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SUMMARY & CONCLUSIONS 

This paper presents an algebraic approach allowing to 
perform the analysis of any Dynamic Fault Tree (DFT).  This 
approach is based on the ability to formally express the 
structure function of DFTs.  We first present the algebraic 
framework that we introduced to model dynamic gates and 
hence be able to determine the structure function of DFTs.  
Then, we show that this structure function can be rewritten 
under a canonical form from which the qualitative analysis of 
DFTs can be performed directly.  We finally provide a 
probabilistic model of dynamic gates to be able to perform the 
quantitative analysis of DFTs from their structure function. 

1 INTRODUCTION 

Fault Tree Analysis (FTA) is one of the oldest, most 
diffused techniques in industrial applications, for the 
dependability analysis of critical systems [1-3].  When the 
interactions between events can be described by means of 
Boolean OR/AND gates only, so that only the combination of 
events is relevant, and not their sequence, Fault Trees are 
called Static Fault Trees (SFT).  SFTs are commonly analyzed 
directly from their structure function, which is the logical 
expression between the top event and the basic events of the 
SFT.  The qualitative analysis consists in determining the 
minimal cut sets – the minimal combinations of events which 
are sufficient to engender the top event – of the SFT.  The 
quantitative analysis consists in computing the failure 
probability of the top event of the SFT.  Dugan et al. [4-5] 
proposed a new model allowing to include various kinds of 
temporal and statistical dependencies in the SFT model, which 
is the Dynamic Fault Tree (DFT).   The DFT is based on the 
definition of gates Priority-AND (PAND), Functional 
Dependency (FDEP), and Spare. 

Even though the semantics of dynamic gates allows to 
model complex failure mechanisms that SFTs cannot take into 
account, DFTs cannot be analyzed by using regular 
approaches as their structure function cannot be determined.  
Other types of approaches are hence used to perform the 
analysis of DFTs.  These approaches are mainly based on 
Zero-suppressed Binary Decision Diagrams (ZBDD) [6], 
Continuous Time Markov Chains (CTMC) [7], Stochastic 
Petri Nets (SPN) [8], and dynamic Bayesian Networks (BN) 
[9].  However, these approaches have limits in the analyses 

that they allow as well as in the distributions that can be taken 
into account, even though any distribution can, in most cases, 
be accommodated by numerical simulation. 

In a previous article [10], the authors proposed to extend 
the approaches commonly used to analyze SFTs to DFTs.  We 
hence proposed an algebraic framework allowing to determine 
the structure function of DFTs including dynamic gates PAND 
and FDEP, as well as an analytical approach allowing to 
perform the analyses from this structure function. 

In this paper, we propose to extend the approach 
considered in [10] to the case of Spare gates.  The main 
approaches allowing to analyze DFTs and their respective 
limits are presented in Section 2.  The algebraic framework 
allowing to determine the structure function of DFTs is 
recalled in Section 3, and the behavioural and probabilistic 
models of dynamic gates are respectively presented in 
Sections 4 and 5.  Finally, we illustrate our approach on a DFT 
example from the literature in Section 6. 

2 STATE OF THE ART 

Many approaches have been envisaged to analyze DFTs.  
In [6], each dynamic gate of the considered DFT is replaced 
by the static gate corresponding to its logic constraints; the 
minimal cut sets of the resulting SFT are then generated by 
using ZBDDs, and these minimal cut sets are expanded to 
minimal cut sequences by considering the timing constraints.  
The authors of [7] propose to convert the DFT into a failure 
automaton which models the changing state of the system as 
failures occur.  This failure automaton can then be converted 
into a CTMC, and the solution of the corresponding set of 
differential equations allows to determine the failure 
probability of the top event of the DFT.  These two 
approaches have been implemented in Galileo [5].  Other 
model-based approaches can be used to perform the 
quantitative analysis of DFTs.  For instance, in [9], the whole 
DFT is converted into a dynamic BN and the failure 
probability of the top event of the DFT can be determined by 
using inference algorithms.  In [8], the dynamic subtrees of 
DFTs are converted into a class of coloured SPNs called 
Stochastic Well-formed Net (SWN).  This SWN can be 
converted into a CTMC to determine the failure probability of 
the top event of the dynamic subtree, and this failure 
probability can then be cast back into the original DFT.  These 
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The canonical form of the structure function of the HECS 
can hence be determined as the conjunction of these 4 
expressions. 

6.3 Qualitative analysis 

The canonical form of the structure function of the HECS 
contains 23 (2 + 17 + 1 + 3) terms.  On the one hand, 21 terms 
do not contain the temporal operator ⊲.  They are static and 
can hence provide the minimal cut sets of the DFT: ∙ , ∙ , ∙ , ∙ ,	∙ , ∙ , ∙ , ∙ ∙ ,	∙ ∙ , ∙ ∙ , ∙ ∙ , ∙ ∙ ,	∙ ∙ , ∙ ∙ , ∙ ∙ , ∙ ∙ ,	∙ ∙ , 1 ∙ 2, , ,            (19) 

On the other hand, 2 terms contain the temporal operator  ⊲.  They are dynamic and can hence provide the minimal cut 
sequences of the DFT.  The algebraic term ∙ 2 ∙1 ⊲ ∙ 1 ⊲ 2  indicates that A1 must fail before Aa 
and A2 and hence corresponds to the two minimal cut 
sequences 1, 2,  and 1, , 2 .  The algebraic term ∙ 1 ∙ 	 2 ⊲ ∙ 2 ⊲ 1  indicates that A2 must fail 
before Aa and A1 and hence corresponds to the two minimal 
cut sequences 2, 1,  and 2, , 1 .  The minimal cut 
sequences of the DFT hence are 1, 2, , 1, , 2 , 2, 1, , 2, , 1   (20) 

6.4 Quantitative analysis 

The probabilistic model of dynamic gates presented in 
Section 5 allows to determine the failure probability of the top 
event of the 4 subtrees considered in Section 6.2. 

For instance, in the case of subtree 1, the structure 
function of the subtree is given in (18).  We have shown in 
Section 6.3 that the two algebraic terms of (18) correspond to 
the four minimal cut sequences given in (20).  The structure 
function for TE1 can hence be rewritten as = ∙ 1 ⊲ 2 ∙ 2 ⊲ 													+ 2 ∙ 1 ⊲ ∙ ⊲ 2 													+ ∙ 2 ⊲ 1 ∙ 1 ⊲ 	+	 1 ∙ 2 ⊲ ∙ ⊲ 1 															(21) 
and the probability of these four disjoint algebraic terms can 
be determined from the probabilistic formulas recalled in 
Section 5 so as to determine the failure probability of TE1: Pr	 t= 		 f v dv f u,w du f w dw						+ f u, v du f v dv f w dw						+ f v dv f u,w du f w dw						+ f u, v du f v dv f w dw 

(22) 
The failure probability of the top event of the DFT of the 

HECS can hence be determined by using the inclusion-
exclusion formula.  It can be noted that this failure probability 

does not depend on the distribution considered for basic events 
as the probabilistic model of dynamic gates can accommodate 
any distribution for basic events. 

In the particular case of exponential distributions with the 
failure rates given in Table 2, we obtain an unreliability of 
95.92% after 100 hours.  We have retained this mission time 
because it is the one retained in [3], even though the 
quantitative results obtained are different as basic components 
are considered as repairable in [3]. 

Basic component Failure rate (h-1) 
A1, A2, A 10-4 

M1, M2, M3, M4, M5 6 x 10-5 
MIU1, MIU2 5 x 10-5 
BUS1, BUS2 10-6 

HW 5 x 10-5 
SW 3 x 10-2 
OP 10-3 

Table 2 – Failure rates of the basic events of the DFT of the 
HECS, from [3] 

As the exponential distribution is not necessarily the most 
suitable to model the failure of components as it does not take 
into account their aging, the failure probability of the HECS 
could be computed by considering other more suitable 
distributions, such as the Weibull distribution, for instance. 

7 CONCLUSION & PROSPECTS 

In this paper, we presented the behavioural and 
probabilistic model of Spare gates.  On the one hand, the 
behavioural model allows to take into account any type – 
Cold, Warm, or Hot – of Spare gate and to determine the 
structure function of any DFT under a canonical form thanks 
to the behavioural model of gates PAND and FDEP from [10].  
The qualitative analysis of DFTs can then be performed 
directly from this canonical form.  On the other hand, the 
probabilistic model allows to perform the quantitative analysis 
of any DFT from the canonical form of its structure function.  
It can be noted that, as this probabilistic model does not 
depend on the distribution considered for basic events, any 
distribution can be accommodated during the quantitative 
analysis. 

Ongoing work is currently addressed to the elaboration of 
efficient algorithms allowing to determine the structure 
function of DFTs and to perform their analysis directly from 
this structure function.  Besides, the set of minimal cut 
sequences obtained with this approach is not necessarily 
minimal as it may contain redundant minimal cut sequences.  
We should hence define one or many minimization criterion 
and develop optimization algorithms allowing to reduce this 
set of minimal cut sequences. 
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