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Bochner-almost periodicity for stochastic processes

Fazia Bedouhene
∗, Omar Mellah

†and Paul Raynaud de Fitte
‡

February 16, 2011

Abstract

We compare several notions of almost periodicity for continuous
processes defined on the time interval I = R or I = [0,+∞) with
values in a separable Banach space E (or more generally a separable
completely regular topological space): almost periodicity in distribu-
tion, in probability, in quadratic mean, almost sure almost periodicity,
almost sure equi-almost periodicity. In the deterministic case, all these
notions reduce to Bochner-almost periodicity, which is equivalent to
Bohr-almost periodicity when I = R, and to asymptotic Bohr-almost
periodicity when I = [0,+∞).

1 Introduction

Since the creation of the theory of almost periodicity by Harald Bohr in the
1920s, many concepts of almost periodicity have proved useful, in particular
those of Stepanov, Besicovitch, and Weyl. In the context of stochastic pro-
cesses, each of these notions gives rise to several possible definitions, such as:
almost periodicity in distribution, in probability, in quadratic mean, almost
sure etc (not to mention e.g. processes with almost periodic covariance func-
tions and many others, see [23]). In this paper we study the relationships
between some of these definitions for Bochner almost periodicity. Bochner-
almost periodicity coincides with Bohr-almost periodicity when the time
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interval I is the whole line R [7], but it only amounts to asymptotic Bohr-
almost periodicity when I = [0,+∞). It has the advantage over Bohr’s
definition that it does not depend on the uniform structure of the state
space but only on it’s topology (see Remark 2.1 in this paper).

Our work completes that of C. Tudor [23] who compared different types
of Bohr (or Bochner) almost periodicity for continuous processes in the case
when I = R.

As an application of our study, it is possible to compare previous re-
sults proving almost periodicity in the Bohr sense of the solution of some
stochastic differential equations. For example, in the works of C. Tudor and
his collaborators (see in particular [15, 22, 1, 10]), almost periodicity in dis-
tribution of the solutions is proved. On the other hand, in a series of papers
(in particular [2, 3, 4]) Bezandry and Diagana prove almost periodicity in
quadratic mean, which amounts to almost periodicity in probability plus uni-
form integrability of the square of the norms. We show that Bochner-almost
periodicity in distribution implies Bochner-almost periodicity in probability,
and that both notions are equivalent for processes with uniformly continuous
paths.

The paper is organized as follows: The next section is devoted to the
case when the state space is metrizable. An extension of the comparison be-
tween almost periodicity in distribution and in probability in the completely
regular case is given in Section 3 for possible applications in nonmetrizable
locally convex topological vector spaces. This extension is done by consider-
ing completely regular spaces as inverse limits of metrizable spaces and using
the results of section 2. Some complements on criteria of almost periodic-
ity and asymptotic almost periodicity on metric spaces and in completely
regular spaces are given in the Appendix (Section 4).

Notations and terminology In all what follows, we are given
- a separable completely regular topological space E (the state space), e.g.
E is a separable metrizable space,

- an interval I, which is R or R+ (the time interval),
- a probability space (Ω,F ,P).
- a continuous stochastic process X on E defined on Ω× I.
We use the following notations:
- We denote by C(I;E) the space of continuous functions from I to E.
- The space of trajectories of the process X is the space of continuous func-
tions from I to E, which we endow with the topology of uniform conver-
gence on compact subsets of I and denote by Ck = Ck(I;E). The definition
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of Ck seems to rely on the choice of a uniformity on E (e.g. of a metric
in the metrizable case), but actually the topology of Ck is independent of
this choice, see [12, Theorem 8.2.6].

- For any uniform space F , we denote Cu(I;F ) the space of continuous
functions from I to F endowed with the topology of uniform convergence
on I.

- For any function x : I → E, and for every t ∈ I, x̃(t) is the translation
mapping x(t+ .) : I → E, s 7→ x(t+ s)).

- For any topological space F , we denote by P (Ck) the space of Radon prob-
abilities on F endowed with the topology of narrow convergence, which is
the coarsest topology such that the mapings µ 7→ µ(f) are continuous for
all bounded continuous functions f : F → R.

- We denote by law (U) the law of a random variable U . The law of the
process X is the law of the Ck-valued random variable X = X̃(0).

As we concentrate mainly on the study of Bochner-almost periodicity
for stochastic processes, by default, in this paper, “almost periodic” means
“Bochner-almost periodic”.

2 Metrizable case

In this section, E is a Polish space i.e. E is separable and its topology can
be defined by a distance dE such that (E, dE) is complete.

Before we give the different definitions of almost periodicity for stochas-
tic processes, let us recall the corresponding definitions for deterministic
functions.

2.1 Almost periodicity in the deterministic case

Let dE be a distance on E which is compatible with the topology of E, and
let x : I → (E; dE) be a continuous function.We say that x is Bochner-almost
periodic if the set {x̃(t), t ∈ I} = {x(t+ .), t ∈ I} is totally bounded in the
space Cu(I,E).

We say that x is Bohr-almost periodic (resp. asymptotically Bohr-almost
periodic) if for any ε > 0, there exists l(ε) > 0 (resp. there exists l(ε) > 0
and T = T (ε) ≥ 0) such that any interval of length l(ε) contains at least an
ε-almost period, that is, a number τ for which

dE (x(t+ τ), x(t)) ≤ ε, for all t ∈ I = R (resp. for all t ≥ T such that t+ τ ≥ T ) .

In the first case (Bohr almost periodicity), we say that the set of ε-almost
periods of x is relatively dense in I. If E is a vector space, a function x : R→
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E is asymptotically Bohr-almost periodic iff it has the form x = y+z, where
y is Bohr-almost periodic and z is a continuous function with lim±∞ z = 0,
see e.g. [19].

The following statements are equivalent (see [7, 10] and Corollary 4.3):

1. x is Bochner-almost periodic.

2. x satisfies Bochner’s double sequence criterion, that is, for every pair
of sequences (α′

n) and (β′
n) in I, there are subsequences (αn) ⊂ (α′

n)
and (βn) ⊂ (β′

n) respectively with same indexes such that, for every
t ∈ I, the limits

(1) lim
n→∞

lim
m→∞

x(t+ αn + βm) and lim
n→∞

x(t+ αn + βn),

exist and are equal.

3. x is almost periodic in Bohr’s sense if I = R, or asymptotically almost
periodic in Bohr’s sense if I = R+.

Remark 2.1 (i) Bochner’s double sequence criterion shows that Bochner
almost periodicity is topological, i.e. it doesn’t depend on the choice
of dE, provided that dE is compatible with the topology of E

(ii) A striking property of Bochner’s double sequence criterion is that the
limits in (1) exist in any of the three modes of convergences: pointwise,
uniform on compact intervals and uniform on I (with respect to dE).
This criterion has thus the avantage that it allows to establish uniform
convergence by cheking pointwise convergence.

(iii) Asymptotic Bohr-almost periodicity is strictly weaker than Bohr-almost
periodicity, as shows the following example provided by Ruess and
Summers [19]:

x(t) =
1

1 + t
cos[ln(1 + t)], t ∈ R+.

2.2 Almost periodicity and asymptotic almost periodicity in

distribution

Following Tudor’s [23] terminology, we say thatX is Bochner-almost periodic
in distribution, APD for short, (resp. Bohr-almost periodic in distribution,
resp. asymptotically Bohr-almost periodic in distribution) if the mapping

t 7→ law
(
X̃(t)

)
, I → P (Ck) is Bochner-almost periodic (resp. Bohr-almost
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periodic in distribution, resp.asymptotically Bohr-almost periodic in distri-
bution). Other definitions of almost periodicity in distribution are possible,
see [1, 15, 23]: for example we say that X has almost periodic finite dimen-
sional distributions (APFD for short) if, for all finite sequences (t1, . . . , tn) in
I, the mapping t 7→ law (X(t1 + t), . . . ,X(tn + t)) is almost periodic. Like-
wise, if the mapping t 7→ law (X(t) is almost periodic, we say that X has
almost periodic one-dimensional distributions (APOD for short).

Bochner-almost periodicity in distribution as defined here is proved for
some solutions of stochastic differential equations in [15, 22, 1, 10].

Proposition 2.2 If X is APD then almost all its trajectories are uniformly
continuous on I.

Proof Suppose that X is almost periodic in distribution, then the family
(X̃(r))r∈I is tight in Ck. By [5, Theorem 7.3] or [24, Theorem 4], this implies
that, for each interval [a, b] ⊂ I, for every ε > 0 and for every η > 0, there
exists δ > 0 such that

P{ sup
|t−s|<δ
t,s∈[a,b]

dE
(
X̃(r)(t), X̃(r)(s)

)
> η} < ε

for all r ∈ I. Equivalently,

P{ sup
|t−s|<δ
t,s∈[a,b]

dE
(
X(r + t),X(r + s)

)
> η} < ε

for all r ∈ I. Therefore

P{ sup
|t−s|<δ

dE
(
X(t),X(s)

)
> η} < ε.

In particular, for each n ∈ N∗, there exists δn > 0 such that

P{ sup
|t−s|<δn

dE
(
X(t),X(s)

)
>

1

n
} <

1

n
.

Let

Ωn = { sup
|t−s|<δn

dE
(
X(t),X(s)

)
≤

1

n
} and Ω0 = lim sup

n
Ωn.

For each ω ∈ Ω0, the mapping t 7→ X(t)(ω) is uniformly continuous. Fur-
thermore, we have P(Ωn) ≥ 1 − 1

n
, thus P(Ω0) = 1 since P(lim supΩn) ≥

lim supP(Ωn).
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Corollary 2.3 If the trajectories of X are uniformly continuous, the fol-
lowing properties are equivalent:

(1) X is APFD.

(2) X is APD.

Before we give the proof of Corollary 2.3 we recall the following definition:
For f ∈ Cb(E), (where Cb(E) is the Banach space of continuous and bounded
functions defined on E),

|f |L = sup
{f(x)− f(y)

dE(x, y)
, ; x 6= y

}
, |f |∞ = sup

x∈E
|f(x)| ,

and |f |BL = max{|f |∞ , |f |L}.

For µ, ν ∈ P (E), we define

dBL(µ, ν) = sup
|f |BL≤1

∫

E

fd(µ− ν).

The metric dBL on P (E) is complete and compatible with the topology of
narrow convergence.

Proof of Corollary 2.3 Clearly (2)⇒(1). Assume that X is APFD. Let
(α′

n) and (β′
n) be two sequences in I and for t1, t2, . . . , tk, t ∈ I define (using

notations of [23])

µt1,...,tk
t := law ((X(t1 + t), . . . ,X(tk + t))) .

By a diagonal procedure we can find subsequences (αn) ⊂ (α′
n) and (βn) ⊂

(β′
n) with same indexes such that, for every k ≥ 1, for all q1, q2, . . . , qk ∈

Q
⋂

I (where Q is the set of rational numbers), and for every t ∈ I, the
limits

lim
n

µq1,...,qk
t+αn+βn

and lim
n

lim
m

µq1,...,qk
t+αn+βm

exist and are equal. We have, for all t1, t2, . . . , tk, t ∈ I, and for all q1, q2, . . . , qk ∈
Q
⋂

I,

dBL

(
µq1,...,qk
t+αn+βn

, µt1,...,tk
t+αn+βn

)
= sup

‖f‖BL≤1

∫

Ek

fd
(
µq1,...,qk
t+αn+βn

− µt1,...,tk
t+αn+βn

)

≤

∫

Ω
dEk

[(
X(q1 + t+ αn + βn), . . . ,X(qk + t+ αn + βn)

)
,

(
X(t1 + t+ αn + βn), . . . ,X(tk + t+ αn + βn)

)]
dP .
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Thus, by uniform continuity of the trajectories of X, if (q1, . . . , qk) →
(t1, . . . , tk), then

dBL

(
µq1,...,qk
t+αn+βn

, µt1,...,tk
t+αn+βn

)
→ 0

uniformly with respect to t ∈ I and n ≥ 0. By a classical result on inversion
of limits, we deduce that, for all k ≥ 1 and t1, . . . , tk, t ∈ I, the limits

lim
n

µt1,...,tk
t+αn+βn

and lim
n

lim
m

µt1,...,tk
t+αn+βm

exist and are equal. Therefore, to show that the limits

lim
n

law
(
X̃(t+ αn + βn)

)
and lim

n
lim
m

law
(
X̃(t+ αm + βn)

)

exist and are equal, it is enough to prove that (X̃(t))t∈I is tight in Ck. Since
the trajectories of X are uniformly continuous, we can find for each ω ∈ Ω
and for each η > 0, a number δ(ω) > 0, such that, for all t, s ∈ I,

(2) sup
|t−s|<δ(ω)

dE
(
X(t)(ω),X(s)(ω)

)
< η.

For each ε > 0, there exists δε > 0 such that

(3) P{δ > δε} > 1− ε.

Indeed, suppose that (3) is false, then there exists ε0 > 0 such that for
every δ∗ > 0, we have P{δ ≤ δ∗} > ε0. In particular, for each m ∈ N

P{δ ≤ 1
m
} > ε0. Let Am = {δ ≤ 1

m
}, we have

P{δ = 0} = inf
m

P{δ ≤
1

m
} > ε0 > 0,

which contradicts δ(ω) > 0 for every ω ∈ Ω. Thus, from (2) and (3), we
deduce that there exists δε such that

P{ sup
|t−s|<δε

dE
(
X(t),X(s)

)
> η} ≤ ε.

Therefore, for every interval [a, b] ⊂ I and every r ∈ I, we have

(4) P{ sup
|t−s|<δε
t,s∈[a,b]

dE
(
X̃(r)(t), X̃(r)(s)

)
> η} ≤ ε.

Since X is APFD, the family (X(t))t∈I = (X̃(t)(0))t∈I is tight, thus by (4)
and [24, 5] we conclude that (X̃(t))t∈I is tight in Ck.
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Corollary 2.4 Assume that I = R+. If X is an homogeneous Feller process
with uniformly continuous trajectories, the following properties of X are
equivalent:

(1) X is APOD.

(2) X is APFD.

(3) X is APD.

Proof The equivalence (2)⇔(3) follows from Corollary 2.3. Clearly (2)⇒(1).
There remains to show that (1)⇒(2).

Using again Tudor’s notation [23], let us set

µt := law (X(t)) and µt1,...,tk
t := law ((X(t1 + t), . . . ,X(tk + t))) .

Suppose that X is APOD, then for every sequence (α′
n) ⊂ R+, there exists

a subsequence (αn) ⊂ (α′
n) such that for each function g ∈ Cb(E) (Cb(E)

is the Banach space of continuous and bounded functions, g : E → R) the
limit

lim
n

µt+αn(g)

exists uniformly with respect to t ∈ R+. To show that the limit

lim
n

µt1,...,tk
t+αn

exists uniformly with respect to t ∈ R+, it is enough to show it for k = 2
and t1 < t2. Let f ∈ Cb(E× E), we have

µt1,t2
t+αn

(f) =

∫

E

µ0(dx0)

∫

E

pt1+t+αn(x0, dx1)

∫

E

pt2−t1(x1, dx2)f(x1, x2),

where pt(x, .) is the transition function for a time-homogeneous Markov
process X. Since X is a Feller process, the function

x1 7→ g(x1) :=

∫

E

pt2−t1(x1, dx2)f(x1, x2)

is in Cb(E). Therefore

µt1,t2
t+αn

(f) =

∫

E

µ0(dx0)

∫

E

pt1+t+αn(x0, dx1)g(x1) = µt+t1+αn(g)

converges uniformly with respect to t ∈ R+, hence X is APFD.

8



2.3 Almost periodicity and asymptotic almost periodicity in

probability or in p-mean

We say that X is Bochner-almost periodic in probability if
{
X̃(t), t ∈ I

}

is totally bounded with respect to the topology of uniform convergence in
probability, which amounts to say thatX satisfies Bochner’s double sequence
criterion for the convergence in probability. Recall from Remark 2.1(ii) that
this property depends only on the topology of convergence in probability, not
on any metric which is compatible with this topology, thus it is independent
of the metric dE on E.

We say that X is Bohr-almost periodic (resp. asymptotically Bohr-almost
periodic) in probability if for any ε > 0 and η > 0, there exists l = l(ε, η) > 0
(resp. there exists l = l(ε, η) > 0 and T = T (ε, η)) such that any interval of
length l contains at least a number τ for which

P {dE(X(t+ τ),X(t)) > η} ≤ ε, for all t ∈ R (resp. for all t ≥ T, t+ τ ≥ T ) .

Precupanu [16, 17] showed that most of the basic properties of Bohr-
almost periodic functions can be formulated accordingly for R-valued almost
periodic in probability processes, particularly, the usual approximation theo-
rem with random trigonometric polynomials is valid for stochastic processes.

Now, let us consider the case when E is a normed space and I = R. We
denote by ‖.‖E the norm of E. Let p ≥ 1. We say that X is almost periodic
in p-mean if the mapping X : R→ Lp(Ω;E) is almost periodic with respect

to the metric induced by ‖.‖p =
(∫
‖.‖pE dP

) 1

p .

Proposition 2.5 Let I = R. If X is almost periodic in p-mean, then it
is almost periodic in probability. Conversely, if X is almost periodic in
probability and the familly

{
‖X(t)‖pE , t ∈ R

}
is uniformly integrable, then

X is p-mean almost periodic.

Proof This is a direct consequence of Bochner’s double sequence criterion
and Vitali Theorem.

Almost periodicity in quadratic mean (using Bohr’s definition, but with
I = R) is proved for some solutions of stochastic differential equations in
[2, 3, 4].

Counterexample 2.6 (almost periodicity in probability and uni-
form continuity of the trajectories) Almost periodicity in probability
of a process X does not imply that its trajectories are uniformly continuous.
For example, let (δn) be a sequence of random variables on the probability
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space ([0, 1], dt) (dt is the Lebesgue mesure) such that δn := 1[ n

2k
,n+1

2k
] for

2k−1 ≤ n < 2k, k ∈ N. For each n ≥ 1, let fn : [0, 1]→ R be defined by

fn(t) =

{
nt if t ∈ [0, 12 ]
n(1− t) if t ∈ [12 , 1]

and let (Xt)t≥0 be defined by

Xt(ω) =

{
f[t](t− [t]) if δ[t](ω) = 1

0 if δ[t](ω) = 0

where [t] is the integer part of t. The trajectories of X are continuous on R+,
but almost none is uniformly continuous, nor bounded, since P(lim sup δn =
1) = 1. By Proposition 2.2, the process X is not almost periodic in distri-
bution. On the other hand, we have, for every ε > 0,

lim
t→∞

P(Xt > ε) ≤ lim
t→∞

P(δ[t] = 1) = 0

which means that X is asymptotically Bohr-almost periodic in probability
thus it is Bochner almost periodic in probability.

A variant of this example, with uniformly bounded trajectories, is ob-
tained by replacing X by min(X, 1).

2.4 Almost sure almost periodicity properties

We can give at least three different definitions:

(a) The stochastic process X is almost surely almost periodic if there exists
a measurable subset Ω1 ⊂ Ω such that P(Ω1) = 1 and for every ω ∈ Ω1,
the trajectory t 7→ X(t)(ω) is almost periodic.

(b) The stochastic process X satisfies Bochner’s almost sure uniform double
sequence criterion if, for every pair of sequences (α′

n) and (β′
n) in I,

there exists a measurable subset Ω1 ⊂ Ω such that P(Ω1) = 1 and there
are subsequences (αn) ⊂ (α′

n) and (βn) ⊂ (β′
n) respectively, with same

indexes (independent of ω) such that, for every t ∈ I, the limits

(5) lim
n→∞

lim
m→∞

X(t+ αn + βm)(ω) and lim
n→∞

X(t+ αn + βn)(ω)

exist and are equal for all ω ∈ Ω1. (In this case, Ω1 depends on the pair
of sequences (α′

n) and (β′
n).)
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(c) We say that X is almost surely equi-almost periodic in Bochner’s sense
if there exists a measurable subset Ω1 ⊂ Ω such that P(Ω1) = 1 and the
family of trajectories {X(ω)}ω∈Ω1

is equi-almost periodic in Bochner’s
sense, that is, if the family of translation mappings {X̃(t)(ω)}ω∈Ω1

is
totally bounded on Cu(I,E).

Obviously (c) ⇒ (b) and (c) ⇒ (a). The converse implications are false, see
Counterexamples 2.7 and 2.14.

If {X(ω)}ω∈Ω1
is a totally bounded subset of Ck(I;E), then X is almost

surely equi-almost periodic in the Bochner sense iff it satifies Bochner’s uni-
form double sequence criterion, with the additional assumption that the set
Ω1 in (c) is independent of (α′

n) and (β′
n). For the proof of this property and

connections with equi-almost periodicity in the Bohr’s sense, see Theorem
4.2 in the Appendix.

Counterexample 2.7 (almost sure almost periodicity and almost
sure equi-almost periodicity) The converse to (c) ⇒ (a) is false. For

example, the processX defined byX(t)(w) = ei
t
w , for every w ∈]0, 1] and t ∈

I is almost surely almost periodic, but it is not almost periodic in probability
(thus it is not almost surely equi-almost periodic). Indeed, since |X| ≤ 1
then to prove that X is not almost periodic in probability, il suffices to show
that X is not almost periodic in quadratic mean. Let τ be an ε-almost
period i.e. E|Xt+τ −Xt|

2 ≤ ε, for all t ∈ I. Let A(τ) := E|Xt+τ −Xt|
2,

A(τ) =

∫ 1

0
|ei

t+τ
w − ei

t
w |2dw =

∫ 1

0
|ei

τ
w − 1|2dw = 4

∫ 1

0
|
ei

τ
2w − e−i τ

2w

2i
|2dw

= 2

∫ 1

0
sin2(

τ

w
)dw = 2|τ |

∫ ∞

|τ |

1− cos(2u)

u2
du

= 2|τ |
∞∑

k=0

∫ |τ |+(k+1)π

|τ |+kπ

1− cos(2u)

u2
du > 2|τ |

∫ ∞

|τ+π|

1

u2
du = 2

|τ |

|τ |+ π
.

Thus if |τ | >
επ

2− ε
, we get A(τ) > ε, which shows that the set of ε-almost

periods is not relatively dense in I, thusX is not almost periodic in quadratic
mean.

2.5 Comparison between almost periodicities

Lemma 2.8 Let (Xn(t)) be a sequence of processes which converges in prob-
ability uniformly with respect to t ∈ I. There exists a subsequence (Xnk

(t)) ⊂
(Xn(t)) which converges almost surely for each t ∈ I.
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Proof Assume that (Xn(t)) converges in probability to a process (X(t))
uniformly with respect to t ∈ I, let us denote Yn(t) = d(Xn(t),X(t)). Then
for each ε > 0 and η > 0, there exists N = N(ε, η) such that for all t ∈ I
and n ≥ N , we have

P(Yn(t) > ε) < η.

Let (ηk) be a real positive sequence such that
∑

k≥n

ηk converges to zero as n→∞.

To each ε > 0 and ηk > 0, there corresponds Nk = N(ε, ηk) such that, for
all t ∈ I, P(YNk

(t) > ε) < ηk. Let us show that (YNk
(t)) converges almost

surely for every t ∈ I. We have

P(sup
k≥n

YNk
(t) > ε) = P(

⋃

k≥n

{YNk
(t) > ε}) ≤

∑

k≥n

ηk

and the right hand term converges to zero when n → ∞. Thus (YNk
(t))

converges almost surely to zero for every t ∈ I. Consequently (XNk
(t))

converges almost surely to (X(t)) for every t ∈ I.

Theorem 2.9 The following properties of X are equivalent:

(1) X satisfies Bochner’s almost sure uniform double sequence criterion.

(2) X is almost periodic in probability.

Proof Obviously 1⇒ 2.
Assume that X is almost periodic in probability. Let (α′

n) and (β′
n) be

two sequences in I. There exist subsequences (αn) ⊂ (α′
n) and (βn) ⊂ (β′

n)
with same indexes such that for each t ∈ I, the limits in probability

P− lim
n

X(αn + βn + t) and P− lim
n

lim
m

X(αn + βm + t)

exist and are equal. By Remark 2.1(ii) these limits exist uniformly with
respect to t ∈ I. The previous Lemma implies that there exist subsequences
(still denoted with the same way) (αn) ⊂ (α′

n) and (βn) ⊂ (β′
n) with same

indexes such that, for each t ∈ I, the limits

lim
n

X(αn + βn + t) and lim
n

lim
m

X(αn + βm + t)

exist and are equal almost surely.

Let us now compare almost periodicity in distribution with the other
almost periodicity properties.
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Remark 2.10 In all preceding definitions of almost periodicity, it is only
in the definition of almost periodicity in distribution that the choice of a
topology on the space C(I,E) of trajectories plays a role.

Theorem 2.11 (A general comparison result) Consider the following
properties of X:

(a) X is APD.

(b) X satisfies Bochner’s almost sure uniform double sequence criterion.

(c) X is almost periodic in probability.

Then

(1) (a)⇒(b)⇔(c).

(2) If we assume that almost all trajectories of X are uniformly continuous,
the equivalence (a)⇔(b)⇔(c) holds true.

Proof
Proof of (1): The equivalence (b) ⇔ (c) has been shown in Theorem 2.9.
There remains to show that (a)⇒ (b).

Assume (a) and let us prove (b). We only need to check Bochner’s double
sequence criterion. Let (α′

n) and (β′
n) be two sequences in I. There exist

subsequences (αn) and (βn) with same indexes such that for every t ∈ I the
limits

(6) lim
n

lim
m

law
(
X̃(t+ αn + βm)

)
and lim

n
law

(
X̃(t+ αn + βn)

)

exist and are equal. This means in particular that, for each n, the limit

limm law
(
X̃(t+ αn + βm)

)
exists. Note that for every t, s ∈ I, X̃(t)(s) =

X̃(0)(t+ s) thus (6) implies

lim
n

lim
m

law
(
X̃(αn + βm)

)
and lim

n
law

(
X̃(αn + βn)

)

exist and are equal. We now use a Skorokhod representation theorem due
to Blackwell and Dubins [6]:

Theorem (Blakwell-Dubins)1 Let U be a Polish space, and let P (U) be
the space of probability measures on the Borel σ-algebra of U, endowed with
the narrow convergence. There exists a probability space (Ω,F ,P) and, for
each µ ∈ P (U), a measurable mapping X (µ) : Ω → U such that, if (µn)
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is a sequence in P (U) which narrowly converges to some µ ∈ P (U), then
(X (µn)) converges a.s. to X (µ).

Proof of Theorem 2.11 (continuation) Let us apply Blackwell-Dubins
Theorem to the Polish space Ck. For every t ∈ I, we denote

Ỹ (t) = X

(
law

(
X̃(t)

))
and Y = Ỹ (0) = X

(
law

(
X̃(0)

))
= X (law (X)) .

Then all limits in

(7) lim
n

lim
m

Ỹ (αn + βm) and lim
n

Ỹ (αn + βn)

exist and are equal a.e., that is, almost all trajectories of Y belong to the
set E of x ∈ Ck such that all limits in

(8) lim
n

lim
m

x̃(αn + βm) and lim
n

x̃(αn + βn)

exist and are equal. Let us check that this is a property of law (Y ). Let dC
be a distance on Ck which is compatible with the topology of Ck, and denote,
for s, s′ ∈ I and ε > 0

(9) A(s, ỹ(s′), ε) =
{
x ∈ Ck; dC

(
x̃(s), ỹ(s′)

)
< ε

}
.

It is easy to see that A(s, ỹ(s′), ε) is a Borel subset of C. Indeed, we have

A(s, ỹ(s′), ε) =
{
x ∈ Ck; dC

(
τs(x̃(0)), ỹ(s

′)
)
< ε

}
,

which is open by continuity for every t ∈ I of the mapping

τt :

{
Ck → Ck
x = x̃(0) 7→ x̃(t) = x(t+ .).

Using similar arguments, we show that the set

D = {x ∈ Ck; all limits in (8) exist}

is a Borel subset of Ck. For ε > 0, s ∈ I, and n ≥ 1, let

B(n, ε) =

{
x ∈ Ck; lim sup

m
dC

(
x̃(αn + βm), x̃(αn + βn)

)
< ε

}

= ∪M≥1 ∩m≥M A(αn + βm, αn + βn, ε)

1As was noticed by P.A. Meyer, the proof of Blackwell and Dubins does not apply to
filters or generalized sequences, contrarily to that given later by Fernique [13], see details
in [18, page 762]. But the sequential result proved by Blackwell and Dubins is sufficient
for our purpose in this paper.
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where A(s, s′, ε) is an open subset of Ck defined by:

(10) A(s, s′, ε) =
{
x ∈ Ck; dC

(
x̃(s), x̃(s′)

)
< ε

}
.

Let

C = ∩K≥1 ∪N≥1 ∩n≥NB (n, 1/K) .

The set C is a Borel subset of Ck, and a function x ∈ Ck belongs to C iff

(∀K ≥ 1) , (∃N ≥ 1) , (∀n ≥ N) , (∃M ≥ 1) , (∀m ≥M) ,

dC
(
x̃(αn + βm), x̃(αn + βn)

)
<

1

K
.

Thus, x ∈ D ∩ C iff the limits in (8) exist and are equal. Thus the limits in
(7) exist and are equal a.e. iff P {Y ∈ D ∩ C} = 1. As law (X) = law (Y ),
and by continuity, for each t ∈ I, of the mapping

πt :

{
Ck → E

x 7→ x(t),

we deduce that there exists a measurable subset Ω1 ⊂ Ω such that P(Ω1) = 1
and, for every t ∈ I, the limits

(11) lim
n→∞

lim
m→∞

X(t+ αn + βm)(ω) and lim
n→∞

X(t+ αn + βn)(ω),

exist and are equal for every ω ∈ Ω1. Thus X satisfies Bochner’s almost
sure uniform double sequence criterion, which proves (b).

Proof of (2): There only remains to show that (c)⇒(a).
Assume (c) and let (α′

n) and (β′
n) be two sequences in I. There exist

subsequences (αn) ⊂ (α′
n) and (βn) ⊂ (β′

n) with same indexes such that for
each t, s ∈ I, the limits in probability

P− lim
n

X(αn + βn + t+ s) and P− lim
n

lim
m

X(αn + βm + t+ s)

exist and are equal. Hence, for every (t1, t2, . . . , tk) ∈ Ik,

P− lim
n

(
X(αn + βn + t1 + s),X(αn + βn + t2 + s), . . . ,X(αn + βn + tk + s)

)

and

P− lim
n

lim
m

(
X(αn+βm+t1+s),X(αn+βm+t2+s), . . . ,X(αn+βm+tk+s)

)
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exist and are equal, thus

lim
n

law (X(αn + βn + t1 + s), . . . ,X(αn + βn + tk + s))

and

lim
n

lim
m

law ((X(αn + βm + t1 + s), . . . ,X(αn + βm + tk + s))

exist and are equal, that is, X is APFD, and by Corollary 2.3 we deduce
(a).

Corollary 2.12 Every continuous strictly stationary process is almost pe-
riodic in probability.

Corollary 2.13 If X is almost surely equi-almost periodic, then X is almost
periodic in distribution and in probability.

Proof Indeed, since X is almost surely equi-almost periodic, almost all its
trajectories are uniformly continuous, and we can apply Theorem 2.11-(2).

Counterexample 2.14 (almost sure equi-almost periodicity and al-
most periodicity in distribution) The converse to Corollary 2.13 is false.
For example let U be an integer-valued random variable with P (U = n) > 0
for each integer n, and let X(t) = U for every t ∈ I. Then X is almost
periodic in distribution (it is even stationary), and it has almost periodic
(constant) trajectories. But X is not almost surely equi-almost periodic,
since the familly of its trajectories is not almost surely equibounded.

3 Extension to completely regular state spaces

Topological preliminaries We now assume that E is a separable com-
pletely regular space. Recall that a Hausdorff topological space is completely
regular iff it is uniformizable, that is, iff its topology can be defined by a
family of semi-metrics. Such a family defines a uniformity. The notions
of uniform continuity, Cauchy sequences, Cauchy nets and totally bounded
sets are defined relatively to a given uniformity. For more details see e.g.
[12].

Let U be a uniformity (a set of entourages) on E which is compatible
with the topology of E, and let D be an upwards filtering set of semimetrics
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on E which induces this uniformity. For every d ∈ D, we denote by Ĕd the
quotient metric space (E/d, d̆), and by C̆dk the space Ck(I; Ĕd). We denote
by pd the projection mapping:

pd :

{
E → Ĕd

x 7→ x̆d

which extends to Ck:

pd :

{
Ck → C̆dk
x 7→ pd ◦ x =: x̆d(.)

These mappings are continuous and the uniform space E (resp. Ck) is the

limit of the inverse system
{
Ĕd

}
d∈D

(resp.
{
C̆dk

}
d∈D

).

Almost periodicity for deterministic functions A function x in C(I,E)
is said to be Bochner-almost periodic, if the set {x(t+ .), t ∈ I} of its trans-
lation mappings is totally bounded on Cu(I,E).

A function x in C (R;E) is said to be Bohr-almost periodic if for each
entourage V in U, there exists a real number l = l(V ) > 0 such that every
interval [a, a+ l] contains at least one point τ satisfying

(x(t+ τ), x(t)) ∈ V, for all t ∈ R.

We say that a function x ∈ C (R+;E) is asymptotically Bohr-almost peri-
odic if, for each entourage V ∈ U, there exist a real number l = l(V ) > 0 and
T = T (V ) > 0 with the property that any interval [a, a + l] ⊂ R+ contains
a number τ such that

(x(t+ τ), x(t)) ∈ V, for all t ≥ T such that t+ τ ≥ T.

The relationships between these notions of almost periodicity are ex-
plained in Lemma 4.4 in the Appendix.

Almost periodicity in distribution vs in probability for stochastic
processes Let P (E) (resp. P (Ck)) be the space of Radon probabilities on
E (resp. Ck) endowed with the initial topology of narrow convergence, that
is the coarsest topology such that the mappings µ → µ(f) are continuous
for all measurable bounded function f : E → R (resp. f : Ck → R). For
more details on this topology, see [21].
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For each projection mapping pd, we can define a mapping from P (Ck)

to P
(
C̆dk

)
(or from P (E) to P

(
Ĕd

)
) by

µ→ (pd)♯(µ) = µ̆d

where (pd)♯(µ) denotes the image of µ by pd that is, µ̆d(f) = µ(f ◦ pd) for

every measurable bounded function f : C̆dk → R.
We say that the processX is almost periodic in distribution (resp. asymp-

totically almost periodic in distribution) in Bohr’s or Bochner sense if the
mapping {

I → P (Ck)

t 7→ law
(
X̃(t)

)

is almost periodic (resp. asymptotically almost periodic) in Bohr’s or Bochner
sense in P (Ck).

We say thatX is Bochner-almost periodic in probability if the set
{
X̃(t), t ∈ I

}

of translation mappings is totally bounded in probabilily.
We say that X is Bohr-almost periodic (resp. asymptotically Bohr-almost

periodic) in probability if for any entourage V and η > 0, there exists l =
l(V, η) > 0 (resp. there exists l = l(V, η) > 0 and T = T (V, η)) such that
any interval of length l contains at least a number τ for which

P {(X(t+ τ),X(t)) 6∈ V } ≤ η, for all t ∈ R (resp. for all t ≥ T, t+ τ ≥ T ) .

In order to establish a result similar to Theorem 2.11, we need to char-
acterize total boundedness in inverse limits of uniform spaces.

Lemma 3.1 Let {Fρ}ρ∈Σ be an inverse system of uniform spaces where Σ
is directed set, and let

F = lim
←−
{Fρ}

the projective limit satisfying Fρ = pρ (F), for every projection mapping pρ
from F to Fρ. Then, F is totally bounded if and only if for each ρ ∈ Σ, Fρ

is totally bounded.

Proof It is straightforward that, if F is totally bounded, Fρ is also totally
bounded for each ρ ∈ Σ.

Conversely, assume that for each ρ ∈ Σ, Fρ is totally bounded. Let F̂ρ

be the completion of Fρ, then F̂ρ is a compact space and
{
F̂ρ, ρ ∈ Σ

}
is
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an inverse system (see [21, second proof of Prokhorov theorem, page 78]).
Hence the projective limit

F̂ := lim←− F̂ρ

is a compact space (see [8, page I.64, Proposition 8]). On the other hand,
using [12, Proposition 2.5.6. page 100] one can see that Fρ, ρ ∈ Σ, is an
inverse system satisfying

lim
←−

Fρ = F,

where Fρ is the closure of Fρ in F̂ρ and F is the closer of F in F̂, which yields

F = F̂, thus F is totally bounded.

Now, we can state and prove our main result in the case of a process
with values in a completely regular space E .

Theorem 3.2 Consider the following properties of X:

(a) X is almost periodic in distribution .

(b) X is almost periodic in probability.

Then

(1) (a)⇒(b)

(2) If almost all trajectories of X are uniformly continuous, then (b)⇒(a).

Proof Let Xd = pd ◦X. Put µ̃t = law
(
X̃(t)

)
and µ̃d

t = law
(
X̃d(t)

)
.

Assume thatX is almost periodic in distribution, i.e. the set {µ̃t+.; t ∈ I}
of translation mappings is a totally bounded subset of the space of func-
tions on I with values in the space P (Ck). Then by Lemma 3.1 the set{
µ̃d
t+.; t ∈ I

}
of translation mappings is a totally bounded subset of the

space of functions on I with values in the space P
(
C̆dk

)
for every d ∈ D,

which means that, for each d ∈ D, the process Xd with values in the space
C̆dk is almost periodic in distribution.

For d ∈ D, let (Êd, d̆) be the completion of the metric space Ĕd, then

Xd is almost periodic in distribution in Êd. In view of Theorem 2.11, we
deduce that it is almost periodic in probability in Êd, hence it is almost
periodic in probability in Ĕd. It remains to show that X is almost periodic
in probability in E.

Let d ∈ D, since Xd is almost periodic in probability in Ĕd, the set{
X̃d(t), t ∈ I

}
is totally bounded on the space Cu(I, L

d
0) (where L

d
0 = L0(Ω, Ĕd),
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the space of Ĕd-valued random variables). By Lemma 3.1,
{
X̃(t), t ∈ I

}
is

totally bounded on the space Cu(I, L0) (where L0 = L0(Ω,E), the space
of E-valued random variables). This means that X is almost periodic in
probability in E.

Conversely, assume that X is almost periodic in probability and that
almost all its trajectories are uniformly continuous. Then almost all tra-
jectories of Xd are uniformly continuous and by Lemma 4.4 Xd is almost
periodic in probability in Ĕd for each d ∈ D, hence Xd is almost periodic in
probability in the completion space Êd (of Ĕd) for each d ∈ D. In view of

Theorem 2.11 we get that Xd is almost periodic in distribution in Êd, i.e. the
set

{
µ̃d
t+.; t ∈ I

}
of translation mappings is totally bounded on the space of

functions on I with values in the space P
(
C̆dk

)
. By Prokhorov Theorem

on inverse systems of Radon measures (see [21, Theorem 21, page 74]), it
is easy to see that the set

{
µ̃d
t+.; t ∈ I

}
is an exact inverse system and that

its projective limit is the set {µ̃t+.; t ∈ I} of translation mappings. Now,
applying Lemma 3.1 to this set, we obtain that it is totally bounded, that
is, X is almost periodic in distribution.

4 Appendix : Almost periodicity and asymptotic

almost periodicity in completely regular spaces

First we consider the case when E is a metric space.

Bochner’s criteria of almost periodicity for functions with values
in a metric space Let (E, d) be a metric space (not necessarily complete).
A subset A ⊂ I is said to be relatively dense if there exists a real number
l > 0 such that for each number a ∈ I, [a, a+ l] ∩A 6= ∅. Any such number
l is called an inclusion length of A.

A subset H of C(I,E) is said to be equi-almost periodic (respectively
equi-asymptotically almost periodic) in Bohr’s sense if, for every ε > 0, there
exists a relatively dense set A = A(H, ε) in I (resp. there exist a relatively
dense set A = A(H, ε) in I and a number r ≥ 0) such that, for every τ ∈ A
and h ∈ H,

d(h(t+ τ), h(t)) < ε for all t ∈ R (resp. for all t ≥ r, t+ τ ≥ r).

A subsetH of C(I,E) is said to be equinormal if, from every sequence (α′
n)

in I, one may extract a subsequence (αn) such that the sequence h(t+ αn)
converges uniformly with respect to t ∈ I and h ∈ H.
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The following results are adaptations of those obtained by Ruess and
Summers [20] in the case of locally convex spaces. We only consider the
case I = R+, the almost periodic case follows exactly in the same way with
obvious minor changes.

Lemma 4.1 Let H be a subset of C(R+,E). Suppose that H is a totally
bounded in Ck(R

+,E) and equi-asymptotically almost periodic. Then, H is
uniformly equicontinuous on R+ and H(R+) is totally bounded in E.

Proof Let ε > 0, since H is equi-asymptotically almost periodic in Bohr’s
sense, there exist a number r = r(ε) > 0 and a relatively dense set A =
A(H, ε) in [r,+∞[ such that, for each τ ∈ A and for every h ∈ H,

d(h(t+ τ), h(t)) < ε for all t ≥ r such that t+ τ ≥ r.

Let N = max(r, l), where l is an inclusion length of A. Choose τk ∈ [kN, (k+
1)N ], k = 1, 2, . . . . Let us denote by H/[0,5N ] the restriction of all functions
ofH to the interval [0, 5N ]. ThenH/[0,5N ] is totally bounded in C([0, 5N ];E).
Hence, by Ascoli Theorem, we get that H/[0,5N ] is uniformly equicontinuous.

Let δ ∈ [0, N2 ] such that d(h(t1), h(t2)) < ε
3 whenever h ∈ H and t1, t2 ∈

[0, 5N ] with |t1 − t2| < δ. Now, suppose that t1, t2 > 4N , with |t1 − t2| < δ.
Taking k ∈ N such that t1, t2 ∈ [kN, (k + 2)N ], let si = ti − τk−2, i = 1, 2.
Since s1, s2 ∈ [N, 4N ] and |s1 − s2| < δ, we have

d(h(t1), h(t2)) < d(h(s1 + τk−2), h(s1)) + d(h(s1), h(s2))

+d(h(s2), h(s2 + τk−2)) < ε

for any h in H, which implies that H is indeed uniformly equicontinuous
on R+. To verify that H(R+) is totally bounded in E, we start again from
the equicontinuity of H to obtain a finite cover {Ti}

n
i=1 of [0, 3N ] and ti ∈

Ti, i = 1, . . . , n such that for every h ∈ H

d(h(t), h(ti)) ≤
ε

2
whenever t ∈ Ti, i = 1, . . . , n.

If t > 3N , let us choose k ∈ N so that t ∈ [kN, (k + 1)N ]. Setting s =
t− τk−2, we then have that s ∈ [N, 3N ] whence s ∈ Ti for some i ∈ 1, . . . , n.
Therefore, given any h ∈ H, we get

(12) d(h(t), h(ti)) < d(h(s + τk−2), h(s)) + d(h(s), h(ti)) < ε.

Since for each i = 1, . . . , n the set H(ti) is totally bounded, we deduce in
view of inequality (12) that H(R+) is totally bounded.
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Theorem 4.2 Let H be a subset of C(R+;E). The following conditions are
equivalent:

1. The set H̃+ =
{
h̃(t), h ∈ H, t ∈ R+

}
is a totally bounded subset of

Cu(R
+;E) i.e. H is Bochner-equi-almost periodic.

2. (a) H is a totally bounded subset in Ck(R
+,E), and

(b) H satisfies Bochner’s uniform double sequence criterion.

3. (a) H is a totally bounded subset in Ck(R
+,E), and

(b) H is equinormal.

4. (a) H is a totally bounded subset in Ck(R
+,E), and

(b) H is equi-asymptotically almost periodic in Bohr’s sense.

Proof From [7], we have the equivalence between 2 and 3. From [25, The-
orem5, and Theorem6 page 56] and Lemma 4.1, we deduce the equivalence
between 3 and 4.

There remains to show that 4 is equivalent to 1.
Assume 4, then in view of Lemma 4.1 the subset H(R+) is totally

bounded in E, thus H̃+(t) is totally bounded in E for each t ∈ R+. We have
also in view of Lemma 4.1 that H̃+ is uniformly equicontinuous. Thus by
Ascoli Theorem [9, Theorem2, page X.17], it is totally bounded in Cu(R

+;E).
Conversely, it is obvious that if H̃+ is a totally bounded subset of

Cu(R+;E) then H is a totally bounded subset of Ck(R
+;E). There re-

mains to show that H is equi-asymptotically almost periodic in Bohr’s
sense. For every ε > 0, we can construct a finite cover {Ti}

n
i=1 of R+ and

ti ∈ Ti, i = 1, . . . , n such that, for every ω ∈ R+, we have

d(h(ω + t), h(ω + ti)) ≤ ε, whenever t ∈ Ti, i = 1, . . . , n.

Let r = l > max {t1, t2, . . . , tn}, and let us set

A =

[
n⋃

1

(Ti − ti)

]⋂
[r,+∞[.

Let us check that A ∩ [t, t + l] 6= ∅ for all t ≥ r, i.e. that A is a relatively
dense set in [r,+∞[. Let t ≥ r, since {Ti}

n
i=1 is a cover of R+ and t+ l ∈ R+,

there exists i ∈ 1, . . . , n such that t+ l ∈ Ti. Observe that t ≤ t+ l−ti ≤ t+ l
and then t+ l − ti ∈ A ∩ [t, t+ l]. Now, for a given t ≥ r and τ ∈ A, let us
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choose i ∈ {1, . . . , n} and s ∈ Ti such that τ = s − ti. Since t − ti ≥ 0 we
have, for all t ∈ [r,+∞[ and for all h ∈ H.

d(h(t + τ), h(t)) = d(h(t − ti + s), h((t− ti) + ti)) < ε.

Hence H is equi-asymptotically almost periodic in Bohr’s sense.

Corollary 4.3 Let x ∈ C(R+;E). The following two statements are equiv-
alent:

1. The set H̃+(x) = {x̃(t), t ∈ R+} is totally bounded in Cu(R
+;E).

2. x is asymptotically almost periodic in Bohr’s sense.

Almost periodicity and asymptotic almost periodicity in completely
regular spaces Let E be a separable completely regular space, let U be
a uniformity on E which is compatible with the topology of E, and D a
familly of semimetrics on E which induce the uniformity. We denote by Ed

the semimetric space (E; d).
Let E be a separable completely regular space. Let U be a uniformity on

E and let D be a familly of semimetrics on E which induces the uniformity
U. For each d ∈ D, we denote by Ed the semimetric space (E; d).

Lemma 4.4 Let x in C(I;E). For each d ∈ D, let xd = id ◦ x, where
id : E→ Ed is the canonical injection. Then,

1. x is Bohr-almost periodic (resp. Bohr-asymptotically almost periodic)
if and only for each semimetric d in D, the function xd is Bohr-almost
periodic (resp. Bohr-asymptotically almost periodic).

2. x is Bochner-almost periodic if and only for each semimetric d in D,
the function xd is Bochner-almost periodic.

Proof

1. Assume that x is Bohr-almost periodic. Let d be a semimetric in D

and let ε > 0. The set V = {(x, y) ∈ E×E; d(x, y) < ε} is in U. Since
x is almost periodic, there exists a real number l = l(V ) > 0 such that
every interval [a, a+ l] contains at least one point τ satisfying

(x(t+ τ), x(t)) ∈ V, for every t ∈ I
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hence
d(x(t+ τ), x(t) < ε, for every t ∈ I

which means that xd is almost periodic.

Conversely, assume that for each d in D, the function fd is almost
periodic i.e. for each ε > 0 there exists a real number l = l(ε, d) > 0
such that every interval [a, a + l] contains at least one point τ such
that

d(x(t+ τ), x(t)) < ε, for every t ∈ I.

Let V in U, then there exists a semimetric d in D such that

{(x, y); d(x, y) < ε} ⊂ V.

In particular, we have

(x(t+ τ), x(t)) ∈ V, for every t ∈ I,

and thus x is almost periodic.

2. In view of Lemma 3.1, the equivalence we wish to prove is a direct con-
sequence of the fact that the set {x̃(t), t ∈ I} of translation mappings
associated to x is totally bounded in the space Cu(I;E) if and only
if, for each d ∈ D, the set {xd(t+ .), t ∈ I} of translation mappings
associated to xd is totally bounded in the space Cu(I;Ed).

Remark 4.5 By passing to the quotient spaces Ĕd, the previous Lemma
reduces the study of almost periodicity and asymptotic almost periodicty
in uniform spaces to that of almost periodicity and asymptotic almost pe-
riodicty in metric spaces. Thanks to Lemma 4.4, we can extend to uniform
spaces the equivalence between Bohr’s almost periodicity (resp. asymptotic
almost periodicity) and Bochner’s almost periodicity. This result is well
known in the case when I = R, see [14]. In the case when I = R+ and esp
is a locally convex space, it is also well-known, see [20].

Theorem 4.6 Let E be a uniform space (nonnecessarily complete) and f :
I → E a continuous function. Then

1. If I = R, the following statements are equivalent:

(a) x is Bohr-almost periodic.
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(b) x is Bochner-almost periodic.

2. If I = R+, the following conditions are equivalent:

(a) x is Bohr-asymptotically almost periodic.

(b) x is Bochner-almost periodic.

Proof This is a direct consequence of Lemma 4.4 and of the corresponding
result in (semi)metric spaces.
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