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Blind Channel Estimation for STBC Systems
Using Higher-Order Statistics

Vincent Choqueuse, Member, IEEE, Ali Mansour, Senior Member, IEEE, Gilles Burel, Senior Member, IEEE,
Ludovic Collin, and Koffi Yao, Member, IEEE

Abstract—This paper describes a new blind channel estimation
algorithm for Space-Time Block Coded (STBC) systems. The
proposed method exploits the statistical independence of sources
before space-time encoding. The channel matrix is estimated
by minimizing a kurtosis-based cost function after Zero-Forcing
equalization. In contrast to subspace or Second-Order Statistics
(SOS) approaches, the proposed method is more general since it
can be employed for the general class of linear STBCs including
Spatial Multiplexing, Orthogonal, quasi-Orthogonal and Non-
Orthogonal STBCs. Furthermore, unlike other approaches, the
method does not require any modification of the transmitter
and, consequently, is well-suited for non-cooperative context. Nu-
merical examples corroborate the performance of the proposed
algorithm.

Index Terms—MIMO, space time coding, channel estimation,
independent component analysis, higher-order statistics.

I. INTRODUCTION

SPACE-TIME Block Coding is a set of practical signal
design techniques aimed at approaching the information

theoretic capacity limit of Multiple-Input Multiple-Output
(MIMO) channels. Since the pioneer work of Alamouti [1],
space-time coding has been a fast growing field of research.
In the last decade, numerous coding schemes have been
proposed. These include orthogonal (OSTBCs) [1]–[3], quasi-
orthogonal (QOSTBCs) [4], [5] and non-orthogonal STBCs
(NOSTBCs) [6]. At the receiver side, the decoding is achieved
by a space-time equalizer. Most space-time equalizers require
Channel State Information (CSI). This information is usually
obtained through training based techniques at the expense of
the bandwidth efficiency. On the other hand, the differential
schemes proposed in [7]–[10], which do not require CSI, incur
a penalty in performance of at least 3dB as compared to the
coherent Maximum-Likelihood (ML) receiver. The drawbacks
of training-based approaches and differential schemes have
motivated an increasing interest in the development of blind
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channel estimation algorithms for STBC systems. Develop-
ment of blind receivers also has applications in military
communication system when the transmitted symbols have to
be estimated in a blind fashion.

Blind channel estimation algorithms based on Maximum-
Likelihood (ML) have been proposed in [11], [12]. Despite
their high performances, the computational costs of the ML-
based methods become prohibitive for high-order modulations.
In the case of BPSK or QPSK constellations, the blind-ML
detection can be simplified to a Boolean Quadratic Program
(BQP) [13]. For more general settings, iterative procedure
can be employed to avoid the computational complexity of
the ML approach. These include the Cyclic ML [12] and the
Expectation-Maximisation (EM) [14], [15] algorithms. How-
ever, these iterative methods require a careful initialization of
the channel and/or symbols. In particular, a poor initialization
can strongly affect the Symbol-Error Rate (SER) performance.

To avoid the drawbacks of ML-based channel estimation
algorithms, several authors have investigated the use of sub-
space [16], [17] or Second-Order Statistics (SOS) [18]–[21]
approaches. However, excluding some specific low-rate codes,
these approaches fail to extract the channel in a full-blind
context [16]–[22]. Several approach have been proposed in
literature to solve this problem, including the transmission of a
short training sequence [16], [17] or the use of precoders [18],
[20], [21]. However, these semi-blind methods cannot be
employed in a non-cooperative scenario since they require
modification of the transmitter.

One solution to avoid the limitations of SOS and subspace
algorithms is to exploit Higher-Order Statistics (HOS). This
approach is usually called Independent Component Analysis
(ICA) [23]. ICA was originally developed for non-coded
systems. Recently several authors have investigated its ex-
tension to STBC communications [24]–[31]. Nevertheless,
these extensions have several limitations and drawbacks. In
particular, the algorithms [24]–[29] are limited to a sub-class
of Orthogonal STBCs and their extension to the general class
of STBCs is far from trivial. On the other hand, the methods
[30], [31] do not take into account the specific structure of the
STBC.

Despite this rich literature, none of the previous algorithms
is able to estimate the channel matrix for general STBCs with-
out modification of the transmitter (pilot sequence, precoding).
In this paper, an original algorithm is proposed which is well-
suited to the general class of linear STBCs whatever the code-
rate and/or the modulation. The channel matrix is estimated

1536-1276/11$25.00 c⃝ 2011 IEEE
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by minimizing a kurtosis-based cost function. In contrast with
classical ICA algorithms, the cost-function is computed from
the Zero-Forcing (ZF) space-time equalized symbols. Our
proposed method has low-complexity and does not require
any channel initialization, the use of pilot sequence and/or
knowledge of modulation. Furthermore, our method does not
require any modification of the transmitter and, consequently,
can be employed in a non-cooperative scenario.

This paper is organized as follows. The signal models and
the assumptions are presented in section II. The kurtosis-based
cost function is described in section III and the minimization
algorithm is described in section IV. The set of the remaining
ambiguities after channel estimation is provided in section V.
Finally, the simulation results are presented in section VI.

II. SIGNAL MODELS AND ASSUMPTIONS

Hereinafter, bold upper case letters denote matrices, e.g.,
X; bold lower case letters stand for column vectors, e.g., x,
and lower case letters represent scalars. Superscripts (⋅)T and
(⋅)H denote transpose and Hermitian, respectively. Symbol
𝑗 =

√−1 is the imaginary unit, (⋅)∗ corresponds to the
complex conjugate and the operators ℜ𝑒(⋅) and ℑ𝑚(⋅) denote
the real and imaginary parts, respectively. The symbol ⊗ is
the Kronecker product, trace(⋅) is the trace function and ℰ [⋅]
is the expectation operator. The 𝑛 × 𝑛 matrices I𝑛 and 0𝑛
correspond to the identity and zero matrices, respectively. The
unit vector, e(𝑛)𝑘 , is an 𝑛-dimensional row vector with "1" in
its 𝑘𝑡ℎ component and zero elsewhere i.e.

𝑘𝑡ℎ

↓[ ]
e(𝑛)𝑘 = 0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 0

(1)

The elementary matrix, E(𝑛)
𝑢𝑣 , is an 𝑛×𝑛 matrix which is "1"

in the 𝑢𝑡ℎ row and 𝑣𝑡ℎ column and zero elsewhere i.e.

E(𝑛)
𝑢𝑣 =

𝑣𝑡ℎ

↓⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

...
0

⋅ ⋅ ⋅ 0 1 0 . . . ← 𝑢𝑡ℎ

0
...

(2)

A. Transmitted signal model

Let us consider a linear STBC that transmits 𝑛 symbols
during 𝑙 time slots through 𝑛𝑡 antennae. The space-time block
encoder generates an 𝑛𝑡 × 𝑙 block matrix from a block of 𝑛
symbols s = [𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑛]T. The block matrix, 𝒞(s), can be
expressed under the general form [32]

𝒞(s) =
𝑛∑

𝑘=1

(
A𝑘ℜ𝑒(𝑠𝑘) + A𝑘+𝑛ℑ𝑚(𝑠𝑘)

)
(3)

where the 𝑛𝑡 × 𝑙 matrices A𝑘 are the space-time coding
matrices.

B. Signal model of received samples

Let us consider a receiver composed of 𝑛𝑟 antennae. Let
us also assume a quasi-static frequency-flat channel modelled
by an 𝑛𝑟 × 𝑛𝑡 complex matrix H. The 𝑣𝑡ℎ received block,
denoted by the 𝑛𝑟 × 𝑙 matrix Y𝑣 , is given by [32]

Y𝑣 = H𝒞(s𝑣) + B𝑣 (4)

where the 𝑛𝑟 × 𝑙 matrix B𝑣 = [b𝑣(1), ⋅ ⋅ ⋅ , b𝑣(𝑙)] refers to the
additive noise and b𝑣(𝑢) is a 𝑛𝑟-dimensional column vector.
The aim of this study is to estimate H from the received data
blocks, Y𝑣, under the following assumptions:

∙ AS1) the 𝑛𝑟 × 𝑛𝑡 channel matrix, H, is of full-column
rank. Furthermore, the number of receiver antennae is
strictly greater than the number of transmitters, i.e. 𝑛𝑟 >
𝑛𝑡.

∙ AS2) the noise vector is both spatially and temporally
white with a variance of 𝜎2 per complex dimension. In
particular, it implies that:

ℰ [B𝑣B
H
𝑣 ] = 𝜎2𝑙I𝑛𝑟 (5)

∙ AS3) the transmitted symbols, s𝑣 , are non gaussian,
independent and identically distributed (i.i.d).

∙ AS4) the average transmit power on each antenna is
normalized to unity which also implies that:

ℰ [𝒞(s𝑣)𝒞H(s𝑣)] = 𝑙I𝑛𝑡 . (6)

∙ AS5) the space-time code is known at the receiver side.

Assumptions AS1), AS2) and AS3) are widely used and
AS4) is respected for most STBCs1. Moreover in many sce-
narios, the space-time code is usually assumed to be known,
otherwise, it can be estimated with a blind STBC recognition
algorithm [33]–[36]. It should be noted that condition AS5)
also implies that 𝑛, 𝑙, 𝑛𝑡 and A𝑘 are known at the receiver
side.

III. CHANNEL ESTIMATION STRATEGY

In this section, a new blind channel estimation strategy
based on HOS is proposed. The method is composed of two
steps which are detailed in the subsections III-A and III-B,
respectively.

A. Step 1: Data Whitening

In the preprocessing step, the channel is estimated up to a
unitary matrix through the use of SOS. By using assumptions
AS1), AS2), AS3) and AS4), the 𝑛𝑟 × 𝑛𝑟 covariance matrix
of the noiseless transmitted signals R = ℰ [Y𝑣Y

H
𝑣 ] − 𝑙𝜎2I𝑛𝑟

can be expressed as

R = Hℰ [𝒞(s𝑣)𝒞H(s𝑣)]HH

= 𝑙HHH. (7)

Under assumption AS1), the rank of the symmetric matrix R
is equal to 𝑛𝑡. Therefore, R can be decomposed as follows:

1It should be noted that if ℰ[𝒞(s𝑣)𝒞H(s𝑣)] = 𝛼𝑙I𝑛𝑡 , the scaling factor 𝛼
can be absorbed into the channel matrix H without loss of generality
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R = UΛUH, where U is an 𝑛𝑟×𝑛𝑡 matrix satisfying UHU =
I𝑛𝑡 and Λ is an 𝑛𝑡×𝑛𝑡 diagonal matrix containing real entries.
From (7), it follows that the channel matrix H can be expressed
as

H =
1√
𝑙
UΛ

1
2 WH (8)

where W is an 𝑛𝑡 × 𝑛𝑡 full rank unitary matrix.

After the preprocessing step, the determination of the matrix
H reduces to the determination of the 𝑛𝑡 × 𝑛𝑡 unitary matrix
W. To determine W, let us define the 𝑛𝑡 × 𝑙 whitened data
block, X𝑣 , as

X𝑣 =
√
𝑙Λ− 1

2 UHY𝑣. (9)

B. Determining the unitary matrix W

1) The Zero-Forcing receiver: In this paragraph, a linear
Zero-Forcing (ZF) decoder is expressed in terms of the 𝑛𝑡× 𝑙
whitened data block X𝑣 . Using (4) and (8), it can be shown
that

X𝑣 = WH𝒞(s𝑣) +
√
𝑙Λ− 1

2 UHB𝑣︸ ︷︷ ︸
N𝑣

(10)

where the 𝑛𝑡 × 𝑙 matrix N𝑣 is a multidimensional zero-mean
Gaussian signal. Let us define, s̃𝑣, the 2𝑛 real-valued column
vector obtained by concatenating the real and imaginary part
of s𝑣 i.e.

s̃𝑣 ≜

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℜ𝑒(𝑠(𝑣)1 )
...

ℜ𝑒(𝑠(𝑣)𝑛 )

ℑ𝑚(𝑠
(𝑣)
1 )

...

ℑ𝑚(𝑠
(𝑣)
𝑛 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Let us also introduce the vectorization operator, vec{.}, ob-
tained by stacking all columns of a matrix on top of each
other. Using the property of the vec{.} operator in equations
(10) and (3) [37], it can be shown that

x̃𝑣 = WGs̃𝑣 + ñ𝑣 (12)

where the 2𝑛𝑡𝑙-dimensional column vectors x̃𝑣 and ñ𝑣, the
2𝑛𝑡𝑙 × 2𝑛𝑡𝑙 matrix W and the 2𝑛𝑡𝑙 × 2𝑛 matrix G are
respectively defined by

x̃𝑣 ≜
[ ℜ𝑒(vec{XH

𝑣 })
ℑ𝑚(vec{XH

𝑣 })
]

(13)

ñ𝑣 ≜
[ ℜ𝑒(vec{NH

𝑣 })
ℑ𝑚(vec{NH

𝑣 })
]

(14)

G ≜
[ ℜ𝑒(vec{AH

1 }) ⋅ ⋅ ⋅ ℜ𝑒(vec{AH
2𝑛})

ℑ𝑚(vec{AH
1 }) ⋅ ⋅ ⋅ ℑ𝑚(vec{AH

2𝑛})
]
(15)

W ≜
[ ℜ𝑒(WT)⊗ I𝑙 −ℑ𝑚(WT)⊗ I𝑙
ℑ𝑚(WT)⊗ I𝑙 ℜ𝑒(WT)⊗ I𝑙

]
. (16)

As W is a unitary matrix, it is demonstrated in appendix A
that W is orthogonal i.e. WTW = I2𝑛𝑡𝑙. If the unitary matrix
W is known at the receiver side, the transmitted symbols can
be recovered with a linear Zero-Forcing (ZF) equalizer. The

ZF equalizer computes an inverse matrix to compensate the
combined effects of the channel and space-time coding i.e.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℜ𝑒(𝑠(𝑣)1 )
...

ℜ𝑒(𝑠(𝑣)𝑛 )

ℑ𝑚(𝑠
(𝑣)
1 )

...
ℑ𝑚(𝑠

(𝑣)
𝑛 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= G†

[ ℜ𝑒(W)⊗ I𝑙 ℑ𝑚(W)⊗ I𝑙
−ℑ𝑚(W)⊗ I𝑙 ℜ𝑒(W)⊗ I𝑙

]
︸ ︷︷ ︸

WT

x̃𝑣

(17)

where the 2𝑛× 2𝑛𝑡𝑙 matrix G† denotes the pseudo-inverse of
G (G†G = I2𝑛) and 𝑠

(𝑣)
𝑘 is the 𝑘𝑡ℎ estimated symbol of the

𝑣𝑡ℎ block. Using (17), 𝑠(𝑣)𝑘 can be expressed as

𝑠
(𝑣)
𝑘 = [e(𝑛)𝑘 𝑗e(𝑛)𝑘 ]G†WTx̃𝑣. (18)

In a blind context, the unitary matrix W is unknown at the
receiver side. To estimate W, this study exploits the statistical
independence of the equalized symbols. More precisely, the
unitary matrix W is estimated by maximizing the statistical
independence of the Zero-Forcing equalized symbols, 𝑠(𝑣)𝑘 .

2) Kurtosis-based cost function: A simple approach to
maximize the statistical independence of 𝑠(𝑣)𝑘 is to maximize
the nongaussianity of 𝑠(𝑣)𝑘 [23]. One measure of nongaussian-
ity of a random variable 𝑠 is the (unnormalized) Kurtosis,
𝒦[𝑠], which is defined as

𝒦[𝑠] ≜ ℰ [∣𝑠∣4]− 2(ℰ [∣𝑠∣2])2 − ℰ [𝑠𝑠]ℰ [𝑠∗𝑠∗]. (19)

It follows that the unitary matrix W can be estimated by
maximizing the function

∑𝑛
𝑘=1 ∣𝒦[𝑠(𝑣)𝑘 ]∣ where ∣.∣ denotes the

absolute value. It should be noted that in the most practical
cases, the sign of the kurtosis is assumed to be known and
the same for all the transmitted symbols. In particular, it is
shown in reference [38] that the cumulant of most of the digital
modulation (ASK, PSK and QAM) are negative. Therefore, an
estimate of W, denoted Ŵ, can be obtained as follows

Ŵ :

⎧⎨
⎩

min
W

𝒥 (W) =

𝑛∑
𝑘=1

𝒦
[
𝑠
(𝑣)
𝑘

]
subject to WWH = I𝑛𝑡

(20)

where 𝒥 (W) is a real-valued cost function which depends
on the 𝑛𝑡 × 𝑛𝑡 complex-valued matrix W. It should be
noted that criterion (20) has already appeared in literature for
simpler channel estimation problems. In particular, it has been
employed for classical ICA problems, where 𝒞(s𝑣) = s𝑣 [39]–
[42]. In our study, an extension to STBC systems is obtained
by applying criterion (20) on the Zero-Forcing space-time
equalized symbols 𝑠

(𝑣)
𝑘 in (18).

IV. ALGORITHM IMPLEMENTATION

In this section, the focus is on the minimization of the real-
valued cost function 𝒥 : ℂ𝑛𝑡×𝑛𝑡 → ℝ under the unitary
constraint WWH = I𝑛𝑡 . As no closed form solution exists,
a Steepest-Descent (SD) approach is employed. To perform
a descent step, SD algorithm requires the computation of
the gradient. The gradient expression has been provided in
several studies for classical ICA problems [42], [43], however,
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its expression is no longer valid for STBC systems. In the
subsection IV.IV-A, the gradient expression is established
for STBC systems. Then, two constrained-minimization SD
algorithms are described in subsection IV.IV-B.

A. Expression of the gradient in the Euclidean space

In the Euclidean space, the gradient of the cost function
𝒥 (W) is the 𝑛𝑡 × 𝑛𝑡 matrix ΓW which is defined as [44]

ΓW =
𝑑𝒥 (W)

𝑑W∗ (21)

where:

𝑑𝒥 (W)

𝑑W∗ ≜ 1

2

(
𝑑𝒥 (W)

𝑑ℜ𝑒(W)
+ 𝑗

𝑑𝒥 (W)

𝑑ℑ𝑚(W)

)
. (22)

Let us denote, 𝑤𝑝𝑙, the element on the 𝑝𝑡ℎ row and the 𝑙𝑡ℎ

column of matrix W. Using the 𝑛𝑡 × 𝑛𝑡 elementary matrix
E(𝑛𝑡)
𝑝𝑙 , ΓW can be expressed as

ΓW =

𝑛𝑡∑
𝑝=1

𝑛𝑡∑
𝑙=1

1

2
E(𝑛𝑡)
𝑝𝑙

(
𝑑𝒥 (W)

𝑑ℜ𝑒(𝑤𝑝𝑙)
+ 𝑗

𝑑𝒥 (W)

𝑑ℑ𝑚(𝑤𝑝𝑙)

)
.(23)

From (20), it follows that

ΓW =

𝑛𝑡∑
𝑝=1

𝑛𝑡∑
𝑙=1

𝑛∑
𝑘=1

1

2
E(𝑛𝑡)

𝑝𝑙

(
𝑑𝒦[𝑠

(𝑣)
𝑘 ]

𝑑ℜ𝑒(𝑤𝑝𝑙)
+ 𝑗

𝑑𝒦[𝑠
(𝑣)
𝑘 ]

𝑑ℑ𝑚(𝑤𝑝𝑙)

)
(24)

where 𝑠𝑘 is given by (18). By interchanging the order of
derivative and expectation [45], the derivative of the (unnor-
malized) Kurtosis with respect to a complex element 𝑥 is given
by

𝑑𝒦[𝑠𝑘]
𝑑𝑥

= 2ℰ
[
∣𝑠𝑘∣2

(
𝑠𝑘

𝑑𝑠∗𝑘
𝑑𝑥

+ 𝑠∗𝑘
𝑑𝑠𝑘
𝑑𝑥

)]

− 4ℰ [∣𝑠𝑘∣2] ℰ
[
𝑠𝑘

𝑑𝑠∗𝑘
𝑑𝑥

+ 𝑠∗𝑘
𝑑𝑠𝑘
𝑑𝑥

]

− 2

(
ℰ [𝑠2𝑘]ℰ

[
𝑠∗𝑘

𝑑𝑠∗𝑘
𝑑𝑥

]
+ ℰ [𝑠2∗𝑘 ]ℰ

[
𝑠𝑘

𝑑𝑠𝑘
𝑑𝑥

])
.(25)

From (18), the 𝑛𝑡 × 𝑛𝑡 matrix ΓW can be expressed as

ΓW =

𝑛𝑡∑
𝑝=1

𝑛𝑡∑
𝑙=1

𝑛∑
𝑘=1

E(𝑛𝑡)
𝑝𝑙

(
ℰ
[
∣𝑠(𝑣)𝑘 ∣2

(
𝑠
(𝑣)
𝑘 q(2)

𝑝𝑙𝑘 + 𝑠
∗(𝑣)
𝑘 q(1)

𝑝𝑙𝑘

)
x̃𝑣
]

− 2ℰ
[
∣𝑠(𝑣)𝑘 ∣2

]
ℰ
[(

𝑠
(𝑣)
𝑘 q(2)

𝑝𝑙𝑘 + 𝑠
∗(𝑣)
𝑘 q(1)

𝑝𝑙𝑘

)
x̃𝑣
]

− ℰ [𝑠2(𝑣)𝑘 ]ℰ
[
𝑠
∗(𝑣)
𝑘 q(2)

𝑝𝑙𝑘x̃𝑣

]
− ℰ [𝑠2∗(𝑣)𝑘 ]ℰ

[
𝑠
(𝑣)
𝑘 q(1)

𝑝𝑙𝑘x̃𝑣

])
(26)

where the 2𝑛𝑡𝑙-dimensional column vector x̃𝑣 is defined in
(13) and where the 2𝑛𝑡𝑙-dimensional row vectors q(1)

𝑝𝑙𝑘 and

q(2)
𝑝𝑙𝑘 are given respectively by

q(1)
𝑝𝑙𝑘 = [e(𝑛)

𝑘 𝑗e(𝑛)
𝑘 ]G†

[
E(𝑛𝑡)

𝑝𝑙 ⊗ I𝑙 𝑗E(𝑛𝑡)
𝑝𝑙 ⊗ I𝑙

−𝑗E(𝑛𝑡)
𝑝𝑙 ⊗ I𝑙 E(𝑛𝑡)

𝑝𝑙 ⊗ I𝑙

]
(27)

q(2)
𝑝𝑙𝑘 = [e(𝑛)

𝑘 − 𝑗e(𝑛)
𝑘 ]G†

[
E(𝑛𝑡)

𝑝𝑙 ⊗ I𝑙 𝑗E(𝑛𝑡)
𝑝𝑙 ⊗ I𝑙

−𝑗E(𝑛𝑡)
𝑝𝑙 ⊗ I𝑙 E(𝑛𝑡)

𝑝𝑙 ⊗ I𝑙

]
.(28)

Remark 1: In practice, the signals are assumed to be er-
godic; that means that the expectation operator ℰ [⋅] in (26)
can be approximated by a time-average.

B. Constrained minimization algorithm

Several SD algorithms for the minimization of a real-valued
cost function under the unitary constraint have been proposed
in literature. In this subsection, two algorithms are described.

For constrained-minimization, classical approaches solve
the optimization problem on the Euclidean space by using
gradient-based algorithms [23], [42], [46]. At each iteration
step, an update of W is performed in the direction of the
negative gradient. Then, a symmetric orthogonalization
is applied to restore the unitary constraint of W. This
two-step approach is described in the algorithm 1 for a
fixed step size2 𝜇. The major drawback of the Euclidean SD
is that it can lead to undesired suboptimal solutions [47], [48].

Algorithm. 1 Channel estimation for STBC systems using
classical SD algorithm

1: compute R
2: perform the eigenvalue decomposition R = UΛUH

3: compute the whitened data X𝑣 with (9)
4: initialize W randomly
5: repeat
6: set 𝒥𝑜𝑙𝑑 ← 𝒥 (W)
7: compute the gradient ΓW in the Euclidean space with

(26)
8: update W←W− 𝜇ΓW

9: update W←W(WHW)−1/2

10: until 𝒥𝑜𝑙𝑑 − 𝒥 (W) < 𝜖 where 𝜖 is a threshold
11: compute Ĥ with (8).

Recently, major improvements have been obtained by tak-
ing into account the geometrical aspect of the optimization
problem. Nongeodesic and geodesic approaches have been
proposed in [48], [49]. Coupled with Armijo step size rule
[50], these algorithms always converge to a local minimum
if it is not initialized at a stationary point. In the following
equations, the geodesic SD algorithm [48] is chosen since it
has lower computational complexity than the nongeodesic one.
The geodesic SD algorithm moves towards the SD gradient
direction, ∇W, in the Riemannian space. This direction can
be expressed as [48]

∇W = ΓWWH −WΓH
W (29)

where ΓW is the gradient in the Euclidean space (see (26)).
Then, the update rule is given by

W← exp (𝜇∇W)W (30)

where exp(⋅) = ∑∞
𝑘=0(⋅)𝑘/𝑘! is the matrix exponential and 𝜇

corresponds to the step size. Using the Armijo step size rule,
the algorithm almost always converges to a local minimum.
The geodesic SD algorithm with the Armijo step size rule is
described in the algorithm 2.

Figures 1 and 2 illustrate the convergence of algorithm 2 for
a STBC system. The STBC system employs Alamouti coding

2As discussed in [47], line search optimization is not well-adapted for
Euclidean SD with the projection method.
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Algorithm. 2 Channel estimation for STBC systems using
geodesic SD algorithm with Armijo step size rule

1: compute R
2: perform the eigenvalue decomposition R = UΛUH

3: compute the whitened data X𝑣 with (9)
4: initialize W randomly and set 𝜇 = 1
5: repeat
6: compute the gradient ΓW in the Euclidean space with

(26)
7: compute the direction ∇W in the Riemannian space

with (29)
8: compute ⟨∇W,∇W⟩ = 1

2ℜ𝑒
(
trace(∇W∇H

W)
)

9: initialize Σ = exp(−𝜇∇W) and Υ = ΣΣ.
10: while 𝒥 (W)− 𝒥 (ΥW) ≥ 𝜇⟨∇W,∇W⟩ do
11: set Σ = Υ, Υ = ΣΣ and 𝜇← 2𝜇
12: end while
13: while 𝒥 (W)− 𝒥 (ΣW) < 𝜇

2 ⟨∇W,∇W⟩ do
14: set Σ = exp(−𝜇∇W) and 𝜇← 1

2𝜇
15: end while
16: update W← ΣW
17: until ⟨∇W,∇W⟩ < 𝜖 where 𝜖 is a threshold
18: compute Ĥ with (8).
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Fig. 1: Cost function 𝒥 (W) versus iteration.

(𝑛𝑡 = 𝑛 = 𝑙 = 2) and QPSK modulation. The number of
transmitted blocks, the number of receiver antennae and the
Signal to Noise Ratio (SNR) are equal to 𝑁𝑏 = 512, 𝑛𝑟 = 4
and 20dB, respectively, and the threshold is fixed at 𝜖 = 10−5.
Figure 1 displays 𝒦[𝑠1], 𝒦[𝑠2] and 𝒥 (W) with respect to the
iteration number. The figure shows that the cost function is
minimized after 9 iterations. The kurtosis 𝒦[𝑠1] and 𝒦[𝑠2]
converge to −1 which is the kurtosis of QPSK modulation
[38]. Figure 2 shows the constellation of the symbols 𝑠1
and 𝑠2 in the complex plane before and after convergence.
After convergence, it should be noted that the constellation
of the equalized symbols is phase-rotated as compared to the
QPSK constellation. However, as opposed to the classical ICA
model, the phase rotation ambiguities of 𝑠1 and 𝑠2 are not
independent. The effect of the STBC structure on the channel
ambiguities is studied in the following section.
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−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Q
ua

dr
at

ur
e

In−Phase

(d) Iteration 9: 𝑠2

Fig. 2: Constellation of 𝑠1 and 𝑠2

V. REMAINING AMBIGUITIES

For the classical ICA model, it is well known that the
channel can be estimated up to a permutation and phase
rotation ambiguities [23], [51]. For STBC systems, the pro-
posed method reduces the number of channel ambiguities by
exploiting the spatio-temporal redundancy of the transmitted
symbols in (18).

Theorem 1: Let us consider three matrices M, P and D
where M is an 𝑛𝑡×𝑛𝑡 unitary matrix, P is an 𝑛×𝑛 permutation
matrix and D is an 𝑛×𝑛 diagonal matrix with entries of unit
modulus (DD∗ = I𝑛𝑡 ). If these matrices satisfy

M𝒞(s𝑣) = 𝒞(PDs𝑣) (31)

for any s𝑣, then HMH is also a solution of the blind channel
estimation problem.

Proof: From (4) and (31), one gets:

Y𝑣 = H𝒞(s𝑣) + B𝑣

= HMHM𝒞(s𝑣) + B𝑣

= HMH𝒞(PDs𝑣) + B𝑣. (32)

As the elements of s𝑣 are i.i.d, the elements of the vector
PDs𝑣 are also i.i.d. Therefore HMH is a solution of the blind
channel estimation problem.

Let us express the set Θ, which contains all the matrices M
satisfying (31), with respect to the coding matrices. Condition
(31) can be described in a vector form as[ ℜ𝑒(vec{𝒞H(s𝑣)MH})
ℑ𝑚(vec{𝒞H(s𝑣)MH})

]
︸ ︷︷ ︸

k1

=

[ ℜ𝑒(vec{𝒞H(PDs𝑣)})
ℑ𝑚(vec{𝒞H(PDs𝑣)})

]
︸ ︷︷ ︸

k2

.

(33)
The 2𝑛𝑡𝑙-dimensional column vector vec{𝒞H(s𝑣)MH} can be
expressed as

vec{𝒞H(s𝑣)MH} = (M∗ ⊗ I𝑙) vec{𝒞H(s𝑣)} (34)
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TABLE I: Set of ambiguity matrices for different STBCs using 𝑛𝑡 = 2, 3, 4 transmit antennae. The matrices M1-M10 are
defined in (40)-(49).

Number of Number of
Design transmit symbols Code rate Set of ambiguity matrices

approach antennae per block 𝑛/𝑙 after channel estimation
𝑛𝑡 𝑛

Spatial Multiplex. 𝑛𝑡 𝑛𝑡 𝑛𝑡 Θ = {PD}
Alamouti [1] 2 2 1 Θ = {M1(𝜃), M2(𝜃)}
OSTBC [2] 3 3 1/2 Θ = {±I3}
OSTBC [32] 3 3 3/4 Θ = {±I3}
OSTBC [3] 4 3 3/4 Θ = {±I4}
OSTBC [2] 4 4 1/2 Θ = {±I4, ±M4(0), ±M5(0), ±M6(0)}

QOSTBC [4] 4 4 1 Θ = {M3(𝜃), M4(𝜃), M5(𝜃), M6(𝜃)}
NOSTBC [52] 4 4 1 Θ = {M7(𝜃1, 𝜃2), M8(𝜃1, 𝜃2), M9(𝜃1, 𝜃2), M10(𝜃1, 𝜃2)}

As ℜ𝑒(M∗) = ℜ𝑒(M) and ℑ𝑚(M∗) = −ℑ𝑚(M), k1 can be
written in a linear form as

k1 =

[ ℜ𝑒(M)⊗ I𝑙 ℑ𝑚(M)⊗ I𝑙
−ℑ𝑚(M)⊗ I𝑙 ℜ𝑒(M)⊗ I𝑙

]
Gs̃𝑣. (35)

The right term in (33) can also be expressed into a linear form
as

k2 = G
[ ℜ𝑒(vec{PDs𝑣})
ℑ𝑚(vec{PDs𝑣})

]

= G
[

Pℜ𝑒(D) −Pℑ𝑚(D)
Pℑ𝑚(D) Pℜ𝑒(D)

]
s̃𝑣. (36)

Using (35) and (36), (33) can be simplified as

MTGs̃𝑣 = G
[

Pℜ𝑒(D) −Pℑ𝑚(D)
Pℑ𝑚(D) Pℜ𝑒(D)

]
s̃𝑣 (37)

where MT is an 2𝑛𝑡𝑙× 2𝑛𝑡𝑙 matrix with real elements, which
is defined as

MT =

[ ℜ𝑒(M)⊗ I𝑙 ℑ𝑚(M)⊗ I𝑙
−ℑ𝑚(M)⊗ I𝑙 ℜ𝑒(M)⊗ I𝑙

]
. (38)

As (37) must be satisfied for any s𝑣, one obtains

G†MTG =

[
Pℜ𝑒(D) −Pℑ𝑚(D)
Pℑ𝑚(D) Pℜ𝑒(D)

]
. (39)

Finally, the following result is obtained
Theorem 2: For any STBC 𝒞, the set Θ of ambiguity

matrices is the one containing all the 𝑛𝑡 × 𝑛𝑡 matrices M
satisfying (39) where P is a 𝑛𝑡 × 𝑛𝑡 permutation matrix
and D is a 𝑛𝑡×𝑛𝑡 diagonal matrix with entries of unit modulus.

It should be noted that the condition (39) depends on
the matrix G which only depends on the STBC (see (15)).
Unfortunately, it appears to be difficult to find the exact
relationship between G and the matrices M, P and D. To
provide a clear relationship between these matrices, we have
performed several Monte-Carlo simulations with the Rayleigh
MIMO channel. Table I provides the set Θ of ambiguity
matrices for several STBCs using 𝑛𝑡 = {2, 3, 4} transmit

antennae. In Table I, matrices M1-M10 are equal to

M1(𝜃) =

[
𝑒𝑗𝜃 0
0 𝑒−𝑗𝜃

]
(40)

M2(𝜃) =

[
0 𝑒𝑗𝜃

−𝑒−𝑗𝜃 0

]
(41)

M3(𝜃) =

[
M1(𝜃) 02

02 M1(−𝜃)
]

(42)

M4(𝜃) =

[
M2(𝜃) 02

02 M2(−𝜃)
]

(43)

M5(𝜃) =

[
02 M1(𝜃)

−M1(−𝜃) 02

]
(44)

M6(𝜃) =

[
02 M2(𝜃)

−M2(−𝜃) 02

]
(45)

M7(𝜃1, 𝜃2) =

[
M1(𝜃1) 02

02 M1(𝜃2)

]
(46)

M8(𝜃1, 𝜃2) =

[
M1(𝜃1) 02

02 M2(𝜃2)

]
(47)

M9(𝜃1, 𝜃2) =

[
M2(𝜃1) 02

02 M1(𝜃2)

]
(48)

M10(𝜃1, 𝜃2) =

[
M2(𝜃1) 02

02 M2(𝜃2)

]
. (49)

Let us emphasize the differences between Table I and the
tables reported in [17], [18], [21], [22]. Tables reported in [17],
[18], [21], [22] focus on the blind channel-identifiability con-
dition for subspace and SOS approaches. Without modification
of the transmitter (precoding, pilot sequence), they show that
subspace and SOS methods are unable to estimate the channel
for≥ 1-rate STBCs and some specific low-rate STBCs. Unlike
subspace and SOS approaches, the proposed method can be
applied to the whole class of linear STBCs without any
modification of the transmitter or the use of a pilot sequence.
Moreover, unlike the general subspace methods [16], [17], it
does not introduce additional ambiguities to those associated
to the blind channel estimation problem. For example for the
3
4 -rate OSTBC using 𝑛𝑡 = 3 antennae, the proposed method
can estimate the channel up to a sign whereas the subspace
method introduces an unknown phase rotation 𝑒𝑗𝜃 [16], [17].

VI. SIMULATION RESULTS

Monte-Carlo simulations were run to assess the perfor-
mances of the algorithms 1 and 2. Let us denote by H
and Ĥ the original and estimated channel, respectively. After
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TABLE II: Spatial Multiplexing: Average Computation times
for each algorithm.

���������Algorithm
SNR

-10dB 0dB 10dB

Classical SD 0.07 s 0.11 s 0.09 s
Geodesic SD 0.34 s 0.16 s 0.09 s
JADE 0.004 s 0.004 s 0.004 s

channel estimation, the remaining ambiguity is removed by
post-multiplying Ĥ with M̂ where

M̂ = arg min
M∈Θ
∥H− ĤM∥2𝐹 (50)

and where the set of ambiguity matrices, Θ, depends on the
STBC (see Table I). After ambiguity removal, the estimated
channel is denoted as Ĥ𝑎 = ĤM̂. Performances of the
proposed blind algorithms were quantified through:

∙ the Normalized Mean Square Error (NMSE), which is
defined as:

𝑁𝑀𝑆𝐸 =
∥H− Ĥ𝑎∥2𝐹
∥H∥2𝐹

. (51)

∙ the average Symbol Error Rate (SER) obtained after ML
decoding.

Each simulation was carried out under the following condi-
tions: i) a Rayleigh distributed channel i.e. each element of
H follows an i.i.d. circular Gaussian distribution with zero-
mean and unit-variance, ii) a QPSK modulation, iii) 512
transmitted blocks, iv) a temporally and spatially zero-mean
white Gaussian additive noise with variance 𝜎2 (which is
unknown at the receiver side), v) a threshold equal to 𝜖 = 10−5

and vi) a receiver satisfying assumption AS1). Performances
of the algorithms 1 and 2 were evaluated for several Signal-
to-Noise Ratios (SNRs) where the SNR was defined as [53]

𝑆𝑁𝑅 = 10log10(𝑛𝑡/𝜎
2). (52)

For each SNR, two thousand Monte-Carlo simulations were
performed to approximate the NMSE and SER. As there is
no guarantee that the algorithms 1 and 2 will find the global
minimum, performances of the proposed methods were also
evaluated with multistart initialization. Multistart initialization
procedure runs an algorithm several times with new random
starting points and selects the estimated unitary matrix W
which minimizes the cost-function 𝒥 (W). In the following
subsections, performances are presented for 3 different STBC
systems.

A. Spatial Multiplexing

In this subsection, we consider the case of a Spatial
Multiplexing system using 𝑛𝑡 = 2 transmit antennae. The
transmitted blocks are given by

𝒞(s) =
[

𝑠1
𝑠2

]
. (53)

For Spatial Multiplexing, the channel estimation problem re-
duces to the classical ICA problem. After channel estimation,
the set of ambiguity matrices is given by Θ = {PD} where
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P and D are permutation and phase matrices. Figures 3 and
4 present the performances of the algorithms 1 and 2 for a
receiver composed of 𝑛𝑟 = 3 antennae. These two algorithms
are compared with JADE [54]. Figure 3 displays the channel
NMSE versus SNR. In this simulation, algorithms 1 and 2
always match or outperform the JADE algorithm, depending
on the SNR. Figure 3 also indicates that the multistart initial-
ization does not seem to improve the performances. Figure 4
presents the SER versus the SNR. The SER is compared to the
one obtained with the coherent ML receiver (perfect CSI). It
should be noted that the blind channel-estimation algorithms
achieve near-optimal performances at high SNR since their
SERs approach the ones of the coherent ML receiver. A
comparison of the average computation times is shown in
Table II for simulations implemented on a 2.6 GHz Intel
Pentium processor using Matlab. For multistart initialization
approaches, the computation times must be multiplied by the
number of random starts. Table II shows that the classical
SD is less computationally demanding than the geodesic SD
at low-SNR, but their computational complexities are similar
at high-SNR. Table II also suggests that the JADE algorithm
is significantly less complex than the proposed algorithms.
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Fig. 5: Alamouti Coding: NMSE.
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Fig. 6: Alamouti Coding: Symbol Error Rate.

TABLE III: Alamouti Coding: Average Computation times for
each algorithm.

���������Algorithm
SNR

-10dB 0dB 10dB

Classical SD 0.10 s 0.16 s 0.12 s
Geodesic SD 0.51 s 0.21 s 0.10 s

However, one should note that JADE is limited to Spatial-
Multiplexing systems and cannot be employed for more gen-
eral settings.

B. Alamouti Coding

In this subsection, we consider a STBC system using the
Alamouti Code. This Orthogonal code is defined by [1]

𝒞(s) =
[

𝑠1 −𝑠∗2
𝑠2 𝑠∗1

]
(54)

For Alamouti coding, the direct use of an ICA algorithm,
like JADE, is irrelevant since the transmitted symbols between
consecutive time instances are not independent. Furthermore,
it is demonstrated in [16]–[18], [22] that subspace and SOS
approaches cannot estimate the channel matrix when the

transmitter employs Alamouti Coding. Regarding the proposed
methods, Table I shows that the set of ambiguity matrices after
channel estimation is Θ = {M1(𝜃),M2(𝜃)}. Figure 5 displays
the NMSE versus SNR for a receiver composed of 𝑛𝑟 = 3
antennae. Without multistart initialization, the geodesic SD
clearly outperforms the classical SD since the latter exhibits
an error floor at SNR greater than 4dB. This error floor is
due to the fact that the Euclidean SD can lead to undesired
suboptimal solutions even at high SNR [47], [48]. It should
be observed that the multistart initialization strategy removes
the error floor and improves the NMSE performances of the
two proposed algorithms. Figure 6 compares the SER with
the one obtained with a coherent ML receiver. As previously
discussed, without multistart initialization, the performances
of the Euclidean SD lead to an error floor at SNR greater
than 4dB. However, it should be observed that algorithms 1
and 2 achieve near-optimal performance when a multistart ini-
tizalization is used. A comparison of the average computation
times is shown in Table III. It should be noted that classical
SD is less computationally demanding than the geodesic SD
at low-SNR, but this trend is reversed at high SNR.

C. 3
4 -rate OSTBC using 3 antennae

In this subsection, we consider the case of a 3
4 -rate OSTBC

using 3 antennae. This OSTBC is defined by [32]

𝒞(s) =
⎡
⎣ 𝑠1 0 𝑠2 −𝑠3

0 𝑠1 𝑠∗3 𝑠∗2
−𝑠∗2 −𝑠3 𝑠1 0

⎤
⎦ (55)

For this low-rate code, the channel can be estimated with
subspace and SOS approaches. The remaining ambiguity
reduces to a sign for the SOS approach [18] and to a rotation
𝑒𝑗𝜃 for the subspace method [16], [17]. In the following fig-
ures, performances of the proposed algorithms are compared
with the SOS-based method [18] for a receiver composed of
𝑛𝑟 = 5 antennae. Figure 7 displays the NMSE versus SNR.
Without multiple-start initialization, it should be noted that
the algorithms 1 and 2 exhibit an error floor at SNR greater
than 6dB. For the Euclidean SD algorithm, the error floor
is due to the fact that this approach can lead to undesired
suboptimal solutions [47], [48]. For the Geodesic SD one,
even if it always converges to a local minimum [47], the
error floor is due to the fact that the local minimum does
not necessarily coincide with the global one. As previously
observed, multistart initialization removes the error floor and
improves the performances of the two proposed algorithms. In
particular, Figure 7 shows that for 𝑆𝑁𝑅 > 0, algorithms 1 and
2 with multistart initialization outperform the SOS method.
Figure 8 shows that method [18] and the proposed multistart
algorithms both achieve near-optimal SER performances for
𝑆𝑁𝑅 > 0. A comparison of the average computation times
is presented in Table IV. It is shown that the SOS method is
less computationally demanding than the proposed algorithms.
Therefore, for SOS-identifiable OSTBCs, it seems that the
closed-form SOS algorithm is definitely preferable since this
algorithm does not suffer from convergence problems and it is
less computationally expensive than the proposed approaches.
However, it should be emphasized that the SOS method is
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TABLE IV: 3
4 -rate OSTBC: Average Computation times for

each algorithm.
���������Algorithm

SNR
-10dB 0dB 10dB

Classical SD 1.32 s 0.85 s 0.78 s
Geodesic SD 3.33 s 0.62 s 0.51 s
SOS method 0.48 s 0.48 s 0.48 s

limited to a subclass of OSTBCs [22], whereas the proposed
algorithms can be applied to the whole class of linear STBCs.

VII. CONCLUSION

This paper proposed an original blind channel estimation
algorithm for space-time block coding communications. The
method is based on the minimization of a kurtosis-based
cost function after Zero-Forcing equalization. The proposed
method can be applied to the whole class of linear STBCs,
whatever the code-rate and the modulation. This paper also
presented the set of the remaining channel ambiguities for
several STBCs using 2, 3 or 4 transmit antennae. The good
performances of the proposed algorithm were demonstrated
through computer simulations for different STBCs. In par-
ticular, simulations have shown that the proposed method

matches or outperforms the JADE algorithm [54] for Spatial
Multiplexing and matches the performances of the closed-form
SOS approach [18] for identifiable OSTBCs.

APPENDIX

Let us consider the 2𝑛𝑡𝑙 × 2𝑛𝑡𝑙 matrix W defined in (12).
As (A⊗ B)T = AT ⊗ BT, one gets:

WTW =

[ ℜ𝑒(W)⊗ I𝑙 ℑ𝑚(W)⊗ I𝑙
−ℑ𝑚(W)⊗ I𝑙 ℜ𝑒(W)⊗ I𝑙

]

×
[ ℜ𝑒(WT)⊗ I𝑙 −ℑ𝑚(WT)⊗ I𝑙
ℑ𝑚(WT)⊗ I𝑙 ℜ𝑒(WT)⊗ I𝑙

]
(56)

From the mixed product rule, it follows that:

WTW =

[
B1 ⊗ I𝑙 −B2 ⊗ I𝑙
B2 ⊗ I𝑙 B1 ⊗ I𝑙

]
(57)

where the 𝑛𝑡 × 𝑛𝑡 matrices B1 and B2 are given by:

B1 = ℜ𝑒(W)ℜ𝑒(WT) + ℑ𝑚(W)ℑ𝑚(WT) (58)

B2 = ℜ𝑒(W)ℑ𝑚(WT)− ℑ𝑚(W)ℜ𝑒(WT) (59)

As W is a 𝑛𝑡 × 𝑛𝑡 unitary matrix, it satisfies WWH = I𝑛𝑡 .
By expanding the real and imaginary parts, one gets:

WWH =
(
ℜ𝑒(W) + 𝑗ℑ𝑚(W)

)
.
(
ℜ𝑒(WT)− 𝑗ℑ𝑚(WT)

)
= B1 − 𝑗B2 = I𝑛𝑡 (60)

By identification, it follows that B1 = I𝑛𝑡 and B2 = 0𝑛𝑡 .
Finally (57) can be simplified as:

WTW = I2𝑛𝑡𝑙 (61)
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