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This paper presents an algebraic approach allowing to perform the analysis of any Dynamic Fault Tree (DFT). This approach is based on the ability to formally express the structure function of DFTs. We first present the algebraic framework that we introduced to model dynamic gates and hence be able to determine the structure function of DFTs. Then, we show that this structure function can be rewritten under a canonical form from which the qualitative analysis of DFTs can be performed directly. We finally provide a probabilistic model of dynamic gates to be able to perform the quantitative analysis of DFTs from their structure function.

INTRODUCTION

Fault Tree Analysis (FTA) is one of the oldest, most diffused techniques in industrial applications, for the dependability analysis of critical systems [START_REF] Henley | Reliability Engineering and Risk Assessment[END_REF][START_REF] Leveson | Safeware: System Safety and Computers[END_REF][START_REF]Fault Tree Handbook With Aerospace Applications[END_REF]. When the interactions between events can be described by means of Boolean OR/AND gates only, so that only the combination of events is relevant, and not their sequence, Fault Trees are called Static Fault Trees (SFT). SFTs are commonly analyzed directly from their structure function, which is the logical expression between the top event and the basic events of the SFT. The qualitative analysis consists in determining the minimal cut sets -the minimal combinations of events which are sufficient to engender the top event -of the SFT. The quantitative analysis consists in computing the failure probability of the top event of the SFT. Dugan et al. [START_REF] Dugan | Fault Trees and Sequence Dependencies[END_REF][START_REF] Dugan | Developing a lowcost high-quality software tool for dynamic fault-tree analysis[END_REF] proposed a new model allowing to include various kinds of temporal and statistical dependencies in the SFT model, which is the Dynamic Fault Tree (DFT). The DFT is based on the definition of gates Priority-AND (PAND), Functional Dependency (FDEP), and Spare.

Even though the semantics of dynamic gates allows to model complex failure mechanisms that SFTs cannot take into account, DFTs cannot be analyzed by using regular approaches as their structure function cannot be determined. Other types of approaches are hence used to perform the analysis of DFTs. These approaches are mainly based on Zero-suppressed Binary Decision Diagrams (ZBDD) [START_REF] Tang | Minimal cut set/sequence generation for dynamic fault trees[END_REF], Continuous Time Markov Chains (CTMC) [START_REF] Coppit | Formal Semantics of Models for Computational Engineering: A Case Study on Dynamic Fault Trees[END_REF], Stochastic Petri Nets (SPN) [START_REF] Bobbio | Parametric Fault Trees with Dynamic Gates and Repair Boxes[END_REF], and dynamic Bayesian Networks (BN) [START_REF] Montani | DBNet, a tool to convert Dynamic Fault Trees into Dynamic Bayesian Networks[END_REF]. However, these approaches have limits in the analyses that they allow as well as in the distributions that can be taken into account, even though any distribution can, in most cases, be accommodated by numerical simulation.

In a previous article [START_REF] Merle | Probabilistic Algebraic Analysis of Fault Trees With Priority Dynamic Gates and Repeated Events[END_REF], the authors proposed to extend the approaches commonly used to analyze SFTs to DFTs. We hence proposed an algebraic framework allowing to determine the structure function of DFTs including dynamic gates PAND and FDEP, as well as an analytical approach allowing to perform the analyses from this structure function.

In this paper, we propose to extend the approach considered in [START_REF] Merle | Probabilistic Algebraic Analysis of Fault Trees With Priority Dynamic Gates and Repeated Events[END_REF] to the case of Spare gates. The main approaches allowing to analyze DFTs and their respective limits are presented in Section 2. The algebraic framework allowing to determine the structure function of DFTs is recalled in Section 3, and the behavioural and probabilistic models of dynamic gates are respectively presented in Sections 4 and 5. Finally, we illustrate our approach on a DFT example from the literature in Section 6.

STATE OF THE ART

Many approaches have been envisaged to analyze DFTs. In [START_REF] Tang | Minimal cut set/sequence generation for dynamic fault trees[END_REF], each dynamic gate of the considered DFT is replaced by the static gate corresponding to its logic constraints; the minimal cut sets of the resulting SFT are then generated by using ZBDDs, and these minimal cut sets are expanded to minimal cut sequences by considering the timing constraints. The authors of [START_REF] Coppit | Formal Semantics of Models for Computational Engineering: A Case Study on Dynamic Fault Trees[END_REF] propose to convert the DFT into a failure automaton which models the changing state of the system as failures occur. This failure automaton can then be converted into a CTMC, and the solution of the corresponding set of differential equations allows to determine the failure probability of the top event of the DFT. These two approaches have been implemented in Galileo [START_REF] Dugan | Developing a lowcost high-quality software tool for dynamic fault-tree analysis[END_REF]. Other model-based approaches can be used to perform the quantitative analysis of DFTs. For instance, in [START_REF] Montani | DBNet, a tool to convert Dynamic Fault Trees into Dynamic Bayesian Networks[END_REF], the whole DFT is converted into a dynamic BN and the failure probability of the top event of the DFT can be determined by using inference algorithms. In [START_REF] Bobbio | Parametric Fault Trees with Dynamic Gates and Repair Boxes[END_REF], the dynamic subtrees of DFTs are converted into a class of coloured SPNs called Stochastic Well-formed Net (SWN). This SWN can be converted into a CTMC to determine the failure probability of the top event of the dynamic subtree, and this failure probability can then be cast back into the original DFT. These prim
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Qualitative analysis

The canonical form of the structure function of the HECS contains 23 (2 + 17 + 1 + 3) terms. On the one hand, 21 terms do not contain the temporal operator .ٱ They are static and can hence provide the minimal cut sets of the DFT:
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) On the other hand, 2 terms contain the temporal operator .ٱ They are dynamic and can hence provide the minimal cut sequences of the DFT.

The algebraic term ܣ ή ʹܣ ή ሺͳܣ ٱ ܣ ሻ ή ሺͳܣ ٱ ʹܣሻ indicates that A1 must fail before A a and A2 and hence corresponds to the two minimal cut sequences ሾͳܣǡ ʹܣǡ ܣ ሿ and ሾͳܣǡ ܣ ǡ ʹܣሿ. The algebraic term ܣ ή ͳܣ ή ሺʹܣ ٱ ܣ ሻ ή ሺʹܣ ٱ ͳܣሻ indicates that A2 must fail before A a and A1 and hence corresponds to the two minimal cut sequences ሾʹܣǡ ͳܣǡ ܣ ሿ and ሾʹܣǡ ܣ ǡ ͳܣሿ. The minimal cut sequences of the DFT hence are ሾͳܣǡ ʹܣǡ ܣ ሿǡ ሾͳܣǡ ܣ ǡ ʹܣሿǡ ሾʹܣǡ ͳܣǡ ܣ ሿǡ ሾʹܣǡ ܣ ǡ ͳܣሿ (20)

Quantitative analysis

The probabilistic model of dynamic gates presented in Section 5 allows to determine the failure probability of the top event of the 4 subtrees considered in Section 6.2.

For instance, in the case of subtree 1, the structure function of the subtree is given in (18). We have shown in Section 6.3 that the two algebraic terms of (18) correspond to the four minimal cut sequences given in (20). The structure function for TE 1 can hence be rewritten as ܧܶ ଵ ൌ ܣ ή ሺͳܣ ٱ ʹܣሻ ή ሺʹܣ ٱ ܣ ሻ ʹܣ ή ሺͳܣ ٱ ܣ ሻ ή ሺܣ ٱ ʹܣሻ ܣ ή ሺʹܣ ٱ ͳܣሻ ή ሺͳܣ ٱ ܣ ሻ ͳܣ ή ሺʹܣ ٱ ܣ ሻ ή ሺܣ ٱ ͳܣሻ (21) and the probability of these four disjoint algebraic terms can be determined from the probabilistic formulas recalled in Section 5 so as to determine the failure probability of TE1:
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The failure probability of the top event of the DFT of the HECS can hence be determined by using the inclusionexclusion formula. It can be noted that this failure probability does not depend on the distribution considered for basic events as the probabilistic model of dynamic gates can accommodate any distribution for basic events.

In the particular case of exponential distributions with the failure rates given in Table 2, we obtain an unreliability of 95.92% after 100 hours. We have retained this mission time because it is the one retained in [START_REF]Fault Tree Handbook With Aerospace Applications[END_REF], even though the quantitative results obtained are different as basic components are considered as repairable in [START_REF]Fault Tree Handbook With Aerospace Applications[END_REF].

Basic component Failure rate (h -1 ) A1, A2, A 10 -4 M1, M2, M3, M4, M5 6 x 10 -5 MIU1, MIU2 5 x 10 -5 BUS1, BUS2 10 -6 HW 5 x 10 -5 SW 3 x 10 -2 OP 10 -3

Table 2 -Failure rates of the basic events of the DFT of the HECS, from [START_REF]Fault Tree Handbook With Aerospace Applications[END_REF] As the exponential distribution is not necessarily the most suitable to model the failure of components as it does not take into account their aging, the failure probability of the HECS could be computed by considering other more suitable distributions, such as the Weibull distribution, for instance.

CONCLUSION & PROSPECTS

In this paper, we presented the behavioural and probabilistic model of Spare gates. On the one hand, the behavioural model allows to take into account any type -Cold, Warm, or Hot -of Spare gate and to determine the structure function of any DFT under a canonical form thanks to the behavioural model of gates PAND and FDEP from [START_REF] Merle | Probabilistic Algebraic Analysis of Fault Trees With Priority Dynamic Gates and Repeated Events[END_REF]. The qualitative analysis of DFTs can then be performed directly from this canonical form. On the other hand, the probabilistic model allows to perform the quantitative analysis of any DFT from the canonical form of its structure function. It can be noted that, as this probabilistic model does not depend on the distribution considered for basic events, any distribution can be accommodated during the quantitative analysis.

Ongoing work is currently addressed to the elaboration of efficient algorithms allowing to determine the structure function of DFTs and to perform their analysis directly from this structure function. Besides, the set of minimal cut sequences obtained with this approach is not necessarily minimal as it may contain redundant minimal cut sequences.
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We should hence define one or many minimization criterion and develop optimization algorithms allowing to reduce this set of minimal cut sequences.