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CIRCULAR WORDS AND THREE APPLICATIONS:

FACTORS OF THE FIBONACCI WORD, F-ADIC

NUMBERS, AND THE SEQUENCE 1, 5, 16, 45, 121, 320,. . .

BENOÎT RITTAUD AND LAURENT VIVIER

Abstract. We introduce the notion of circular words with a combi-
natorial constraint derived from the Zeckendorf (Fibonacci) numera-
tion system, and get explicit group structures for these words. As a
first application, we give a new result on factors of the Fibonacci word
abaababaabaab . . .. Second, we present an expression of the sequence
A004146 of [S] in terms of a product of expressions involving roots of
unity. Third, we consider the equivalent of p-adic numbers that arise
by the use of the numeration system defined by the Fibonacci sequence
instead of the usual numeration system in base p. Among such F-adic

numbers, we give a characterization of the subset of those which are ra-

tional (that is: a root of an equation of the form qX = p, for integral
values of p and q) by a periodicity property. Eventually, with the help
of circular words, we give a complete description of the set of roots of
qX = p, showing in particuler that it contains exactly q F -adic elements.

Classically, a (finite) word is a finite sequence of elements (or letters)

of a given set, the alphabet. Here, we mean by circular word a finite word

w0 . . . wn in which the last letter, wn, is assumed to be followed by the first

one, w0. This definition gives rise to interesting properties when circular

words are assumed to be admissible, that is, made of letters in the alphabet

{0, 1} without any two successive letters equal to 1. These properties derive

from an underlying algebraic structure: the set of admissible circular words

of fixed even length is an abelian group, which can be explicitely written as

a product of finite monogenetic groups.

One of the properties of circular admissible words of length 2ℓ is that

their cardinality cℓ is given by the sequence A004146 of [S] (which starts

by 1, 5, 16, 45, 121, 320,. . . ), which has many important combinatorial

properties (see [R]). The link between this sequence and admissible circular

words appears also in the sequence of determinants of a sequence of linear

operators we consider for our study. This fact gives rise to a formula that

expresses each element of the sequence A004146 as an explicit product of

expressions of the form 1− α− α2, where α is a root of unity.
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37B10.

Key words and phrases. Fibonacci numeration system; words; Fibonacci substitution;
adic representation.
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2 B. RITTAUD AND L. VIVIER

Another application of circular words is the study of factors of the Fi-

bonacci word M = abaababaabaab . . ., defined as the only fixed point of the

substitution a 7→ ab and b 7→ a. It appears that admissible circular words

are closely linked to this word, and the underlying arithmetic on these ob-

jects allows to write the word bM in the form A(1) . . . A(q)M ′, where all the

A(q)s are of length k and contain the same number of a (and, thus, also the

same number of b), where k and q are explicit (and non-trivial) numbers.

A third application of circular words deals with what we call F-adic

numbers. For any integer p > 1, the set of p-adic integers is obtained by con-

sidering the projective limit of the sequence of sets (Z/pnZ)n. In an intuitive

way, it corresponds to numbers whose “integral part” is made of infinitely

many digits in base p. Such a projective limit still makes sense for other nu-

meration systems, as for example numeration systems in non-integers bases

(see [AF]). We consider here the case of the Zeckendorf numeration system:

define the Fibonacci sequence (Fn)n by F0 = 1, F1 = 2 and Fn = Fn−1+Fn−2

for any n ≥ 2. For any integer N , there exists a unique sequence (wn)n≥0

of 0s and 1s such that wnwn+1 = 0 for any n (this property makes the se-

quence an admissible one) and such that N =
∑

nwnFn. Such a sequence

has the property that, for some n0, wn = 0 for all n ≥ n0. Considering a

sequence (wn)n without this latter property leads to F -adic numbers. It is

worth noting that, contrarily to the case of p-adic numbers, we do not need

to consider any “fractional part” to deal with F -adic numbers.

In [GLT], Peter Grabner, Pierre Liardet and Robert Tichy investigated

F -adic numbers and generalizations by taking a dynamical standpoint.

Here, we take a number-theoretic perspective, considering the set of F -

adic numbers as a number set. We define an addition on the set of F -adic

numbers and investigate the properties of rational F -adic numbers, that is,

F -adic numbers X such that, for some integers p and q, qX = p. Circular

words, then, appear to be a natural tool to investigate such rational F -adic

numbers, since their set corresponds to the set of F -adic numbers whose

expansion is ultimately periodic. The proof involves tools from algebra and

combinatorics on words. As an application of circular words, together with

the use of some more algebra, we show that the equation qX = p (with X

F -adic number and p, q integers) has q or (q + 1) F -adic roots, depending

only on whether p/q is an integer or not.

Of course, it would be possible to consider other constraints on circular

words or F -adic numbers than the Zeckendorf one. We will not address here
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a general theory, and postpone to another paper some results in some of

these more general cases.

1. General definitions and notations

1.1. Words. A word W is a sequence of elements of some fixed set, called

the alphabet, which will be always made of integral numbers (with only one

exception in section 3.1). A word can be finite or infinite, and we usually

write it as W = w0 . . . wn = wn
0 for a finite word, W = w∞

0 = w0 . . . wn . . .

for an infinite word (note that the set of indices always starts at 0). The

wis are the letters of W , wi is the letter of rank i in W . The notation ∅

stands for the empty word. The length |W | of a word W is the number of its

letters (so |wn
0 | = n+1 and |w∞

0 | = +∞). For W a word and a a letter of its

alphabet, |W |a stands for the number of occurrences of a in W (which may

be infinite). For any word on an alphabet A, we have |W | =
∑

a∈A |W |a.
For W = wn

0 , we write Σ(W ) :=
∑n

i=0wi =
∑

a∈A a|W |a.
Two words W and W ′ being given with W finite, the notation WW ′

stands for the concatenation of W and W ′. We also put W 0 := ∅, W 1 := W

and, for any n ≥ 2,W n := WW n−1. We writeW∞ for the infinite word made

of infinitely many copies of W . The word W∞ (resp. VW∞ for a finite word

V ) is periodic (resp. ultimately periodic), and W is its period. Frequently in

the sequel, a finite word W of length ℓ will have to be considered as a word

of length ℓ + ℓ′, or even as an infinite word of period 0, by identifying W

with W0ℓ
′

or W0∞.

Let V and W be two words, with V finite. We say that V is a factor of

W if there exists two words X and Y such that W = XV Y . The word V is

a prefix (resp. suffix) of W if X = ∅ (resp. Y = ∅, which implies that W

is finite). The notation Wn stands for the prefix of length n of the word W ,

with W0 := ∅.

A finite word W = wn
0 is palindromic iff, for any 0 ≤ i ≤ n, we have

wi = wn−i.

Let W := wn
0 and W ′ := w′n

′

0 be two words with (without loss of gener-

ality) n ≥ n′ (with n and n′ possibly infinite). The sum W +W ′ is the word

such that its i-th letter is wi + w′
i for i from 0 to n (the letter w′

i for i > n′

being defined as 0, identifying W with W0n
′−n as said previously).

1.2. Admissible words. A word W = wn
0 or w∞

0 on the alphabet {0, 1} is

admissible iff wiwi+1 6= 11 for any i.

We define (Fn)n as the following Fibonacci sequence: F0 = 1, F1 = 2

and, for any n ≥ 2, Fn := Fn−1 + Fn−2. The Zeckendorf numeration system
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is the function that associates to each nonnegative integer k the only finite

admissible word Z(k) = w
n(k)
0 satisfying k =

∑n(k)
i=0 wiFi with wn(k) = 1. A

classical result asserts that the word Z(k) is obtained by the natural greedy

algorithm, and that Z is one-to-one from the set of nonnegative integers to

the set of finite admissible words ending with a 1. The reciprocal function

of Z is written N .

Two finite words W := wn
0 and W ′ := w′

0
n′

on the alphabet N are equiv-

alent iff
∑

i wiFi =
∑

iw
′
iFi. We write W ≡ W ′ in this case. What precedes

indicates that to any finite word W corresponds a unique admissible word

equivalent to it, again written Z(W ). For infinite words W andW ′, we write

W ≡ W ′ iff there exists two finite words X and X ′ and an infinite word Y

such that X ≡ X ′, W = XY and W ′ = X ′Y .

For any finite admissible word V , we write V for the unique finite ad-

missible word such that Z(V + V ) = 0|V |1. (Of course, we cannot use the

identification of V and V 0n when considering V .)

Let W be a word on the alphabet {0, 1}, finite or infinite, different from
the null sequence. The valuation of W is the value

Val(W ) := min(n ≥ 0 : Wn 6= 0n).

Define the following transformations on words W = wn
0 on the alphabet

N:

τ1(W ) :





w0 := w0 − 2,
w1 := w1 + 1,
wi unchanged for i ≥ 2;

and, for k ≥ 2:

τk(W ) :





wk := wk + 1,
wk−1 := wk−1 − 1,
wk−2 := wk−2 − 1,
wi unchanged for i /∈ {k − 2, k − 1, k}.

Let W := wn
0 be an admissible word, and let m ≥ 0. The following

reduction algorithm takesW andm as input, and returnsW := Z(W+0m1)

as an output (the proof is a routine):

• Initialization: put wm := wm + 1, and i := m;

• while wi = 2 and i ≥ 1, do

– put W := τi+1 ◦ τ−1
i (W );

– put i := i− 2;

• if w0 = 2 then put w0w1 := 01;

• while E := {k : wk−1wk−2 = 11} is non empty, do

– put i := max(E);
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– put W := τi(W ).

We will very often make implicit use of the following result:

Proposition 1.1. [Ultimate stationnarity principle] For any finite word W

on the alphabet N there exists a finite admissible word A(W ) and a value

a(W ) ≥ 0 such that, for any n ≥ a(W ), we have Z(0nW ) = 0n−a(W )A(W ).

Proof. Assume that the ultimate stationnarity principle is true for any word

W such that Σ(W ) ≤ j for some j, and consider a word W such that

Σ(W ) = j + 1. We find m ≥ 0 such that W = W ′ + 0m1, where W ′ is a

word on N. By induction hypothesis, for some admissible word A = A(W ′)

and some a = a(W ′) ≥ 0, for any n ≥ a, we have Z(0nW ′) = 0n−aA. Hence,

we have Z(0nW ) = Z(0n−aA+ 0m+n1).

Observe that, for any finite word W , any i ≥ 2 and any m ≥ 0, we have

τi+m(0
mW ) = 0mτi(W ), so the ultimate stationnary principle is true for the

finite word W iff it is true for τi(W ) (i ≥ 2). Hence, if, in the execution of

the previous reduction algorithm (when applied to the word 0n−aA and the

value m+ n), we always get i ≥ 2, then the proposition is true for W .

The case for which the algorithm leads to i = ε ∈ {0, 1} is when we get

this equality just after the end of the iteration of the first while loop. A

simple verification shows that this occurs only if 0n−aA + 0m+n1 is of the

form 0ε(10)k20X with X admissible and k ≥ 0. We hence have 0(n+2)−aA+

0m+(n+2)1 of the form 02+ε(10)k20X , for which the reduction algorithm does

never leads to w0 = 2 or w1 = 2. We thus have proved that a(W ) ≤
a(W ′) + 2. �

Lemma 1.1. IfW andW ′ are finite admissible words, then Val(Z(WW ′)) ≥
Val(W ). Moreover, Val(Z(WW ′)) > Val(W ) iff W = 0n1 for some n ≥ 0

and Val(W ′) = 0.

Proof. Immediate. �

Lemma 1.2. Let V and V ′ be two finite admissible words. We have |Z(V +

V ′)| ≤ 2 + max(|V |, |V ′|).

Proof. Since V and V ′ are admissible, we have N(V ) < F|V | and N(V ′) <

F|V ′|, so, assuming without loss of generality that |V | ≥ |V ′|, we get N(V +

V ′) ≤ 2(F|V | − 1) < F|V |+2, so we get the lemma. �

Lemma 1.3. Let W be a finite word on the alphabet {0, 1}. We have

Val(Z(W )) ≥ Val(W ). Moreover, Val(Z(W ))− Val(W ) is even.
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Proof. To get Z(W ) from W , we can apply the second loop of the previ-

ous algorithm. Each time we apply some τi, the valuation either remains

constant or increases by two units, so we get the result. �

Proposition 1.2. Let W be a finite admissible word such that Val(W ) ≥ 2,

let m ≥ 2. There exists an integer n ≥ −1 such that Val(Z(W + 0m1)) =

Val(W ) + 2n. Moreover, n = −1 iff W + 0m1 is of the form 0r(10)s20W ′

with W ′ admissible.

Proof. For any i ≥ 2, Val(τi(W )) is equal either to Val(W ) or to Val(W )+2

(and, so, Val(τ−1
i (W )) equal either to Val(W ) or to Val(W ) − 2). By the

previous algorithm, we then get that Val(Z(W + 0m1)) ∈ Val(W ) + 2Z.

The inequality Val(Z(W + 0m1)) < Val(W ) can occur only if we need to

go into the first loop of the algorithm, to apply some τ−1
i . Consider the

first iteration of this loop for which the valuation of W decreases (of two

units). This means that, at that moment of the algorithm, W is of the form

0u20W ′ (with W ′ a word on {0, 1}) and becomes 0u−21001W ′. There is then

no letter 2 anymore, and the iteration of the second loop will only involve

the part 1W ′ of the word and will not change the valuation. Hence, we have

proved that n ≥ −1.

Finally, if Val(Z(W + 0m1)) = Val(W ) − 2, then we must have went

through the first loop to get the form 0u20W ′; a simple induction shows

that this forces W + 0m1 to be of the required form. �

Corollary 1.4. Let W and W ′ be two finite admissible words such that

m := min(Val(W ),Val(W ′)) ≥ 2. There exists an integer i ≥ −1 such that

Val(Z(W +W ′)) = m+ 2i. Moreover, we have

Val(Z(W +W ′)) = m− 2 ⇐⇒ W +W ′ = 0m(10)n20(U + U ′)

where n ≥ 0 and U (resp. U ′) is the suffix of W (resp. of W ′) of length

max(0, |W | − (m+ 2n+ 2)) (resp. max(0, |W ′| − (m+ 2n+ 2))).

The proof is left as an exercice.

2. Circular words

2.1. Generalities. A finite word W := wn
0 being given (on some alphabet),

we denote by σ(W ) the word wnw0 . . . wn−1. Define the circular equivalence

≈ between finite words by:

W ≈ W ′ ⇐⇒ σk(W ) = W ′ for some k.

A circular word is an ordered set of the form [W,σ(W ), . . . , σ|W |−1(W )],

for a chosen finite word W . For any finite word W , we denote by W̃ the
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circular word containing W as a first element. Its length, |W̃ |, is defined as

the length of W . A circular word is a power if we can write it of the form

X̃k for some word X and some integer k > 1. It is primitive if it is not

a power. A circular word W̃ := w̃n
0 on the alphabet {0, 1} is admissible if

wi mod (n+1)w(i+1) mod (n+1) 6= 11 for any i.

For W̃ and W̃ ′ two circular words, we put W̃ W̃ ′ := W̃W ′.

We define the transformations τ̃i on circular words W̃ on the alphabet

N and of length at least 3 (with W = w
|W |−1
0 ) by τ̃i(W̃ ) = W̃ ′, where

W ′ = w′|W |−1
0 is defined by:

w′
j :=





wi mod |W | + 1 for j = i mod |W |;
w(i−1) mod |W | − 1 for j = (i− 1) mod |W |;
w(i−2) mod |W | − 1 for j = (i− 2) mod |W |;
wj for any other j.

For W̃ and W̃ ′ belonging to the same orbit under the τis, we write

W̃ ≡ W̃ ′ and say that these words are equivalent.

For any circular word W̃ , we define Ñ(W̃ ) := N(W ).

Proposition 2.1. Let W̃ be a circular word on N of length at least 2 and

not equivalent to 12n+3 (n ≥ 0). There exists a unique admissible circular

word Z̃(W̃ ) equivalent to W̃ , assuming the identification (̃01)n = (̃10)n for

any n.

If W̃ = 12n+3, then its orbit under the τis does not contains any admis-

sible circular word.

Proof. We start by the existence. Assume W̃ contains only 0s and 1s. If it

does contains at least one 0, then we write W as a circular concatenation

of subwords of the form 10k (with k > 1), 1k0n (with k > 1 and n ≥ 1) and

(10)n (with n ≥ 1), possibly adding the prefix 0k (with k ≥ 1). We then

make use of the τis to reduce each 1k0n either into 0(01)k/20n−1 (for k even)

or into 10(01)(k−1)/20n−1 (for k odd). Such an operation makes the number

of 1s becoming strictly less, so its iteration eventually ends, and leads to a

circular word with only 0s and 1s and free of any factor of the form 11, so an

admissible word. If W̃ = 12ℓ, then we have τ0 ◦ τ2 ◦ · · · ◦ τ2(ℓ−1)(W̃ ) = (10)ℓ;

note that we also have τ1 ◦ τ3 ◦ · · · ◦ τ2ℓ−1(W̃ ) = (01)ℓ, which justifies the

identification (̃01)n = (̃10)n.

Now, let W̃ be admissible and consider W̃ + 0i−110i−|W̃ | for some i > 0.

This latter word is either on {0, 1} (then we are done, by what precedes),

or on {0, 1, 2} with exactly one 2, surrounded by two 0s, and nowhere the

factor 11. The rank of the letter 2 is i. Apply τi+1 ◦ τ−1
i (from now, all the
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indices are to be understood modulo |W̃ |). The factor wi−2020 of W̃ is then

replaced by (wi−2+1)001. If wi−2 = 0, then we are back to a word on {0, 1}
and we are done. Otherwise, we iterate the same process at the rank i− 2,

then i − 4, etc., until we get a word on {0, 1} (so we are done) or we get

a 2 at the rank i+ 1. In this latter case, we get that W̃ + 0i−110|W̃ |−i is of

the form ˜(10)n200, which is equivalent to 12n+3. Then, for any value j, we

have W̃ + 0i−110|W̃ |−i + 0j−110|W̃ |−j ≡ 1j−121|W̃ |−j ≡ 0j−310|W̃ |−(j+2), which

is admissible.

Hence, iterating the process of adding words of the form 0i−110|W̃ |−i and

reducing the result either leads to an admissible word or leads to 12n+3; this

gives us the existence part of the proposition.

Now, let us consider the unicity part.

Lemma 2.1. The circular word 0ℓ is equivalent to no other circular word

on N.

Proof. Let W be a finite word on N with W = wn
0 containing at least one

letter different from 0. For any τi or τ−1
i that can be applied to W̃ , the

number of letters different from 0 cannot become null, so we are done. �

Let W̃ and X̃ be two equivalent admissible circular words of length

n + 1. Regardless of the negative values possibly involved in the following

expression, write X̃ = τ̃a00 ◦ · · · ◦ τ̃ann (W̃ ), with integer values for all the ais.

Write A for the vector (ai)0≤i≤n and define the linear operator M = (mij)i,j

on Rn+1 by mi,i = 1, mi,((i+1) mod (n+1)) = −1 and mi,((i+2) mod (n+1)) = −1

for any 0 ≤ i ≤ n.

Lemma 2.2. For any i, we have −1 ≤ ai ≤ 1.

Proof. For any i, we have xi = wi+(MA)i. Hence, since wi and xi are equal

to 0 or 1, we have −1 ≤ (MA)i ≤ 1 for any i. Moreover, since xixi+1 6= 11,

we have (MA)i = 1 ⇒ (MA)i+1 ≤ 0 and, since wiwi+1 6= 11, we have

(MA)i = −1 ⇒ (MA)i+1 ≥ 0 (in the present proof, all the indices are to

be understood mod n+ 1).

Without loss of generality, assume a0 =: a = ||A||∞. We write MA =:

B := (bi)
n
i=0. The inequalities |a− a1 − a2| = |b0| ≤ 1, |a1| ≤ a and |a2| ≤ a

implies |a1| ≥ −1. The inequalities |an − a − a1| = |bn| ≤ 1, |an| ≤ a and

|a1| ≤ a implies a1 ≤ 1. If a1 = 1, then bn = an − (a+1), so, since bn ≥ −1,

we get an = a. Hence, since an−1 ≤ a, we get bn−1 = an−1 − an − a =

an−1 − 2a ≤ −a < −1, which is forbidden. If a1 = 0, then |bn| = an − a, so

an = a or a−1. If an = a, then bn−1 = an−1−2a ≤ −a < −1, a contradiction.
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Hence, an = a− 1, which gives bn = −1 and bn−1 = an−1 − 2a+ 1 < 0, also

a contradiction.

Therefore, we have proved that a0 = a = ||A||∞ implies a1 = −1. Hence,

b1 = a + 1 − a2, so a2 = a. By induction, we then get that a2i+1 = −1 and

a2i = a for any i, so b1 = a1 − a2 − a3 = −a < −1, a contradiction, and the

lemma is proved. �

Lemma 2.3. Let W̃ be a circular word of length n > 3 on N. For any i, we

have

N(τ̃i(W̃ )) =





N(W̃ ) for 2 ≤ i ≤ n;

N(W̃ ) + 1− Fn for i = 1;

N(W̃ ) + 1− Fn+1 for i = 0.

Proof. Simple verification. �

By Lemma 2.3, there exists two integers a0 and a1 such that N(W̃ ) =

N(X̃)+a0(1−Fn+1)+a1(1−Fn). By Lemma 2.2, we also have max(|a0|, |a1|) ≤
1. Without loss of generality, we assume N(W̃ ) ≤ N(X̃). Recall also that

both N(W̃ ) and N(X̃) are upper-bounded by Fn+1−1. All these conditions

can be satisfied only in the following cases: (a0, a1) = (0,−1), (−1, 0), (0, 0)

and (−1, 1).

The case (a0, a1) = (0, 0) gives N(W̃ ) = N(X̃), that is N(W ) = N(X),

which implies W = X by unicity of the Zeckendorf expansion. For (a0, a1) =

(−1, 0), we get N(X̃) − N(W̃ ) = Fn+1 − 1, so W = 0n+1 and X is of the

form . . . 01010101 (which implies that n is even, otherwise X̃ would not be

admissible). By Lemma 2.1, W̃ and X̃ are not equivalent. For (a0, a1) =

(−1, 1), the condition −1 ≤ (MA)i ≤ 1 for all i gives by a simple induction

that ai = (−1)i+1 for all i. This gives that xi = wi + (−1)i+1 for any i, so

W = (10)(n+1)/2 and X = (01)(n+1)/2.

The last remaining case is (a0, a1) = (0,−1), for which we have N(X̃)−
N(W̃ ) = Fn − 1. Extending the definition of the τ̃is to circular words on Z

makes the τis commuting, so we can write τ̃a00 ◦ · · · ◦ τ̃ann (W̃ ) = X̃ , and we

can apply the τ̃is in any order. Since a0 = 0 and a1 = −1, we get

(1) X̃ = τ̃a22 ◦ · · · ◦ τ̃ann ((w0 + 1)(w1 − 1)w2 . . . wn−1(wn + 1))

(in which we write circular words as classical words). Note that, for any i,

the only values j for which the application of τ̃j changes the letter of rank

i are j = i, i+ 1 and i+ 2 mod(n + 1). Hence, if w0 = 1 (so w1 = 0), then

Equation (1) forces a2 = 1, which gives

X̃ = τ̃a33 ◦ · · · ◦ τ̃ann (1(−2)(w2 + 1)w3 . . . wn−1(wn + 1)).
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The value −2 at the rank number 1 cannot become 0 or 1 with the

remaining τ̃is, since only the operator τ̃a33 can change its value, adding at

most 1 to it. Hence, we cannot have w0 = 1, so w0 = 0. Thus, we have

(2) X̃ = τ̃a22 ◦ · · · ◦ τ̃ann (1(w1 − 1)w2 . . . wn−1(wn + 1)).

Since the latter word starts with a 1 and ends with wn + 1 ≥ 1, and

since the only operator that can still be used to avoid these two successive

(circularily) positive letters is τ̃−1
n , we have an = −1, and:

(3) X̃ = τ̃a22 ◦ · · · ◦ τ̃an−1

n−1 (1(w1 − 1)w2 . . . wn−3(wn−2 + 1)(wn−1 + 1)wn).

The admissibility condition then gives that wn = 0. If wn−1 = 1 (then

wn−2 = 0), then a simple checking show that no pair (an−2, an−1) of numbers

among −1, 0 and 1 can transform this part of the word into an admissible

word (and the τ̃i for i < n − 2 are of no effect on this part of the word).

Hence, we must have wn−1 = 0.

Now, if wn−2 = 1, then (wn−2 + 1)(wn−1 + 1)wn = 210 and, again, a

checking shows that no pair (an−2, an−1) of numbers among −1, 0 and 1 can

transform this part of the word into an admissible word. Hence, wn−2 = 0, so

(wn−2+1)(wn−1+1)wn = 110. Thus, we cannot have an−1 = 1. If an−1 = −1,

then

(4) X̃ = τ̃a22 ◦ · · · ◦ τ̃an−2

n−2 (1(w1 − 1)w2 . . . wn−4(wn−3 + 1)200),

which leads to the same problem that appeared previously. Hence, an−1 = 0,

so an−2 = −1 and

(5) X̃ = τ̃a22 ◦ · · · ◦ τ̃an−3

n−3 (1(w1 − 1)w2 . . . wn−5(wn−4 + 1)(wn−3 + 1)010).

Iterating the reasoning eventually leads to:

X̃ =

{
τ̃a22 τ̃a33 (1(w1 − 1)(w2 + 1)(w3 + 1)01010 . . .1010) if n is even;
τ̃a22 τ̃a33 τ̃a44 (1(w1 − 1)w2(w3 + 1)(w4 + 1)01010 . . .1010) if n is odd,

with wi = 0 for all i ≥ 4 for n odd and all i ≥ 5 for n even.

Take n even. By the same kind of reasoning, we successively get w3 = 0,

then w2 = 0, so 1(w1 − 1)(w2 + 1)(w3 + 1) = 1(w1 − 1)11. A check then

shows that no pair (a2, a3) can give an admissible circular word in the right

hand side of the previous equality.
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Now, consider the case n odd. We also get successively w4 = 0, then

w3 = 0, then a4 = 0, then a3 = −1, then a2 = 0, then w2 = 0 and finally

w1 = 0, so W = 0|W | and X = (01)(n+1)/2, a contradiction with Lemma 2.1.

Hence, the unicity is proved.

Finally, let us consider the case W̃ = 1̃2n+3. Assume that 1̃2n+3 ≡ X̃ ,

where X̃ is admissible, and write X̃ = τ̃a00 ◦ · · · τ̃a2n+2

2n+2 (1̃
2n+3). Since 1̃2n+3 is

invariant under σ, the words σk(X̃) are admissible and equivalent circular

words for any k. Moreover, since X is not of the form x2n+3 (x = 1 would

give a non-admissible word, and x = 0 would contradict Lemma 2.1), the

set {σk(X̃) : k ≥ 0} has cardinality at least two, a fact which contradicts

the unicity we just proved. �

2.2. Group structures. We define the operator ⊕ between circular admis-

sible words of the same even length, W̃ and W̃ ′, by: W̃ ⊕W̃ ′ := Z̃(W̃ +W̃ ′).

We will also write, for any n ≥ 1, n · W̃ := ((n − 1) · W̃ ) ⊕ W̃ , with

0 · W̃ := (01)|W |/2.

Theorem 2.4. Define the sequences (cℓ)ℓ≥1 and (dℓ)ℓ≥1 by:

c1 := 1 cℓ := F2ℓ−1 + F2ℓ−3 − 2 for ℓ ≥ 2;

d1 := 1 dℓ :=

{
Fℓ−2 if ℓ > 1 is even;
Fℓ−1 + Fℓ−3 if ℓ > 1 is odd.

For any n ≥ 1, we have c2k+1 = d22k+1 and c2k = 5d22k.

The set G∗
ℓ of circular admissible words of length 2ℓ excluding 0̃2ℓ and

with the identification (̃01)ℓ = (̃10)ℓ is an abelian group for the addition

⊕, with (̃01)ℓ = (̃10)ℓ as identity element. More precisely, this group has

cardinality cℓ and is isomorphic to (Z/dℓZ)2 for odd ℓ, and isomorphic to

(Z/5dℓZ)× (Z/dℓZ) for even ℓ.

The star ∗ is here to recall that the word 02ℓ is not considered (in par-

ticular, it is not the identity element).

It is worth noting that the sequence (cℓ)ℓ defined in Theorem 2.4 pos-

sesses numerous combinatorial properties (see [R]); it corresponds to the

integer sequence A004146 in [S].

Proof. The relations c2k+1 = d22k+1 and c2k = 5d22k are trivial consequences

of the classical Binet formula Fn = (ϕn+2 − ϕn+2)/
√
5 for any n (where

ϕ = (1 +
√
5)/2 and ϕ = (1−

√
5)/2).

By Lemma 2.1, if W̃ and W̃ ′ are elements of G∗
ℓ , then W̃ ⊕ W̃ ′ is also an

element of G∗
ℓ (that is: W̃ ⊕ W̃ ′ 6= 0̃2ℓ), so ⊕ is well-defined in G∗

ℓ .

Observe that any element of G∗
ℓ can be written as a (unique and finite)

sum (in the usual sense) of words of the form ˜0k102ℓ−k−1. To prove that
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(̃01)ℓ = (̃10)ℓ is the identity element, by the associativity (and commu-

tativity) of ⊕, it is therefore enough to show that ˜0k102ℓ−k−1 ⊕ (̃10)ℓ =
˜0k102ℓ−k−1 ⊕ (̃01)ℓ = ˜0k102ℓ−k−1, and these latter equalities are obtained by

straightforward computations. Also, since ˜02k102(ℓ−k)−1 (resp. ˜02k+1102(ℓ−k−1))

admits ˜(10)k00(10)ℓ−k−1 (resp. ˜(01)k00(10)ℓ−k−1) as an opposite element, we

obtain that G∗
ℓ is an abelian group for ⊕.

Now, let us consider the cardinality of G∗
ℓ . We first count the number of

admissible words of length 2ℓ, excluding those which starts and ends with

a 1. We split this latter set in two subset: the first one is made of words

not ending with a 1, its cardinality is equal to 1 + N(1(01)ℓ−1) = F2ℓ−1.

The second one is made of words ending with 01 and starting with a 0, its

cardinality is equal to the cardinality of admissible words of length 2ℓ−3 (by

the bijection W 7−→ 0W01), which is equal to F2ℓ−3. Hence, the number of

admissible words of length 2ℓ not both starting and ending with a 1 is equal

to F2ℓ−1 + F2ℓ−3. To get the cardinality of G∗
ℓ , it only remains to suppress

the word 02ℓ and to identify (01)ℓ with (10)ℓ, which eventually leads to the

value cℓ.

To prove the end of the theorem, note first that the circular words 1̃02ℓ−1

and 0̃102ℓ−2 generate the full group G∗
ℓ . Indeed, the relation Fk−1 · (1̃02ℓ−1)+

Fk · (0̃102ℓ−2) = 0k+2102ℓ−k−5 for any k ≥ 0 (with F−1 := 1) proves that the

subgroup generated by these two words contains the set of words with only

one 1, which obviously generates G∗
ℓ itself. Hence, G∗

ℓ is an abelian group

generated by at most two elements.

Assume ℓ = 2k+1. By induction, we easily get that dℓ = vℓ, where vℓ is

defined in the proof of Lemma 4.1 (see section 4.1). By the same technique

as in the proof of this lemma, we obtain that Z̃( ˜dℓ · (102ℓ−1)) = (10)ℓ. Both

generators are hence of order at most dℓ. Hence, since G∗
ℓ is of cardinality

strictly bigger than dℓ, G∗
ℓ is necessarily of the form (Z/aZ) × (Z/bZ) with

ab = d2ℓ ; moreover, we must have a and b both upper-bounded by dℓ, so

a = b = dℓ.

Assume ℓ = 2k. Again by the same kind of technique, we get this time

that Z̃( ˜5dℓ · (102ℓ−1)) = (10)ℓ. Hence, G∗
ℓ is of the form (Z/aZ) × (Z/bZ)

with ab = 5d2ℓ and max(a, b) ≤ 5dℓ, so we are done. �

In passing, a simple way to find the opposite of an element W̃ = w̃2ℓ−1
0

of G∗
ℓ is the following (see also the proof of Theorem 4.4): define the word

W ′ as the word whose i-th letter is equal to 1− wi (for all 0 ≤ i < 2ℓ). We

then easily verify that: −W̃ = Z̃(W̃ ′).
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We can get natural embeddings between the groups G∗
ℓ by making use

of the following result.

Proposition 2.2. Let k and ℓ be positive integers. The application W̃ 7−→
W̃ k is a morphism from G∗

ℓ into G∗
kℓ.

Proof. Simple verification. �

Let W̃ and W̃ ′ be circular admissible words, non necessarily of the same

length. By Proposition 2.2, we can put both W̃ and W̃ ′ in the same G∗
ℓ , by a

convenient choice of k for each word. This allows us to extend the definition

of the operator ⊕ to words W̃ and W̃ ′ of possibly different (even) lengths,

in the following way:

W̃ ⊕ W̃ ′ := Z̃

(
W̃m/|W | + W̃ ′m/|W ′|

)
, where m = lcm(|W |, |W ′|).

Theorem 2.5. For q ≥ 1, let P∗
q be the set of circular admissible words

W̃ of even length, containing at least one 1 and satisfying q̃W = ˜(01)|W |/2.

Assume also the identifications (̃01)n = (̃10)n and W̃ = W̃ n for any n.

The set P∗
q equipped with the addition ⊕ is an abelian group isomorphic to

(Z/qZ)× (Z/qZ).

Proof. The fact that P∗
q is a group for ⊕ is trivial. Hence, for any ℓ, the

subset of P∗
q made of words of length 2ℓ is a subgroup of G∗

ℓ .

Lemma 2.6. For any q ≥ 2, there exists an ℓ such that q divides dℓ.

Proof. Consider the sequence of pairs (Gi, Gi+1) := (Fi mod q, Fi+1 mod q)

for all i ≥ 0. Since there are finitely many pairs of integers between 0 and

q − 1, we can find two different values, i and j, such that (Gi, Gi+1) =

(Gj, Gj+1), so the definition of the sequence implies that (Gi, Gi+1)i is ul-

timately periodic. Moreover, for any pair (a, b) of integers between 0 and

q − 1, the pair ((b − a) mod q, a) is the only pair (y, z) for which there

can be an i such that (a, b) = (Gi, Gi+1) and (y, z) = (Gi−1, Gi). Hence,

the sequence (Gi, Gi+1)i is purely periodic, and we can find a value m > 1

such that (Gm+1, Gm+2) = (F0 mod q, F1 mod q) = (1, 2). We then get that

(Gm, Gm+1) = (1, 1), so (Gm−2, Gm−1) = (−1, 0). Therefore, if m − 1 is

even, then q divides dℓ := dm−1 = Fm−1, and if m− 1 is odd, then q divides

dℓ := dm+2 = Fm + Fm−2. �

The value of q being given, we fix by Lemma 2.6 an ℓ such that q divides

dℓ. By Theorem 2.4, the maximal subgroup Mℓ of elements of G∗
ℓ of order

q is (Z/qZ)× (Z/qZ).
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Now, let ℓ′ be another integer. Again by Theorem 2.4, in G∗
ℓ′, the maximal

subgroup Mℓ′ of elements of order q is isomorphic (Z/aZ)×(Z/bZ), where a

and b are divisors of q. Since ℓℓ′ divides q, we have thatMℓℓ′ is isomorphic to

(Z/qZ)×(Z/qZ). By Proposition 2.2, G∗
ℓ′ and G∗

ℓ are subgroups of G∗
ℓℓ′, soMℓ

and Mℓ′ are subgroups of Mℓℓ′. Since Mℓ = Mℓℓ′, the result follows. �

2.3. Size of circular words of order q, and natural generators of

P∗
q . For a given q, consider the smallest ℓ for which P∗

q ⊂ G∗
ℓ . The value 2ℓ

is denoted by T (q) in the sequel. In general, the inclusion of Pq in G∗
T (q)/2

is strict. The set of values q for which the equality arise is simply the set

of q for which q2 is equal to the cardinality of G∗
ℓ for some ℓ. That is: q

satisfies P∗
q = G∗

ℓ for some ℓ iff q = d2k+1 for some k (and, in this case,

we have T (q) = 4k + 2). The following result gives a precise description

of the function q 7−→ T (q). It also reveals the existence of two particular

generators of P∗
q , denoted by Π and Π′, which are of great importance for

the understanding of algebraic structures arising from circular words.

Theorem 2.7. For any q ≥ 2, the minimal value ℓ for which P∗
q ⊂ G∗

ℓ

satisfies the formula

2ℓ = min(n > 2, n even : (Fn mod q) = (Fn−1 mod q) = 1).

Moreover, let Π̃ (resp. Π̃′) be the circular word of length 2ℓ equal to

Z((Fn − 1)/q) (resp. Z((Fn−1 − 1)/q)). We have σ̃(Π′) = Π̃ and, for any

0 ≤ i ≤ q:

i · Π̃ = ĩΠ and i · Π̃′ = ĩΠ′.

The circular words Π̃ and Π̃′ are the only non-trivial elements of P∗
q

satisfying this latter property.

The following part of this section is mostly devoted to the proof of this

theorem. Note first that the existence, for any q, of an even value n > 2 such

that (Fn mod q) = (Fn−1 mod q) = 1 is proved in a similar way as Lemma

2.6.

Lemma 2.8. Define the sequence (d′ℓ)ℓ as:

d′1 := 1 d′2 := 3 d′ℓ :=

{
Fℓ−1 + Fℓ−3 if ℓ > 1 is even;
Fℓ−2 if ℓ > 1 is odd.

For any ℓ > 0, we have

(i) if ℓ is odd, then (F2ℓ−1 − 1)/dℓ = Fℓ−1 and (F2ℓ − 1)/dℓ = Fℓ;

(ii) if ℓ is even, then (F2ℓ−1 − 1)/dℓ = dℓ+1 and (F2ℓ − 1)/dℓ = d′ℓ+2.
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Proof. Simple calculation. �

Corollary 2.9. For any ℓ > 0, we have gcd(F2ℓ − 1, F2ℓ−1 − 1) = dℓ.

Proof. For ℓ odd, the result derives from the fact that Fℓ−1 and Fℓ are

mutually prime. For ℓ even, observe that any common divisor d > 0 of

dℓ+1 = Fℓ + Fℓ−2 and d′ℓ+2 = Fℓ+1 + Fℓ−1 is also a divisor of d′ℓ+2 − dℓ+1 =

Fℓ−1+Fℓ−3 and, by induction, also a divisor of F3+F1 = 7 and of F2+F0 = 4,

so d = 1. �

From now, we consider the notation of Theorem 2.7. In the sequel, we

take q = dℓ since, by Corollary 2.9, this case is enough to get Theorem 2.7.

In this case, also, Lemma 2.8 gives that Π = 0ℓ−110ℓ and Π′ = 0ℓ10ℓ−1 for

odd ℓ, and Π = 0ℓ−21010ℓ−1 and Π′ = 0ℓ−11010ℓ−2 for even ℓ. Consider for

example the case ℓ odd (the other case leading to the same case of study,

with the help of the decomposition 0ℓ−21010ℓ−1 = 0ℓ−210ℓ+1 + 0ℓ10ℓ−1).

By Lemma 4.1 applied to the case m = ℓ − 1 and n ≤ m/2, and also

by Lemma 4.2, we get that, for any k ≤ un = Fℓ−2 + Fℓ−4, k · Π̃ = k̃Π,

and ũnΠ = ˜0m−2n104n−110ℓ−2n. Hence, more generally, we get that, for any

k ≤
∑n

j=0 uj = dℓ (this latter equality coming from a simple induction),

k · Π̃ = k̃Π, and dℓ · Π̃ = d̃ℓΠ = (̃10)ℓ. The same study for Π′ works as well,

so Theorem 2.7 is proved.

Theorem 2.7 gives an explicit way to get the full set P∗
q that is useful in

itself:

(i) Let n > 3 be the smallest even integer such that (Fn mod q) = (Fn−1 mod

q) = 1.

(ii) Let Π be the admissible word of length 2ℓ := n such that Z(Π) =

(Fn−1 − 1)/q.

(iii) We have P∗
q = {(a · Π̃)⊕ (b · σ̃(Π)) : a, b ∈ {0, . . . , q − 1}}.

In passing, we conjecture that, apart for the case q = 2, the smallest

value n > 3 such that (Fn mod q) = (Fn−1 mod q) = 1 is always even, so

the assumption n even in Theorem 2.7 is useless for q > 2.

3. Two applications of circular words

3.1. A property of the Fibonacci word. This section is devoted to the

proof of the following theorem.

Theorem 3.1. Let M := abaababaabaab . . . be the Fibonacci word, that is:

the fixed point of the substitution defined on the alphabet {a, b} by a 7→ ab
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and b 7→ a. For ℓ > 2, let Nℓ := bMF2ℓ−2
. Define the words A(1), . . . , A(k)

by Nℓ = A(1) · · ·A(k)a and |A(i)| = dℓ, where k = F2ℓ−2/dℓ. The value |A(i)|a
(and, hence, the value |A(i)|b) does not depend on i ≤ k.

It is highly probable that, defining A as the word of length dℓ such

that bM = A1 · · ·AkAM
′, we have |A|a 6= |A(i)|a. Also, we can get that

|A(i)|a = d′ℓ−2 and |A(i)|b = dℓ−1.We will not prove this here.

Note that the fact that F2ℓ−2/dℓ is an integer is a direct consequence of

Lemma 2.8.

Definition 3.2. Let W̃ ∈ G∗
ℓ different from the identity element, let X ∈

{(10)ℓ, (01)ℓ, (11)ℓ}. We say that W̃ is of type X iff

Ñ(W̃ ) + Ñ(−W̃ ) = N(X).

We denote by T ∗
X the set of elements of type X in G∗

ℓ . ForX ∈ {(01)ℓ, (10)ℓ},
we also put TX := T ∗

X ∪ {X}.

Proposition 3.1. Let W̃ and W̃ ′ be two elements of T ∗
X for some X ∈

{(10)ℓ, (01)ℓ, (11)ℓ}. We have

Ñ(W̃ ) + Ñ(W̃ ′) = N(X) ⇐⇒ W̃ = −W̃ ′.

Proof. Simple consequence of the injectivity of N . �

Proposition 3.2. We have

T(10)ℓ ∪ T(01)ℓ ∪ T ∗
(11)ℓ = G∗

ℓ .

More precisely:

(i) The set T(10)ℓ is the set of circular words W̃ ∈ G∗
ℓ such that W admits

02m1 as a prefix (for some m ≥ 0) and 0 as a suffix.

(ii) The set T(01)ℓ is the set of circular words W̃ ∈ G∗
ℓ such that W admits

02m+11 as a prefix (for some m ≥ 0).

(iii) The set T ∗
(11)ℓ is the set of circular words W̃ ∈ G∗

ℓ such that W admits

02m1 as a prefix (for some m > 0) and 1 as a suffix.

In particular, we have T(01)ℓ = σ(T(10)ℓ), and:

Card(T(10)ℓ) = Card(T(01)ℓ) = Fn−2 and Card(T ∗
(11)ℓ) = Fn−5 − 1.

The proof of Proposition 3.2 basically consists in writing the opposite

of w̃2ℓ−1
0 on the form Z̃(w̃′2ℓ−1

0 ), where w′
i = 1 − wi for any i, in studying

in which case the transformations τ̃0 and τ̃1 are to be considered to get the

admissible form of w̃′2ℓ−1
0 and in applying Lemma 2.3. The details are left

to the reader.
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The form of the element of T(10)ℓ and T(01)ℓ leads to the following char-

acterization of the structure of these sets.

Proposition 3.3. Recall that M = abaababaabaab . . . is the Fibonacci

word. We have

N(T ∗
(10)ℓ) = {1 + 2|Mk|a + |Mk|b, 0 ≤ k < F2ℓ−2},

N(T ∗
(01)ℓ) = {1 + 3|Mk|a + 2|Mk|b, 0 ≤ k < F2ℓ−2},

N(T ∗
(11)ℓ) = {F2ℓ−1 + 3 + 5|Mk|a + 3|Mk|b, 0 ≤ k < F2ℓ−5 − 1}.

Proof. Consider for example the case of N(T ∗
(10)ℓ), the other ones being

similar. Assume the property true until N(T ∗
(10)ℓ−1) and consider N(T ∗

(10)ℓ).

For 0 ≤ k < F2ℓ−2, we have either k < F2ℓ−4 (for which we can apply the

induction hypothesis), or F2ℓ−4 ≤ k < F2ℓ−2. In this latter case, define k′ by

k = F2ℓ−4 + k′, so 0 ≤ k′ < F2ℓ−3. Recall here the classical characterization

of M by blocks: if we put B(−1) := b, B(0) := a and, for any j ≥ 1,

B(j) := B(j−1)B(j−2), then we have M = limj(B
(j)). Therefore, we have

1 + 2|Mk|a + |Mk|b = 1 + 2(F2ℓ−5 + |Mk′|a) + (F2ℓ−6 + |Mk′|b)
= F2ℓ−3 + (1 + 2|Mk′|a + |Mk′|b).

If k′ < F2ℓ−4, then, by induction hypothesis, the value in the last parenthesis

admits W00 as a Zeckendorf representation, where W is of type (10)ℓ−1.

Moreover, we have Z(F2ℓ−3) = 02ℓ−3100, so we eventually get that Z(1 +

2|Mk|a + |Mk|b) has the desired form, by Proposition 2 if W admits 00 as a

prefix, by a simple case study if W begins with a 1.

If F2ℓ−4 ≤ k′ < F2ℓ−3, then we put k′ = F2ℓ−4 + k′′, and the reasoning is

similar.

Hence, we have otained that any number of the form 1 + |Mk|a + |Mk|b
for 0 ≤ k < F2ℓ−2 belongs to N(T ∗

(10)ℓ). Since we know by Proposition 3.2

that this latter set has precisely F2ℓ−2 elements, we are done. �

In passing, it is also possible to describe in similar terms the set of

forbidden values for G∗
ℓ , that is, the set of positive integers k strictly less

than Fn and such that the word Z(k), assumed of length 2ℓ, admits 1 as

a prefix and also as a suffix (hence does not correspond to an admissible

circular word of G∗
ℓ ). Here is the result, without proof.

Proposition 3.4. With the notation of Proposition 3.3, the set U2ℓ of for-

bidden values for G∗
ℓ satisfies

U2ℓ = {Fn−1 + 1 + 3|Mk|a + 2|Mk|b, 0 ≤ k < F2ℓ−4}.
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Proposition 3.5. Let Π̃ and Π̃′ be the circular words defined in Theorem

2.7, for q := dℓ. For any k ≤ q, k̃Π is of type (10)ℓ and k̃Π′ is of type (01)ℓ.

Proof. This is a consequence of an observation made in the proof of Theorem

2.7: in the case q = dℓ, we have Π = 0ℓ−110ℓ and Π′ = 0ℓ10ℓ−1 for odd ℓ, and

Π = 0ℓ−21010ℓ−1 and Π′ = 0ℓ−11010ℓ−2 for even ℓ. In any case, Π is of type

(10)ℓ and Π′ of type (01)ℓ. We also observed that, also in the case q = dℓ,

for any k < dℓ, Val(kΠ) satisfies Val((k + 1)Π) = Val(kΠ) or Val(kΠ) − 2,

so the type of kΠ remains constant. The same result holds for Π′, so the

proposition is proved in the case q = dℓ, hence also for any divisor of dℓ. �

To end the proof of Theorem 3.1, observe that, by Theorem 2.7 and

Propositions 3.2 and 3.5, we have, for any 0 < i ≤ dℓ, N(Π) = iN(Π)− (i−
1)N(Π) = 2|A(i)|a + |A(i)|b. Moreover, it is well-known that M is balanced,

that is: for a given length m and two factors V and V ′ of M of length m,

we have ||V |a − |V ′|a| ≤ 1. Together with the previous fact asserting that

2|A(i)|a+ |A(i)|b is constant, this implies that |A(i)|a and |A(i)|b are constant.

3.2. A formula for the integer sequence A004146. Recall the defini-

tion of the integer sequence defined in Theorem 2.4:

c1 := 1 cn := F2n−1 + F2n−3 − 2 for n ≥ 2.

The aim of this section is to prove the following result:

Theorem 3.3. For any n ≥ 0, let αn := e2iπ/n. We have, for any n ≥ 2:

cn = −
2n−1∏

j=0

(1− αj
n − α2j

n ).

To this end, we consider again, for any n ≥ 2, the linear operator M =

Mn+1 on Rn+1 defined after Lemma 2.1: Mn+1 = (mij)i,j with mi,i = 1,

mi,((i+1) mod (n+1)) = −1 and mi,((i+2) mod (n+1)) = −1 for any 0 ≤ i ≤ n.

Lemma 3.4. For any 0 ≤ j ≤ n, the value 1− αj − α2j is an eigenvalue of

Mn+1, associated to the vector Vj := (αkj)nk=0.

Proof. Simple verification. �

Since the family {Vj, 0 ≤ j ≤ n} is a base of Rn+1 (since the vectors

Vj make a Vandermonde matrix), we get that Mn+1 is diagonalizable, and

that its determinant is equal to
∏n

j=0(1− αj
n − α2j

n ).

Now, let us give another way to get this determinant.
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Lemma 3.5. The characteristic polynomial Pn(X) = det(Mn −XI) of Mn

satisfies, for any n ≥ 5:

Pn(X) = Pn−1(X)+(1−X)Pn−2(X)−(1+X)(1−X)n−1+(−1)n+1(X−1)+2·(−1)n.

Proof. For any n ≥ 2, we denote by Rn(X) the determinant of the operator

(ri,j)1≤i,j≤n of Rn defined for all i for which the following expressions make

sense: ri,i = −1, ri,i+1 = −1 and ri,i−1 = 1−X .

Now, take n ≥ 5. Write the expansion along the first line of the deter-

minant Pn(X) as (1 − X)An−1(X) + Bn−1(X) − Cn−1(X). The expansion

of An−1(X) along the first column gives that An−1(X) = (1 − X)n−1 −
(−1)nRn−2(X). Write Bn−1(X) = (−1)nDn−2(X) − (−1)nRn−2(X) for the

expansion of Bn−1(X) along the first column; the expansion of Dn−2(X)

along the last line gives that Dn−2(X) = (1−X)Rn−3(X). Write Cn−1(X) =

−(1−X)Bn−2(X)−En−2(X) for the expansion of Cn−1(X) along the first

line. The expansion along the first line of En−2(X) followed by a simple

induction gives that En−2(X) = (−1)n.

Putting together all these results gives

Pn(X) = (1−X)n + (−1)n − (−1)n(2−X)Rn−2(X) +

(−1)n(2− 2X)Rn−3(X)− (−1)n(1−X)2Rn−4(X).

It is a classical exercice to show that, for any n ≥ 4, Rn(X) = (1 −
X)Rn−2(X)−Rn−1(X), with R2(X) = 2−X and R3(X) = 2X − 3. Even-

tually, a simple calculation gives the desired result. �

Lemma 3.5 forX = 0 then gives that det(Mn) = det(Mn−1)+det(Mn−2)−
1+3 ·(−1)n. Then, an induction shows that, for any n, det(M2n) = −cn and

det(M2n+1) = −d2n+1 (with the definition of (dn)n given in Theorem 2.4).

With the expression of det(Mn) obtained in Lemma 3.4, we get Theorem

3.3.

4. F-adic numbers

Before giving the definition that appears to be the most convenient, we

feel interesting to consider first some alternative definitions and explain why

we do not retain them.

4.1. First attempt. A first quite natural idea to define the set of F -adic

numbers consists in considering the set of integer sequences NN (each el-

ement of which being regarded as an infinite word on the alphabet N)

equipped with the cylinder topology. Consider the quotient of this set given

by the closure of equivalence classes defined by the relation ≡ (see section
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1.2). This first attempt of definition is not convenient, because all the in-

tegers would belong to the same closed equivalence class, as shown by the

following

Proposition 4.1. Let W = w∞
0 be the infinite word defined by:

wn =





Fn−1 + Fn−3 if n = 22;
Fn−1 + Fn−3 − 1 if n = 2p with p ≥ 3;
0 else.

The closed equivalence class of W contains all infinite words of the form

X0∞ with X finite and admissible.

Proof. We need two lemmas first.

Lemma 4.1. Let (un)n be the sequence defined by u0 = 1, u1 = 3 and, for

any n ≥ 2:

un := 2un−1 +
n−2∑

i=0

ui.

Let n ≥ 1, let m ≥ 2n. The finite word 0mun is equivalent to the finite

word 0m−2n104n−11.

Proof. Define, for any n ≥ 0:

vn :=

n∑

i=0

un.

We prove the lemma by induction, adding to it the following complemen-

tary induction hypothesis: The finite word 0mvn is equivalent to the finite

word 0m−2n(10)2n1.

Assuming that both the two properties are true until some value n ≥ 1,

choosem ≥ 2(n+1). Since un+1 = un+vn, we have the following equivalence

of finite words:

0mun+1 ≡ 0m−2n20(10)2n−12

≡ 0m−2(n+1)1001(10)2n−12

≡ 0m−2(n+1)104n12

≡ 0m−2(n+1)104n+31,

which is the desired property for un+1.

Now, since vn+1 = vn + un+1, the induction hypothesis and the previous

result for un+1 immediately give the desired form for 0mvn+1. �

Lemma 4.2. With the notation of Lemma 4.1, we have, for any i ≥ 2,

ui = F2i−1 + F2i−3.
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Proof. Simple induction with the relation un = 3un−1 − un−2. �

Now, by Lemmas 4.1 and 4.2, we get that:

W = 003u20
3(u4 − 1)07(u8 − 1)015(u16 − 1)031 . . .

≡ 107u40
7(u8 − 1)015(u16 − 1)031 . . .

≡ 2015u80
15(u16 − 1)031 . . .

≡ 3031u160
31 . . .

Since |Z(n)| ≤ ⌈logϕ(n)⌉, we get by induction that, for any finite admis-

sible word V of length n and any integer k, there exists an infinite word

Xn,k such that W ≡ V 0kXn,k. This is the desired conclusion. �

4.2. Second attempt. To avoid the previous problem, one may restrict the

set of integers to the subset of bounded ones, hence excluding the previous

case. Unfortunately, this is still not a convenient definition, because it does

not prevent us from the following problem.

Proposition 4.2. The closed equivalence class of 0∞ contains infinitely

many admissible sequences.

Proof. Choose n0 > 0, put X(0) := 02n0un0
and let W (0) := Z(X(0)). (By

Lemma 4.1, we have W (0) = 104n0−11.) Choose any n1 > n0 big enough

so that, defining X(1) := 02n0un0
04n1−1un0

, we have W (1) := Z(X(1)) =

W (0)0k1W (0) for some k1 > 0. More generally, for any i > 0, choose any

ni > ni−1 big enough so that, defining X(i) := X(i−1)04ni−1−1X(i−1), we have

W (i) := Z(X(i)) = W (i−1)0kiW (i−1) for some ki > 0. Let us show that the

infinite and admissible word W := limn(W
(n)) belongs to the closed equiva-

lence class of 0∞. Define πi := un0
· · ·uni

for any i ≥ 0. By construction and

Lemma 4.1, X(1) is equivalent to 02(n0+n1)π1 and, more generally and by an

immediate induction, X(i) is equivalent to 02(n0+···+ni)πi. Hence, the infinite

word W and the null sequence belong to the same closed equivalence class

in the cylinder topology. �

4.3. Final definition of the set of F-adic numbers. Our aim is now to

consider only admissible infinite sequences for the set of F -adic numbers.

Let W and W ′ be two admissible sequences. The natural definition for their

sum W + W ′ is to consider the limit limn(Z(Wn + W ′
n)). The point is to

ensure that such a limit exists, which is not always the case, as the example

W := (01)∞ and W ′ := (10)∞ shows (we have Z(W2n + W ′
2n) = 00(10)n

and Z(W2n+1 + W ′
2n+1) = 10(01)n). A more general example is given by
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the words W = X(10)∞ and W ′ = X ′(01)∞, where X and X ′ are finite

admissible words of the same length. It appears that this latter example

contains essentially all possible contentious issues.

Definition 4.3. The set F of F-adic numbers is defined as the set of

admissible infinite sequences, with the identifications (01)∞ = (10)∞ and

V 0(01)∞ = Z(V 10(01)∞) for any admissible finite word V , and equipped

with the (quotient) cylinder topology. A negative F-integer is an admissible

sequence ultimately periodic with period 01 (that is: negative F -integers

are the F -adic numbers admitting two different writings).

The sum of two F -adic numbers W and W ′ is defined as:

W ⊕W ′ := lim
n
(Z(Wn +W ′

n)).

For any word W with letters on a bounded subinterval of N, we define

Z(W ) := limn(Z(Wn)).

To ensure the consistence of this definition, we have to show that the sum

is well-defined (which immediately implies the consistence of the definition

of Z(W )). This is done in the proof of the following result, which is a strong

justification for our choice of definition. Before it, let us explain the ter-

minology of negative F -integers. Consider a negative F -integer V 0(01)∞ =

Z(V 10(01)∞), and put W := V 0 (recall that, for any finite word X , we have

Z(X+X) = 0|X|1). Since Z(W +V 0(01)∞) = Z(W +Z(V 10(01)∞)) = 0∞,

the negative F -integer can be regarded as the word corresponding to the

value −N(W ). In the same way, the F -adic number (01)∞ = (10)∞ can be

regarded as −1 (or, to avoid ambiguous notation, (−1)F). Note also that,

because of the negative F -integers, the notion of valuation is consistent only

for words, and not for F -adic numbers in general.

Now, let us give the main result of this section.

Theorem 4.4. (F ,+) is a topologic abelian group.

Proof. Let us start by showing that the addition is well-defined. We consider

first the case of two F -adic numbers, W and W ′, which are not negative

F -integers. If, for any k ≥ 0, the sequence of letters of rank k of the words

Z(Wn + W ′
n) converges, then W + W ′ is well-defined. Else, let k be the

smallest index such that the sequence of letters of rank k of Z(Wn + W ′
n)

does not converge. The sequence of prefixes of length k (which may be ∅ if

k = 0) of the sequence (Z(Wn +W ′
n))n converges to some admissible word

V . Since bothW andW ′ contains infinitely many 1s (to ensure the existence

of k), we can find an n0 such that N(Wn0
) > N(V ). By replacing the word
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W =: Wn0
U by the word Z(N(Wn0

) − N(V ))0|Wn0
|−|Z(N(Wn0

)−N(V ))|U , we

can assume that V = 0k.

The successive words Z(Wn+W ′
n) can be obtained by iterating the algo-

rithm that computes Z(W+0m1) for finite admissible W , with a sequence of

values of m going to infinity. With a little abuse in notation (since the suc-

cessive m is an increasing sequence but non necessarily strictly increasing),

we write Xm for the successive admissible words hence obtained.

Assume k ≥ 1. By Proposition 1.2, we have, for any m, Val(Xm) = k or

k + 2, and, by hypothesis, there are infinitely many values of m for which

Val(Xm) = k and also infinitely many for which Val(Xm) = k+2. Consider

an m such that Val(Xm) = k+2 and Val(Xm+1) = k. By Proposition 2, Xm

is of the form 0k+2(10)smYm, with Ym admissible. When m goes to infinity,

sm must go to infinity as well. Hence, the sequence (Z(Wn +W ′
n))n admits

0k+2(10)∞ (the limit of the Xms) and 0k10(01)∞ (the limit of the Xm+1s) as

accumulation points. Since the values of m for which Val(Xm) = Val(Xm+1)

does not add any other accumulation point, we are done for this case.

Now, assume k = 0. If, for all but finitely many ofm such that Val(Xm) >

0, we have Val(Xm) = 2, then we can apply Proposition 1.2 as in the

case k > 0. Hence, we assume that, for any big enough m such that

Val(Xm) > 0, we have Val(Xm) = 1. Take m such that Val(Xm) = 1

and Val(Xm+1) = 0. By Lemma 1.3, the computation of Xm+1 from Xm by

the algorithm necessarily involves the first loop. Hence, we necessarily have

Xm+1 = Z(0(10)sm20Ym+1) for some admissible Ym+1 and some sm ≥ 0.

Since sm must go to infinity as m goes to infinity, the word (01)∞ is an

accumulation point of the sequence (Xm)m. The same reasoning starting

from Val(Xm) = 0 and Val(Xm+1) = 1 gives that (10)∞ is an accumula-

tion point as well. Since no other accumulation point arise from the cases

Val(Xm) = Val(Xm+1) (= 0 or 1), we are also done for k = 0.

Now, assume that W is a negative F -integer. For some finite admissible

word V , we have W = V 0(01)∞ = Z(V 10(01)∞), and the point is to verify

that the result of the computation of W⊕W ′ does not depend on the choice

of the two equivalent representations ofW . IfW ′ is also a negative F -integer,

then the result is obtained by a simple verification (and gives that, for any

a, b ∈ N, we have (−aF )⊕ (−bF ) = (−(a + b))F). Therefore, from now, we

assume thatW ′ is not a negative F -integer. We putXn := Z(Wn+W ′
n) (with

a fixed choice for the representation ofW ). We then have, for any big enough

n, that Z(Xn + V 0) = Z(W ′
n + 0n1). Since W ′ is not a negative F -integer,

the sequence of words Z(W ′
n+0n1) converges to an admissible limit word Y ,
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which is also the limit of Z(Xn+V 0). Since V 0 is a finite word, the sequence

Xn is also converging to an admissible limit word X , which consistently

defines W ⊕W ′, independently of the choice of the representation of W .

The same reasoning, where the F -adic numbers W and W ′ are replaced

by sequences (W (n))n and (W ′(n))n of F -adic numbers converging to W and

W ′, is easily adapted to show that ⊕ is bicontinuous.

Now, let us show the associativity of ⊕. If W , W ′, W ′′, W ⊕ W ′ and

W ′ ⊕W ′′ are not negative F -integers, then for any n there exists an i such

that the prefix of length n of (W ⊕ W ′) ⊕ W ′′ and of W ⊕ (W ′ ⊕ W ′′)

is determined by the prefix of length i of W , W ′ and W ′′. Hence, in this

case, the equality (W ⊕ W ′) ⊕ W ′′ = W ⊕ (W ′ ⊕ W ′′) derives from the

associativity of ⊕ in the case of finite words. The other cases, left to the

reader, are essentially similar, with only some additional verifications due

to the possible existence of two different representations for some of the

involved expressions.

To complete the proof, it only remains to show that any F -adic number

W = w∞
0 admits an opposite. We already know that this is the case when

W is a negative F -integer, so we exclude this case in the sequel. We also

exclude the case where W is ultimately periodic of period 0 (that is: W is a

positive F -integer). Consider the word W ′ := w′∞
0 , where w′

n = 1 − wn for

any n. Since W ′ is a word on the alphabet {0, 1}, not ultimately periodic of

period 1 (by hypothesis on W ), there exists a unique admissible word W ′′

such that, for any n, Z(W ′
n) = W ′′

n (if 12i−1 is a suffix of W ′
n but not 12i, for

some i) or W ′′
n+1 (in the other case). For any n, we have Wn +W ′

n = 1n, so

Z(Wn +W ′
n) = (01)n/2 (for even n) or 1(01)(n−1)/2 (for odd n). Hence, the

sequence (Z(Wn +W ′′
n ))n converges to −1F , so W ′′ ⊕ (−1F) is the opposite

of W . �

5. Rational F-adic numbers

A F -adic number X is rational iff there exists two integers p and q such

that Z(qX) = Z(p). In the sequel, we simply write qX = p for this equation.

The goal of this section consists in proving the following two theorems:

Theorem 5.1. The F-adic number X is rational iff it is ultimately periodic.

Theorem 5.2. Let p and q be two integers, with q > 0. The set of roots of

qX = p is of cardinality q + 1 if p/q ∈ Z and of cardinality q otherwise.
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The proof of Theorem 5.2 will lead us to a simple and general expression

of the set of solutions of the equation qX = p (see Theorem 5.5, at the end

of this paper).

5.1. Proof of Theorem 5.1.

5.1.1. Periodic ⇒ rational.

Proposition 5.1. Let X := WP∞ and X ′ := W ′P ′∞ be two ultimately

periodic F -adic numbers with |W | = |W ′|. The sum X ⊕ X ′ is ultimately

periodic, of period Q such that Q̃ = P̃ ⊕ P̃ ′.

Proof. Without loss of generality, we assume P and P ′ of the same even

length 2ℓ, and take W = W ′ = 0k with big enough k. By induction, we

can also assume P ′ of the form 102ℓ−1. If P̃ ⊕ P̃ ′ = P̃ + P ′, then the result

is immediate. Otherwise, writing P = p0 . . . p2ℓ−1, we have either p0 = 1

or P = (01)ℓ. In this latter case, the proposition is easily verified. Assume

now p0 = 1. We either have P = (10)ℓ or, for some admissible word R and

some integer j, P = 10R00(10)j. In both cases, the proposition is routinely

verified. �

Corollary 5.3. For any integer q and any finite admissible word P (con-

taining at least one 1 and which first and last letters are not both equal to

1), Z(qP∞) is a ultimately periodic F -adic number, and admits the word

Q as a period, where Q̃ := Z̃(q̃P ).

Proof. Immediate. �

Now, let X := WP∞ be a ultimately periodic F -adic number, where W

and P are finite admissible words (as well as WP ). If P = 0, then there is

nothing to prove. We thus consider only the case where P contains at least

one 1. Without loss of generality, we may also assume P of even length 2ℓ

(otherwise, we simply replace P by P 2).

Since P does not contains only 0s, we have P̃ ∈ G∗
ℓ . Denoting by q the

order of P̃ in G∗
ℓ , we get by Corollary 5.3 that, for some finite admissible word

Y , Z(q(0|W |P∞)) = Y (01)∞, which is a negative F -integer, say −r. Since

qW is an integer, say s, we get that q(WP∞) = qW + q(0|W |P∞) = s− r,

so we are done.

5.1.2. Rational ⇒ periodic. Let X := x∞
0 ∈ F be a root of qX = p, where

p and q are integers. By changing the value of p, we can assume that, for

any chosen value k ≥ 1, we have x0 . . . xk−1 = 0k.
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Define the application Φ: F −→ [−1, 1] by Φ(w∞
0 ) =

∑+∞
n=0wn(−ϕ)−n.

Since k can be chosen big enough independently of q, we can assume that

Φ(qX) = qΦ(X). Hence, we have Φ(X) = Φ(qX)/q = Φ(p)/q. This latter

element belongs to Q(ϕ), and it is well-known that the elements of Q(ϕ) are

exactly the ones that admit a periodic expansion in the numeration system

in base −ϕ. Hence, Φ(X) has the form
∑∞

n=0 yn(−ϕ)−n with y∞0 admissible

and ultimately periodic. Since, moreover, Φ is injective, we eventually get

the desired result.

5.2. Proof of Theorem 5.2. We know by Theorem 5.1 that any root of

the equation is of the form WP∞, where W and P are finite admissible

words. If P = 0, then we are back to an usual integer equation, with one

root (p/q) if p/q ∈ Z and no root otherwise. So, from now, we exclude the

case P = 0, and show that exactly q roots of the equation qX = p are to

be found.

Let Ψ : P∗
q −→ Z/qZ be defined by Ψ(P̃ ) := Z(q ·P∞) mod q (The func-

tion Ψ is well-defined, since we know that Z(q · P∞) is ultimately periodic

of period 01 by section 5.1.1, hence is a negative F -integer.) The function

Ψ is a morphism of groups. Let Π ∈ P∗
q be the word given in the algo-

rithm presented after the proof of Theorem 2.7. We have qΠ∞ = (−1)F , so

Ψ(Π̃) = q − 1 = −1, so Ψ is surjective, and Ψ−1(0) has q elements (since

P∗
q has q2 elements by Theorem 2.5).

Let P̃ ∈ P∗
q . We have Z(q ·(10∞⊕P∞)) = Z(qP∞)+q and Z(q ·((−1)F⊕

P∞)) = Z(qP∞)− q, so, with the help of the surjectivity of Ψ, we get that

the number of solutions of the equation qX = p does not depend on p.

Lemma 5.4. Let X and X ′ be such that qX = 0 and qX ′ = 0, with

X = WP∞ and X ′ = W ′P∞ for some finite admissible words W and W ′

and some P ∈ P∗
q . If |W | = |W ′|, then W = W ′.

Proof. Immediate. �

Now, the desired result is a simple consequence of Lemma 5.4 and the

fact that Ψ−1(0) has exactly q elements.

5.3. An explicit expression of the roots of qX = p. As we said after

the statement of Theorem 5.2, the proof of this theorem provides a full

characterization of the set of F -adic solutions of qX = p.

Theorem 5.5. Let p and q be integers, with q > 0 and p 6= 0. Denote by

Π the word defined in the end of section 2.3, and put P̃a := ˜(a− 1)Π ⊕
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(−̃aσ(Π)) for any 0 ≤ a < q. Apart the possible integer solution p/q (if

p ∈ qZ), the roots of the equation qX = p are pP∞
a for 0 ≤ a < q.

Denote P̃ ′
a := ãΠ ⊕ (−̃aσ(Π)) for any 0 ≤ a < q. The roots of the

equation qX = 0 are P ′
a for 0 ≤ a < q.

The proof is immediate.
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