t (u p (x, • ))(t) dx dt ≤ R N u 0 (x) dx < ∞, which implies lim T →∞ ∆(T,R) J α 0|t (u p ) φ 1/p = ∞ 0 R N J α 0|t (u p ) dx dt- ∞ 0 R N J α 0|t (u p ) dx dt = 0,
where we have used Lebesgue's dominated convergence theorem. Consequently, passing to the limit in (3.14), as T → ∞, we get

R N u 0 dx -(1 + ε) ∞ 0 R N J α 0|t (u p ) dx dt ≤ C R -N/2 .
Finally, we conclude that lim t→∞ M (t) = 0 by taking the limit when R goes to infinity as, once again, ε > 0 can be chosen arbitrarily small.

Conclusion and perspective results

Consider the problem (1.1) with the sign "-" replaced by "+" in the right-hand side, i.e. 

u t + (-∆) β/2 u = + 1 Γ(1 -γ) t 0 (t -s) -γ |u| p-1 u(s) ds.
Global existence, nonexistence and blow-up rate of solutions for the problem (4.1) can be found in a recent paper of Fino and Kirane [START_REF] Fino | Qualitative properties of solutions to a time-space fractional evolution equation[END_REF]. It is easy to check that if u(t, x) is a solution of (4.1) with initial value u 0 , then for all λ > 0, λ

β(2-γ) p-1 u(λ β t, λx) is also a solution with initial value λ β(2-γ) p-1 u 0 (λx). Since λ β(2-γ) p-1 u 0 (λ• ) L q = λ β(2-γ) p-1 -N q u 0 L q ,
it follows that the invariant Lebesgue norm of (4.1) is given by q sc = N (p -1) β(2 -γ) .

One would therefore expect (as in Fujita [START_REF] Fujita | On the blowing up of solutions of the problem for ut = ∆u + u 1+α[END_REF], Weissler [START_REF] Weissler | Existence and non-existence of global solutions for a semilinear heat equation[END_REF] and the references therein) that if q sc > 1, i.e. p > p γ (where the scaling exponent p γ is given in (1.5)), and if u 0 L qsc is sufficiently small, then the solution is global. Unfortunately, this does not work for the non-local equation (4.1). To be more accurate, Fino and Kirane [START_REF] Fino | Qualitative properties of solutions to a time-space fractional evolution equation[END_REF] (see also [START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF] for the case β = 2) have proved that the Fujita critical exponent for (4.1) is not the one predicted by scaling considerations and is given by

p 1 := max 1 + β(2 -γ) (N -β + βγ) + ; 1 γ > p γ .
On the other hand, it is expected (see for instance Ben-Artzi and Koch [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF] and Fino and Karch [START_REF] Fino | Decay of mass for nonlinear equation with fractional Laplacian[END_REF]) that the Fujita critical exponent p 1 for (4.1) is going to prove the decaying properties of the mass of solutions, i.e. lim t→∞ M (t) = M ∞ > 0 for p > p 1 while lim t→∞ M (t) = 0 if 1 < p ≤ p 1 . Note that p * and p 1 both converge to 1+β/N when γ → 1, where the term 1+β/N is the critical exponent given by Fino and Karch [START_REF] Fino | Decay of mass for nonlinear equation with fractional Laplacian[END_REF]. Furthermore, it is not clear if p * or p 1 is the Fujita critical exponent for the decaying properties of the mass, because in the study of the global existence and nonexistence of solutions, the predicted exponent p γ is not the critical one. 

Remark 4 . 1 .

 41 It is still an open problem to find the Fujita critical exponent p * * (γ, N, β) =: p * * ≥ p * to (1.1), i.e. to prove that lim t→∞ M (t) = M ∞ > 0 for p > p * * and that lim t→∞ M (t) = 0 if p * ≤ p ≤ p * * . Moreover, it is predicted that p * * → 1 + β/N as γ → 1.

The integration over [0, t] leads to

We are now ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let u be the nonnegative global mild solution of (1.1), then u is a solution of (2.5

Step1. (Choosing of the test function) Take

where , η 1 and Φ is a smooth nonnegative and non-increasing cut-off function defined by

, for all r > 0. The constant B > 0 which appears in the definition of ϕ 1 is fixed and will be determined later.

Step2. (Estimation) Using Lemma 3.1, we have

where

Moreover, the following inequality (see Appendix)

allows us to write:

Appendix

In this appendix, we give a proof of Ju's inequality (see [START_REF] Ju | The Maximum Principle and the Global Attractor for the Dissipative 2-D Quasi-Geostrophic Equations[END_REF]Proposition 3.3]), in dimension N ≥ 1 where δ ∈ [0, 2] and q ≥ 1, for all nonnegative Schwartz function ψ (in the general case) (-∆) δ/2 ψ q ≤ qψ q-1 (-∆) δ/2 ψ.

The cases δ = 0 and δ = 2 are obvious, as well as q = 1. If δ ∈ (0, 2) and q > 1, using [3, Definition 3.2], we have

By Young's inequality we have (ψ(x)) q-1 ψ(x + z) ≤ q -1 q (ψ(x)) q + 1 q (ψ(x + z)) q .

Therefore, (ψ(x)) q-1 (-∆) δ/2 ψ(x) ≥ -c N (δ) q R N (ψ(x + z)) q -(ψ(x)) q |z| N +δ dz = 1 q (-∆) δ/2 (ψ(x)) q .