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STOCHASTIC DERIVATIVES AND GENERALIZED h-TRANSFORMS

OF MARKOV PROCESSES

CHRISTIAN LÉONARD

Abstract. Let R be a continuous-time Markov process on the time interval [0, 1]
with values in some state space X . We transform this reference process R into P :=

f0(X0) exp
(
−
∫
[0,1] Vt(Xt) dt

)
g1(X1)R where f0, g1 are nonnegative measurable func-

tions on X and V is some measurable function on [0, 1]×X . It is easily seen that P is
also Markov. The aim of this paper is to identify the Markov generator of P in terms of
the Markov generator of R and of the additional ingredients: f0, g1 and V in absence of
regularity assumptions on f0, g1 and V.

As a first step, we show that the extended generator of a Markov process is essentially
its stochastic derivative. Then, we compute the stochastic derivative of P to identify
its generator, under a finite entropy condition. The abstract results are illustrated with
continuous diffusion processes on R

d and Metropolis algorithms on a discrete space.
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1. Introduction

We consider continuous-time Markov processes with values in some Polish space X
equipped with its Borel σ-field.

Notation. Let us fix some notation. The path space is the set

Ω = D([0, 1],X )

of all right continuous and left limited (càdlàg) X -valued trajectories ω = (ωt)t∈[0,1] ∈ Ω.
It is equipped with the cylindrical σ-field: σ(Xt; t ∈ [0, 1]) which is generated by the
canonical process X = (Xt)t∈[0,1] defined for each t ∈ [0, 1] and ω ∈ Ω by Xt(ω) = ωt ∈ X .
We denote P(Ω) the set of all probability measures on Ω. As usual, we call process any
P ∈ P(Ω) or any random element of Ω as well. For any T ∈ [0, 1], we denote XT = (Xt)t∈T
and the push-forward measure PT = (XT )#P. In particular, for any 0 ≤ r ≤ s ≤ 1,
X[r,s] = (Xt)r≤t≤s, P[r,s] = (X[r,s])#P and Pt = (Xt)#P ∈ P(X ) denotes the law of the
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2 CHRISTIAN LÉONARD

position Xt at time t where P(X ) the set of all probability measures on X . The filtration
is the canonical one:

(
σ(X[0,t]); t ∈ [0, 1]

)
.

Aim of the article. Let R be the law of some nicely behaved Markov process. We
take this probability measure R as our reference law (this explains its unusual name R)
and call generalized h-transform of R, any P ∈ P(Ω) which is absolutely continuous with
respect to R : P ≪ R, and with its Radon-Nikodym derivative of the special form:

P = f0(X0) exp

(
−

∫

[0,1]

Vt(Xt) dt

)
g1(X1) R (1)

where f0, g1 : X → [0,∞) are nonegative Borel measurable functions on X , the potential
V : [0, 1]× X → R is also assumed to be Borel measurable on [0, 1]× X and all of them
satisfy integrability conditions such that (1) defines a probability measure. We also say
for short that P is an h-process.

It is easy to show (Proposition 4.2 below) that P inherits the Markov property from
R. Consequently, it is tempting to know more about its infinitesimal generator. The aim
of this article is to derive the generator of the Markov process P without assuming too
many regularity conditions on R, f0, g1 and V.

Usual h-transform. Motivated by potential theory, the special case when V ≡ 0 but
the terminal time t = 1 is replaced by some stopping time τ :

P = f0(X0)h(Xτ ) R
(τ),

has been introduced in 1957 by J.L. Doob [Doo57, Doo00] with R(τ) a Wiener process R
killed at the exit time τ of a bounded domain D of Rd. In this situation, for all t ≥ 0 and
x in D, the transition probability distributions of P are given by

P (Xt ∈ dz | X0 = x) ∝ ht(z)R
(τ)
t (dz | X0 = x)

where ∝ means “proportional to” and z 7→ ht(z) = ER[1{τ>t}h(Xτ ) | Xt = z] is a space-
time harmonic function on D; this explains the letter h.

An example. In this paper, we shall only be concerned with the transform defined by
(1), without stopping times. As an example, suppose that the reference process R is the
unique solution of some stochastic differential equation

dXt = b(Xt) dt+ σ(Xt) dWt

with locally Lipschitz coefficients b and σ, where W is a standard Wiener process on
X = R

d. This implies that R is a solution of the martingale problem MP(b, a) :

R ∈ MP(b, a),

with b an adapted (drift) vector field and a = σσ∗ an adapted (diffusion) matrix field.
Since P ≪ R, Girsanov’s theory tells us that there exists some adapted vector field β
such that P solves

P ∈ MP(b+ aβ, a).

Now the problem is to express β in terms of the ingredients a, b, f0, g1 and V. Specifying
the abstract results of this article to this continuous diffusion case leads to the next result
(see Theorem 5.4 below): The additional drift term β can be written as

β(t, x) = ∇̃Pψ(t, x), dtPt(dx)-a.e. (2)
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where

ψ(t, x) := logER

[
exp

(
−

∫

[t,1]

Vs(Xs) ds
)
g1(X1) | Xt = x

]
, dtPt(dx)-a.e. (3)

is defined dtPt(dx)-a.e. and ∇̃P is some linear operator which we call the P -extended

gradient. This gradient coincides with the usual one on smooth functions: ∇̃Pu = ∇u,
for all u ∈ C2

c (R
d), when the diffusion matrix a has full rank. Of course, if R admits a

regularizing and positivity improving transition probability density (for instance if R is
the Wiener measure) and V = 0, then ψ(t, x) := logER(g1(X1) | Xt = x) is well-defined
and smooth on [0, 1) × R

d and β = ∇ψ. This situation is investigated in details by H.
Föllmer [Föl88]. On the other hand, when V is a non-regular measurable function, even
if R admits a regularizing semigroup, ψ may be a non-regular continuous function and
(2) has an unusual meaning.

Non-regularity of V . The transition probability distributions in both directions of time
of the generalized h-transform P are the Euclidean analogues [CZ91, CZ08] of the Feyn-
man propagators [FH65] in the sense that for all t ∈ [0, 1]

P (Xt ∈ dz | X0 = x) ∝ ER

[
exp

(
−

∫

[t,1]

Vs(Xs) ds

)
g1(X1) | Xt = z

]
R(Xt ∈ dz | X0 = x)

P (Xt ∈ dz | X1 = y) ∝ ER

[
f0(X0) exp

(
−

∫

[0,t]

Vs(Xs) ds

)
| Xt = z

]
R(Xt ∈ dz | X1 = y).

As non-regular potentials V are usual in physics, for instance discontinuous potentials
with vertical asymptotic directions, we do not even assume that V is continuous.

From another view point, (1) is the generic form of the solution of the minimizer of the
relative entropy

H(P |R) :=

∫

Ω

log

(
dP

dR

)
dP ∈ [0,∞]

which is seen as a function of P , subject to the constraints that its initial law P0 is equal to
some given µ0 ∈ P(X ) and its flow of time-marginal laws (Pt)t∈[0,1] solves some prescribed
Fokker-Planck evolution equation. In this convex optimization problem, f0, g1 and V
act like Lagrange multipliers. See [Csi75, Föl88, CL94, CL95, CL96] for related entropy
minimization problems and [Léo01] for a convex analytic derivation of this statement. For
instance, when motivated by stochastic mechanics [Nel88], the above mentioned Fokker-
Planck equation is related to the solution of some Schrödinger equation and its drift term
explodes on the (nodal) set where the wave function vanishes. This enforces irregularities
of V. See the introduction of [MZ85] for a brief explanation of this point and also Eq. (8)

of [MZ85] where the potential Vt(x) =
ARΦt

Φt
(x) appears, with AR the Markov generator

of R and Φ the wave function.

Previous approaches to this problem. Let P ∈ P(Ω) be a Markov process and
T Ps,tu(x) := EP [u(Xt) | Xs = x], u ∈ U, 0 ≤ s ≤ t, be its semigroup on some Banach
function space (U, ‖·‖U). For instance U may be the space of all bounded Borel measurable
functions on X equipped with the topology of uniform convergence. Its infinitesimal
generator is AP = (APt )t∈[0,1] with

APt u(x) := ‖ · ‖U - lim
h↓0

1

h
EP [u(Xt+h)− u(Xt) | Xt = x], u ∈ domAP (4)
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where the domain domAP of AP is precisely the set of all functions u ∈ U such that the
above strong limit exists for all t ∈ [0, 1) and x ∈ X . We have seen with (2) and (3) that
the function g defined by

gt(x) := ER

[
exp

(
−

∫

[t,1]

Vs(Xs) ds

)
g1(X1) | Xt = x

]
, dtPt(dx)-a.e. (5)

plays an important role in the description of the dynamics of P. One can prove rather
easily (see [RY99] for instance) that when g is positive and regular enough, the generator
AP of the Markov semigroup associated with P is given for regular enough functions u
on X , by

APt u(x) = ARu(x) +
Γ(gt, u)

gt
(t, x), (t, x) ∈ [0, 1]×X (6)

where Γ is the carré du champ operator, defined for all functions u, v such that u, v and
the product uv belong to the domain domAR of AR, by

Γ(u, v) = AR(uv)− uARv − vARu.

For Eq. (6) to be meaningful, it is necessary that for all t ∈ [0, 1], gt and the product gtu
belong to domAR. But we have already noticed that with a non-regular potential V , g
might be non-regular as well. There is no reason why gt and gtu are in domAR in general.

Clearly, one must drop the semigroup approach and work with semimartingales or
Dirichlet forms. The Dirichlet form theory is natural for constructing irregular processes
and has been employed in similar contexts, see [Alb03]. But it is made-to-measure for
reversible processes and not very efficient when going beyond reversibility. Let us have a
look at the semimartingale approach. Working with semimartingales means that instead
of the infinitesimal semigroup generators AR and AP , we consider extended generators in
the sense of the Strasbourg school [DM87], see Definition 2.2 below. This natural idea has
already been implemented by P.-A. Meyer and W.A. Zheng [MZ84, MZ85] in the context
of stochastic mechanics and also by P. Cattiaux and the author in [CL94, CL96] for solving
related entropy minimization problems. But one still had to face the remaining problem
of giving some sense to Γ(gt, u). Consequently, restrictive assumptions were imposed:
reversibility in [MZ85] and, in [CL96], the standard hypothesis that the domain of the
extended generator of R contains a “large” subalgebra. In practice this last requirement
is not easy to verify, except for standard regular processes. In particular, it is difficult to
find criteria for this property to be inherited by P when P ≪ R.
In the present article, we overcome these limitations by choosing a different strategy which
is based on stochastic derivatives and in some sense is more direct.

Further developments. Generalized h-processes are not only designed for Euclidean
quantum mechanics [CZ08] or stochastic mechanics [Nel88].

(i) They are a valuable tool for obtaining a new look at Hamilton-Jacobi-Bellman equa-
tions, by comparing the definition (1) with the usual Girsanov exponential Radon-
Nikodym density.

(ii) Because of the time symmetry of their definition when R is assumed to be reversible,
they may bring interesting information about time reversal.

(iii) Even when V is zero, (1) provides an interesting process P which is sometimes called
a Schrödinger bridge. It minimizes H(P |R) subject to the marginal constraints P0 =
µ0 and P1 = µ1. A connection with optimal transport is described in [Léoa]. The flow
(Pt)t∈[0,1] of this bridge is similar to the displacement interpolation introduced by R.
McCann [McC95] which is used for deriving functional inequalities or as a heuristic
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guideline in the so-called Otto calculus, see [Vil09]. This suggests that using (Pt)t∈[0,1]
instead of the displacement interpolation could yield interesting results.

These potential developments will be investigated in future works.

Outline of the paper. The stochastic derivative LP of P :

LPt u(x) := lim
h↓0

1

h
EP [u(Xt+h)− u(Xt) | Xt = x] , u ∈ domLP

(compare (4)) was introduced by E. Nelson in [Nel67]. As usual, domLP is defined to
be the set of all functions u such that the above limit exists, for the exact definition see
Definition 2.6.

As a first step, we show that for a Markov process P , the stochastic derivative is equal
to the extended generator LP on a large class of functions u on X :

LPt u(x) = LPt u(x), dtPt(dx)-a.e.

This identity is the purpose of next Section 2 whose main results are Theorem 2.9 and
Proposition 2.10. The key of Theorem 2.9’s proof is the convolution Lemma 2.7.

With this general tool at hand, it remains to compute LPu for sufficiently many func-
tions u to determine the martingale problem associated with P. And in view of (6), with
gt defined at (5), this essentially amounts to :

(i) Prove that gt ∈ domLR and compute LRgt;
(ii) Prove that gtu ∈ domLR for many “regular” functions u.

Problem (i) is solved at Section 3 by means of standard integration technics.
Problem (ii) is trickier. We solve it at Section 4 by assuming that the relative entropy

of P with respect to R is finite:

H(P |R) <∞.

The main technical step for solving this problem is Lemma 4.3 which allows us not to rely
on Girsanov’s theory in its usual form. In particular our abstract results are valid without
assuming that R has the representation property (any R-martingale can be represented
as some stochastic integral).

The main result of this paper is Theorem 4.12. It extends (6).
At Sections 5 and 6 we examplify our abstract results by means of continuous diffusion

processes on R
d and time-continuous Markov chains. The main results of these sections

are Theorem 5.4 which states (2) and Theorem 6.1 which describes the dynamics of the
h-transforms of Metropolis algorithms on a discrete countable state space X .

2. Stochastic derivatives

We denote for any t ∈ [0, 1], X t := (t, Xt) ∈ [0, 1]×X and for any stopping time
Y τ
t := Yt∧τ and X

τ

t := (t ∧ τ,Xt∧τ ).
Let P be a probability measure on Ω. Recall that a process M is called a local P -

martingale if there exists a sequence (τk)k≥1 of [0, 1] ∪ {∞}-valued stopping times such
that limk→∞ τk = ∞, P -a.s. and for each k ≥ 1, the stopped process M τk is a uniformly
integrable P -martingale. A process Y is called a special P -semimartingale if Y = B+M,
P -a.s. where B is a predictable bounded variation process and M is a local P -martingale.
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Definition 2.1 (Nice semimartingale). A process Y is called a nice1 P -semimartingale
if Y = B +M is a special P -semimartingale and the bounded variation process B has
absolutely continuous sample paths P -a.s.

Definition 2.2 (Extended generator of a Markov process). Let P be a Markov process. A
measurable function u on [0, 1]× X is said to be in the domain of the extended generator
of P if there exists a measurable function v on [0, 1]×X such that

∫
[0,1]

|v(t, Xt)| dt <∞,

P -a.e. and the process

Mu
t := u(t, Xt)− u(0, X0)−

∫

[0,t]

v(s,Xs) ds, 0 ≤ t ≤ 1,

is a local P -martingale. We denote

v(t, x) =: LPu(t, x)

and call LP the extended generator of P. The domain of the extended generator of P is
denoted by domLP .

Remarks 2.3.

(a) In other words, the measurable function u on [0, 1]× X is in domLP if the process
u(t, Xt) is a nice P -semimartingale.

(b) The adapted process t 7→
∫
[0,t]

v(s,Xs) ds is predictable since it is continuous.

(c) Mu admits a càdlàg P -version as a local P -martingale (we always choose this regular
version).

(d) In many situations it is enough to consider continuous functions u. But it will be
useful at some point to consider LPg with g given by (5) and it is not clear a priori
that g is continuous in the general case, see Theorem 4.12 and Lemma 5.3 below for
instance. This is the reason why we do not restrict domLP to continuous functions.

(e) The notation v = Lu almost rightly suggests that v is a function of u. Indeed, when
u is in domLP , the Doob-Meyer decomposition of the special semimartingale u(t, Xt)
into its predictable bounded variation part

∫
vs ds and its local martingale part is

unique. But one can modify v = LPu on a small (zero-potential) set without breaking
the martingale property. As a consequence, u 7→ LPu is a multivalued operator and
u 7→ LPu is an almost linear operation.

(f) Suppose that to is a fixed time of discontinuity of P, i.e. P (Xto 6= Xt−o
) > 0. Then,

in general a continuous function u cannot be in domLP . For this reason, one should
think of the notion of extended generator for processes P that do not have any fixed
time of discontinuity: P (Xt 6= Xt−) = 0, for all t ∈ [0, 1].

The notion of generator is tightly connected with that of martingale problem.

Definition 2.4 (Martingale problem). Let C be a class of measurable real functions u on
[0, 1]×X and for each u ∈ C, let Lu : [0, 1]× X → R be a measurable function such that∫
[0,1]

|Lu(t, ωt)| dt <∞ for all ω ∈ Ω. Take also a probability measure µ0 ∈ P(X ). One says

that Q ∈ P(Ω) is a solution to the martingale problem MP(L, C;µ0) if Q0 = µ0 ∈ P(X )
and for all u ∈ C, the process

u(t, Xt)− u(0, X0)−

∫

[0,t]

Lu(s,Xs) ds

is a local Q-martingale.

1This is a “local” definition in the sense that this notion probably appears somewhere else with another
name.
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As in Definition 2.2, this local martingale admits a càdlàg Q-version.
Playing with the definitions, it is clear that any Markov law Q ∈ P(Ω) is a solution to
MP(LQ, C;Q0) where LQ is the extended generator of Q and C is any nonempty subset
of domLQ.

Our aim is to show that the extended generator can be computed by means of a sto-
chastic derivative.

Definition 2.5 (Integration time). Let u be a measurable real function on [0, 1]× X and
τ be a stopping time. We say that τ is a P -integration time of u if the family of random
variables {u(X

τ

t ); t ∈ [0, 1]} is uniformly P -integrable.

Definition 2.6 (Stochastic derivative of a Markov process). Let P be a Markov process
and u be a measurable real function on [0, 1]× X . We say that u admits a stochastic
derivative under P at time t ∈ [0, 1] if for Pt-almost all x ∈ X there exists a P -integration
time σx of u such that σx ≥ t, P -a.e. and for any P -integration time τ of u satisfying
τ > σx, P -a.e. the following limit

LPu(t, x) := lim
h↓0

EP

(
1

h
[u(X

τ

t+h)− u(t, x)] | Xt = x

)

exists and does not depend on τ.
If u admits a stochastic derivative for dtPt(dx)-almost all (t, x), we say that u belongs to
the domain domLP of the stochastic derivative LP of the Markov process P.
If the function u does not depend on the time variable t, we denote

LPt u(x) = LPu(t, x).

This extension of Nelson’s definition by means of integration times seems to be new.
It is consistent since the supremum of two integration times is still an integration time.

Indeed, the supremum of two stopping times is a stopping time and for all t, |u(X
τ∨τ ′

t )| ≤

|u(X
τ

t )|+ |u(X
τ ′

t )|.
As in Definition 2.2, we do not restrict the domain of the stochastic derivative to continuus
functions, see Remark 2.3-(d).
Since P is a Markov process, we have also

LPu(t, x) = lim
h↓0

EP

(
1

h
[u(X

τ

t+h)− u(t, x)] | τ > t,Xt = x

)
.

We denote P the product of the Lebesgue measure on [0, 1] by the process P : P (dtdω) =
dtP (dω). In the sequel, we shall be concerned with the function space Lp([0, 1]× Ω, P ).

Lemma 2.7. For all h > 0, let kh ≥ 0 be a measurable convolution kernel such that
supp kh ⊂ [−h, h] and

∫
R
kh(s) ds = 1.

Let P be a bounded positive measure on Ω (which may not be a probability measure) and
v(t, ω) be a function in Lp([0, 1]×Ω, P ) with 1 ≤ p <∞. Define for all h > 0 and t ∈ [0, 1],
kh ∗ v(t) =

∫
R
kh(t− s)vs ds where v is extended by putting vs = 0 for all s 6∈ [0, 1].

Then, kh ∗ v is in Lp([0, 1]× Ω, P ) and limh↓0 k
h ∗ v = v in Lp([0, 1]× Ω, P ).

We see that kh(s) ds is a probability measure on R which converges narrowly to the
Dirac measure δ0 as h tends down to zero.

Proof. In this lemma, we endow as usual Ω with the Skorokhod topology which turns it
into a Polish space and has the interesting property that its Borel σ-field matches with
the cylindrical σ-field.
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We denote Lp([0, 1] × Ω, P ) = Lp(P ) and start the proof by showing that kh ∗ v ∈
Lp(P ). For P -almost all ω, v(·, ω) ∈ Lp([0, 1]) so that kh ∗ v(·, ω) is also in Lp([0, 1]) with
‖kh ∗ v(·, ω)‖Lp([0,1]) ≤ ‖v(·, ω)‖Lp([0,1]). It remains to integrate with respect to P (dω) to
obtain

‖kh ∗ v‖Lp(P ) ≤ ‖v‖Lp(P ) <∞. (7)

Now, we prove the convergence. As p is finite, the space Cc([0, 1]× Ω) of all continuous
functions with a compact support in [0, 1] × Ω is dense in Lp(P ). We approximate v in
Lp(P ) by a sequence (vn)n≥1 in Cc([0, 1]× Ω). For all h and n

‖kh ∗ v − v‖Lp(P ) ≤ ‖kh ∗ (v − vn)‖Lp(P ) + ‖kh ∗ vn − vn‖Lp(P ) + ‖vn − v‖Lp(P )

≤ ‖kh ∗ vn − vn‖Lp(P ) + 2‖v − vn‖Lp(P )

where we used (7).
Take an arbitrary small η > 0 and choose n large enough for ‖v − vn‖Lp(P ) ≤ η to hold.
Then,

‖kh ∗ v − v‖Lp(P ) ≤ ‖kh ∗ vn − vn‖Lp(P ) + 2η. (8)

Fix this n. Since vn is in Cc([0, 1]×Ω), it is a uniformly continuous function. Therefore, for
all η > 0, there exists h(η) > 0 such that for any t, t′, ω, ω′ satisfying |t− t′|+ dΩ(ω, ω

′) ≤
h(η), we have |vn(t

′, ω′) − vn(t, ω)| ≤ η, where dΩ is the Skorokhod metric on Ω. In
particular, with ω = ω′, we see that

|t′ − t| ≤ h(η) ⇒ sup
ω∈Ω

|vn(t
′, ω)− vn(t, ω)| ≤ η.

Because of the property: supp kh ⊂ [−h, h], we deduce from this that for any ω ∈ Ω,
|kh∗vn(t)−vn(t)| ≤

∫
R
|vn(t−s)−vn(t)|k

h(s) ds ≤ η as soon as h ≤ h(η)/2. Consequently

‖kh∗vn−vn‖Lp(P ) ≤ P (Ω)η. Finally, with (8) this leads us to ‖kh∗v−v‖Lp(P ) ≤ (2+P (Ω))η.

Since η is arbitrary, this shows that limh→0 ‖k
h ∗ v − v‖Lp(P ) = 0, which is the desired

result �

Proposition 2.8. Let P be a Markov process and u be a function in the domain domLP

of the extended generator LP of P. We suppose in addition that there exists 1 ≤ p < ∞
such that EP

∫
[0,1]

|LPu(t, Xt)|
p dt <∞. Then,

lim
h↓0

EP

∫

[0,1−h]

∣∣∣∣
1

h
EP [u(t+ h,Xt+h)− u(t, Xt) | Xt]−LPu(t, Xt)

∣∣∣∣
p

dt = 0. (9)

Proof. We denote vt = LPu(t, Xt). Choosing the specific convolution kernel kh = 1
h
1[−h,0],

and relying on the very definition of the extended generator, we obtain

1

h
EP [u(t+ h,Xt+h)− u(t, Xt) | Xt] =

1

h
EP [u(t+ h,Xt+h)− u(t, Xt) | X[0,t]]

= EP [k
h ∗ v(t) | X[0,t]] = EP [k

h ∗ v(t) | Xt].

On the other hand, by Jensen’s inequality and Fubini’s theorem

EP

∫

[0,1]

∣∣∣EP [kh ∗ v(t) | Xt]− vt

∣∣∣
p

dt = EP

∫

[0,1]

∣∣∣EP [kh ∗ v(t)− vt | Xt]
∣∣∣
p

dt

≤ EP

∫

[0,1]

|kh ∗ v(t)− vt|
p dt.
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Our hypothesis v ∈ Lp([0, 1] × Ω, P ) is precisely the assumption of previous Lemma 2.7
which insures that limh↓0EP

∫
[0,1]

|kh ∗ v(t) − vt|
p dt = 0. Gathering these considerations,

we obtain (9). �

A variant of this proposition already appears in [Föl86]. But it seems to the author
that its proof is incomplete and that it is difficult to avoid a convolution argument such
as Lemma 2.7.

Theorem 2.9. Let P be a Markov process and u be a function in the domain domLP of
the extended generator LP of P. Then, u belongs to domLP and

LPu = LPu, dtPt(dx)-a.e.

Proof. By the definition of the extended generator, there exists a localizing sequence
(τk)k≥1 of stopping times, i.e. such that limk→∞ τk = ∞, P -a.e. and for all k ≥ 1, the
stopped process M τk where

Mt = u(t, Xt)−

∫

[0,t]

LPu(s,Xs) ds,

is a uniformly integrable martingale. By considering the sequence of stopping times
inf{t ∈ [0, 1];

∫
[0,t]

|LPu(s,Xs)| ds ≥ k} ∈ [0, 1]∪{∞} indexed by k ≥ 1, it is easy to show

that (τk)k≥1 can also be chosen such that for each k, τk is also an integration time of u.
Let us consider a fixed integration time τ of u such that M τ is a uniformly integrable

martingale. Denoting vτ (t) = 1{t≤τ}L
Pu(t, Xt) and choosing kh = 1

h
1[−h,0] as in the proof

of Proposition 2.8, we see that 1
h
[u(X

τ

t+h)− u(X
τ

t )]− kh ∗ vτ (t) is a martingale. It follows
that

1

h
EP [u(X

τ

t+h)− u(t, Xτ
t ) | X[0,t]] = EP [k

h ∗ vτ (t) | X[0,t]] = 1{t≤τ}EP [k
h ∗ v(t) | Xt].

Remark for future use that this implies that

1

h
EP [u(X

τ

t+h)− u(t, Xτ
t ) | X[0,t]] = 1{t≤τ}

1

h
EP [u(X

τ

t+h)− u(t, Xτ
t ) | X

τ
t ]. (10)

Then, as for (9) with p = 1, we obtain

lim
h↓0

EP

∫

[0,τ∧(1−h)]

∣∣∣∣
1

h
EP [u(X

τ

t+h)− u(t, Xτ
t ) | X[0,t]]− LPu(t, Xt)

∣∣∣∣ dt = 0

and with Fatou’s lemma

EP

∫

[0,1−h]

lim inf
h↓0

1{t≤τ}

∣∣∣∣
1

h
EP [u(X

τ

t+h)− u(t, Xτ
t ) | X[0,t]]− LPu(t, Xt)

∣∣∣∣ dt = 0.

But, since u is in domLP , limh↓0
1
h
EP [u(X

τ

t+h)− u(t, Xτ
t ) | X[0,t]] appears as the compu-

tation of the derivative of an absolutely continuous function. Therefore, this limit exists
for Lebesgue-almost all t and the lim infh↓0 arising from the application of Fatou’s lemma
is a genuine limit2. Hence,

EP

∫

[0,1−h]

1{t≤τ} lim
h↓0

∣∣∣∣
1

h
EP [u(X

τ

t+h)− u(t, Xt) | X[0,t]]− LPu(t, Xt)

∣∣∣∣ dt = 0

2The absolute continuity plays a crucial role. Note that it is also of primary importance in the definition
of the extended generator.
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and with (10) this shows us that for P -almost all (t, ω) we have

1{τ(ω)≥t} lim
h↓0

1

h
EP

[
u(X

τ

t+h)− u(t, Xt(ω)) | X
τ
t

]
(ω) = 1{τ(ω)≥t}L

Pu(t, Xt(ω)).

As the left-hand side vanishes when τ(ω) = t, we obtain

1{τ>t} lim
h↓0

1

h
EP

[
u(X

τ

t+h)− u(t, Xt) | τ > t,Xt

]
= 1{τ>t}L

Pu(t, Xt).

This results holds true for any integration time τ of u such that M τ is a uniformly
integrable martingale.

By assumption, for P -almost all (t, ω) there exists k(t, ω) large enough for the localizing
time τk(t,ω) to satisfy τk(t,ω)(ω) ≥ t. Choosing σXt(ω) = τk(t,ω), we obtain for dtPt(dx)-almost
all (t, x) an integration time σx ≥ t such that any integration time τ > σx satisfies

lim
h↓0

1

h
EP

[
u(X

τ

t+h)− u(t, x) | Xt = x
]
(ω) = LPu(t, x).

This completes the proof of the theorem. �

Let us investigate a partial converse of Theorem 2.9.

Proposition 2.10. Let P be a Markov process, u and v be measurable real functions on
[0, 1]×X which satisfy the following requirements. The function v verifies

∫
[0,1]

|v(t, Xt)| dt <

∞, P -a.s. and there exists a sequence (τk)k≥1 of integration times of u such that limk→∞ τk =
∞, P -a.s. and for each k ≥ 1,

lim
h↓0

EP

∫

[0,1−h]

∣∣∣∣
1

h
EP [u(X

τk
t+h)− u(X

τk
t ) | Xt]− 1{t≤τk}v(t, Xt)

∣∣∣∣ dt = 0 (11)

Then, u belongs to domLP and domLP and

LPu = LPu = v, dtPt(dx)-a.e.

Note that if P admits a fixed time of discontinuity, there might be many continuous
functions u which do not verify (11).

Proof. The proof relies on the subsequent easy analytic result.
Claim. Let a, b be two measurable functions on [0, 1] such that a is right continuous, b is
Lebesgue-integrable and limh↓0

∫
[0,1−h]

∣∣ 1
h
{a(t+ h)− a(t)} − b(t)

∣∣ dt = 0. Then, a is abso-

lutely continuous and its distributional derivative is ȧ = b.
To see this, remark first that t 7→ 1{0≤t≤1−h}

1
h
{a(t + h) − a(t)} is integrable for any

0 < h ≤ 1. Take any 0 ≤ r ≤ s < 1. On one hand, we have limh↓0

∫
[r,s]

1
h
{a(t + h) −

a(t)} dt =
∫
[r,s]

b(t) dt and on the other one:
∫
[r,s]

1
h
{a(t+h)− a(t)} dt = 1

h

∫
[r,r+h]

a(t) dt−
1
h

∫
[s,s+h]

a(t) dt, so that with the assumed right continuity of a we have limh↓0

∫
[r,s]

1
h
{a(t+

h) − a(t)} dt = a(s) − a(r). Therefore a(s) − a(r) =
∫
[r,s]

b(t) dt which is the claimed
property.

Let us fix τk as in the assumption of the proposition. We write E = EP , ut = u(X
τk
t )

and vt = 1{t≤τk}v(X
τk
t ) to simplify the notation. Define the family of stopping times

σk := inf{s ∈ [0, 1];
∫
[0,s]

|v(t, Xt)| dt ≥ k} where k describes the integers. By considering

the stopping times σk ∧ τk, we can assume without loss of generality that

v ∈ L1(P ).
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Fix 0 ≤ r < 1. We have

∣∣∣∣E
[∫

[r,1−h]

(
1

h
{ut+h − ut} − vt

)
dt | Xr

]∣∣∣∣

≤ E

[∫

[r,1−h]

E

(∣∣1
h
{ut+h − ut} − vt

∣∣ | Xt

)
dt | Xr

]

With (11) and Fatou’s lemma, we obtain

E

(
lim inf
h↓0

∣∣∣∣E
[∫

[r,1−h]

(
1

h
{ut+h − ut} − vt

)
dt | Xr

]∣∣∣∣
)

≤ lim
h↓0

E

∫

[r,1−h]

E

(∣∣1
h
{ut+h − ut} − vt

∣∣ | Xt

)
dt = 0.

Hence, there exists a sequence (hn)n≥1 of positive numbers such that limn→∞ hn = 0 and

lim
n→∞

∫

[r,1−hn]

E

[(
1

hn
{ut+hn − ut} − vt

)
| Xr

]
dt = 0, P -a.e.

It remains to apply the result of the above claim to a(t) = E [ut | Xr] and b(t) = E [vt | Xr]

to see that for all 0 ≤ r ≤ s < 1, E
[
us − ur −

∫
[r,s]

vt dt | X[0,r]

]
= 0. This proves that

M τk is a P -martingale where

Ms := u(s,Xs)− u(0, X0)−

∫

[0,s]

v(t, Xt) dt.

With the assumptions that limk→∞ τk = ∞, P -a.s., 1[0,τk]v ∈ L1(P ) and the fact that

{u(X
τk
t ); t ∈ [0, 1]} is uniformly P -integrable by the very definition of the integration

time τk, we conclude thatM is a local P -martingale. Therefore, u belongs to domLP and
LPu = v. And we also have u ∈ domLP and LPu = LPu by Theorem 2.9. �

3. Feynman-Kac processes

Let R be a probability measure on Ω which is a stationary Markov process with the
invariant probability measure

m := Rt ∈ P(X ), ∀t ∈ [0, 1]. (12)

We also consider a lower bounded potential V, i.e. a measurable function V : [0, 1]× X →
R such that

inf
[0,1]×X

V ≥ −λo (13)

with 0 ≤ λo <∞. Let g1 be a nonnegative m-integrable function on X . In this section we
look at the real valued process

Gt := ER

[
exp

(
−

∫

[t,1]

Vs(Xs) ds

)
g1(X1) | X[0,t]

]
=: gt(Xt), t ∈ [0, 1], g1 ≥ 0 (14)

which we call a Feynman-Kac process. Last equality, where gt : X → [0,∞) is a measur-
able function, is a consequence of the Markov property of R.
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Orlicz spaces. The mere integrability of g1 is sufficient for defining G, but it will not
be enough in general for our purpose. We are going to assume that g1 is in some Orlicz
space

Lγ(m) :=

{
u : X → R; measurable,

∫

X

γ(ao|u|) dm <∞, for some ao > 0

}

associated with the Young function γ. Recall that γ : R → [0,∞] is a Young function if
it is convex, even, lower semicontinuous and γ(0) = 0. Important instances are

- γ(a) = γp(a) := |a|p/p, with 1 ≤ p <∞, then Lγp(m) = Lp(m);

- γ(a) = γ∞(a) :=

{
0 if |a| ≤ 1

∞ otherwise
, then Lγ∞ = L∞(m).

Let us introduce the functions

θ(a) := ea − a− 1, a ∈ R, (15)

θ∗(a) := (a + 1) log(a+ 1)− a, a ∈ [−1,∞)

with the convention 0 log 0 = 0. They are convex conjugate to each other and θ(a) =
logEea(N−1) where N is a Poisson(1) random variable. Moreover, θ(|a|) and θ∗(|b|) are
Young functions which are also convex conjugate to each other.
Two other important Orlicz spaces are

- γ(a) = θ(|a|) corresponds to the following Lγ :

Lexp(m) :=

{
u : X → R; measurable,

∫

X

eao|u| dm <∞, for some ao > 0

}
,

- γ(a) = θ∗(|a|) corresponds to the following Lγ :

L logL(m) :=

{
u : X → R; measurable,

∫

X

|u| log+ |u| dm <∞

}
,

where we use the assumed boundedness of the positive measurem in the above expressions.
The Luxemburg norm of Lγ(m) is defined by ‖u‖Lγ(m) := inf{α > 0;

∫
X
γ(|u|/α) dm ≤ 1}.

Let γ∗(b) := supa≥0{ab − γ(a)} ∈ [0,∞], b ≥ 0, be the convex conjugate of γ. It follows
immediately from Fenchel’s inequality ab ≤ γ(a) + γ∗(b), that the Hölder inequality

‖uv‖L1(m) ≤ 2‖u‖Lγ(m)‖v‖Lγ∗(m), u ∈ Lγ(m), v ∈ Lγ
∗

(m)

holds true. In particular, since θ(| · |) and θ∗(| · |) are convex conjugate to each other, we
have ‖uv‖L1(m) ≤ 2‖u‖L logL(m)‖v‖Lexp(m), for all u ∈ L logL(m), v ∈ Lexp(m).
The Young function γ is said to satisfy the condition ∆2 if there exist constants C,A > 0
such that γ(2a) ≤ Cγ(a), for all a ≥ A. The spaces L logL(m) and Lp(m) with 1 ≤ p <∞
satisfy ∆2. But L

∞(m) and Lexp(m) do not.

Preliminary results. We assume that the next finite entropy condition is satisfied

g1 ≥ 0,

∫

X

g1 log+ g1 dm <∞

and we pick a Young function γ such that
∫

X

γ(g1) dm <∞ and L logL(m) ⊂ Lγ(m) ⊂ Lp(m) for some 1 < p <∞. (16)
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In particular, we have γ ∈ ∆2.
Because of (12), (13) and (16), with Gt given by (14), we have for all t ∈ [0, 1] and α > 0,

∫

X

γ(gt/α) dm = ERγ(Gt/α) ≤ ERγ(e
λoG1/α) ≤ Cγ,λoER(G1/α)

where Cγ,λo > 0 is some finite constant which can be derived by means of the condition
∆2. Optimizing in α leads us to

‖gt‖Lγ(m) ≤ Cγ,λo‖g1‖Lγ(m), ∀t ∈ [0, 1].

Recall that a real valued process G is said to admit a càdlàg version if there exists a
modification G′ of G, i.e. R(Gt 6= G′

t) = 0 for all t ∈ [0, 1], with its sample paths in
DR := D([0, 1],R).

Lemma 3.1. Let us assume that in addition to (12), (13) and (16), we have
∫

[0,1]

‖Vt‖L1(m) dt <∞. (17)

Then, the process G admits a càdlàg version. In the sequel G will always be assumed to
be this DR-valued version.
It is a nonnegative semimartingale which satisfies the so-called Feynman-Kac semigroup
property:

ER

[
exp

(
−

∫

[s,t]

Vr(Xr) dr

)
Gt | X[0,s]

]
= Gs, 0 ≤ s ≤ t ≤ 1. (18)

Moreover, denoting G∗ := supt∈[0,1]Gt, we have

‖G∗‖Lγ(R) ≤ Cγ,λo‖g1‖Lγ(m)

for some finite positive constant Cγ,λo.
This implies that {γ(Gt); t ∈ [0, 1]} is uniformly integrable in L1(R).

Proof. Let us prove (18). For all 0 ≤ s ≤ t ≤ 1,

ER

[
exp

(
−

∫

[s,t]

Vr(Xr) dr

)
Gt | X[0,s]

]

= ER

[
exp

(
−

∫

[s,t]

Vr(Xr) dr

)
ER

{
exp

(
−

∫

[t,1]

Vr(Xr) dr

)
G1 | X[0,t]

}
| X[0,s]

]

= ER

[
ER

{
exp

(
−

∫

[s,1]

Vr(Xr) dr

)
G1 | X[0,t]

}
| X[0,s]

]

= ER

[
exp

(
−

∫

[s,1]

Vr(Xr) dr

)
G1 | X[0,s]

]

= Gs

which is (18).

Let us define Ṽ := V + λo ≥ 0 and for all t ∈ [0, 1]

G̃t := e−λo(1−t)Gt = ER

[
exp

(
−

∫

[t,1]

Ṽs(Xs) ds

)
G̃1 | X[0,t]

]
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where G̃1 = G1 = g1(X1). Because Ṽ ≥ 0, we see that for all 0 ≤ s ≤ t ≤ 1,

ER

(
G̃t | X[0,s]

)
= ER

[
exp

(
−

∫

[t,1]

Ṽr(Xr) dr

)
G̃1 | X[0,s]

]

≥ ER

[
exp

(
−

∫

[s,1]

Ṽr(Xr) dr

)
G̃1 | X[0,s]

]

= G̃s.

In other words, G̃ is a nonnegative submartingale.
It follows from the fact that the forward filtration satisfies the standard assumptions and

from a well-known result of the general theory of stochastic processes that G̃ admits a

càdlàg modification (still denoted by G̃) if t ∈ [0, 1] 7→ ERG̃t ∈ [0,∞) is a right continuous
real function. But this latter property is a direct consequence of Lebesgue’s dominated
convergence theorem and the pathwise right continuity of

t ∈ [0, 1] 7→ exp

(
−

∫

[t,1]

Ṽr(Xr) dr

)
∈ (0, 1]

which is satisfied under the assumption (17): ER
∫
[0,1]

|Vt(Xt)| dt <∞, which implies that
∫
[0,1]

|Ṽt(Xt)| dt <∞, R-a.s.3

Furthermore, we have ERγ(G̃t) ≤ ERγ(G̃1) < ∞ by Jensen’s inequality and the sub-
martingale property. Doob’s maximal inequality, which holds for any nonnegative sub-
martingale and any Young function γ which verifies (16)4, tells us that there exists a
positive finite constant cγ <∞ such that

‖ sup
t∈[0,1]

γ(G̃t)‖L1(R) ≤ cγ sup
t∈[0,1]

‖γ(G̃t)‖L1(R) = cγ‖γ(G̃1)‖L1(R) = cγ‖γ(g1)‖L1(m) <∞.

Hence {γ(G̃t); t ∈ [0, 1]} is uniformly integrable in L1(R). Since the product of two semi-

martingales is still a semimartingale, we deduce that Gt = eλo(1−t)G̃t is a càdlàg semi-
martingale such that {γ(Gt); t ∈ [0, 1]} is uniformly integrable in L1(R). This completes
the proof of the lemma. �

Recall that since R is a bounded nonnegative measure, a family {Ht; t ∈ [0, 1]} of real
valued measurable functions is uniformly integrable in L1(R) if and only if there exists
an increasing convex function ξ : [0,∞) → [0,∞) such that lima→∞ ξ(a)/a = +∞ and
supt∈[0,1]ERξ(|Ht|) <∞.
Claim. Let At, Bt, t ∈ [0, 1] be two random variables such that both {γ(At); t ∈ [0, 1]}
and {γ∗(Bt); t ∈ [0, 1]} are uniformly integrable in L1(R). Then, the family of products
{AtBt; t ∈ [0, 1]} is uniformly integrable in L1(R).
Let us prove this claim. By hypothesis there exist two functions ξ1 and ξ2 as above such
that suptEξ1(γ(At)) < ∞ and suptEξ2(γ

∗(Bt)) < ∞ where we wrote supt = supt∈[0,1]
and E = ER for short. Let ξ be the convex envelope of x 7→ ξ1(x/2)∧ξ2(x/2). It is convex
as a definition and still increasing and satisfies limx→∞ ξ(x)/x = ∞. We also obtain
with Fenchel’s inequality ξ(|AtBt|) ≤ ξ(γ(At) + γ∗(Bt)) ≤ ξ(2γ(At))/2 + ξ(2γ∗(Bt))/2 ≤

3Remark that without the assumption that
∫
[0,1]

|Ṽt(Xt)| dt < ∞, R-a.s. and with the convention

e−∞ = 0, t ∈ [0, 1] 7→ exp
(
−
∫
[t,1]

Ṽr(Xr) dr
)
∈ [0, 1] is well-defined R-a.s., but it might fail to be right

continuous.
4For Doob’s inequality in the class L logL, see [RY99, p. 54] for instance.
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ξ1(γ(At)) + ξ2(γ
∗(Bt)) for each t ∈ [0, 1]. Consequently, suptEξ(|AtBt|) <∞. This shows

that {AtBt; t ∈ [0, 1]} is uniformly integrable and completes the proof of the claim.
The assumption (17) will not be strong enough for our purpose. We strengthen it in

the next lemma.

Lemma 3.2. Let us assume in addition to (12), (13) and (16) that the family {γ∗(Vt); t ∈
[0, 1]} is uniformly integrable in L1(m). Then,

(1) { 1
h

∫
[t,t+h]

|Vs| ds |Gt+h −Gt|; t ∈ [0, 1], h > 0} is uniformly integrable in L1(R);

(2)
∫
[0,1]

GtVt(Xt) dt is in L
1(R);

(3) {VtGt(Xt); t ∈ [0, 1]} is uniformly integrable in L1(R).

Proof. We write Vt = Vt(Xt), supt = supt∈[0,1] and E = ER for short.
• Proof of (1). There exists a function ξ as above such that suptEξ(γ

∗(Vt)) < ∞.

But Eξ
(

1
h

∫
[t,t+h]

γ∗(Vs) ds
)
≤ 1

h

∫
[t,t+h]

Eξ(γ∗(Vs)) ds ≤ suptEξ(γ
∗(Vt)) <∞. This shows

that { 1
h

∫
[t,t+h]

γ∗(Vs) ds; t ∈ [0, 1], h > 0} is uniformly integrable. On the other hand,

we already know by Lemma 3.1 that {γ(|Gt+h − Gt|); t ∈ [0, 1], h > 0} is also uniformly
integrable. The above claim permits us to conclude.

• Proof of (2). We see that

E

∫

[0,1]

Gt|Vt| dt ≤ E(γ(G∗)) + E

∫

[0,1]

γ∗(Vt) dt ≤ E(γ(G∗)) + sup
t
Eγ∗(Vt) <∞

which is finite by Lemma 3.1 and the assumption that {γ∗(Vt); t ∈ [0, 1]} is uniformly
integrable.

• Proof of (3). The result directly follows from the above Claim, Lemma 3.1 and our
assumptions on V. �

The extended Feynman-Kac generator. The main result of this section is the next
theorem.

Theorem 3.3. Let us take the following ingredients.

(i) R ∈ P(Ω) is a stationary Markov process with invariant law m = Rt ∈ P(X ) for all
t ∈ [0, 1];

(ii) γ is a Young function which satisfies (16) and γ∗ is its convex conjugate;
(iii) V is a measurable function on [0, 1]× X which is bounded below and is such that

{γ∗(Vt); t ∈ [0, 1]} is uniformly integrable in L1(m);
(iv) g1 is a nonnegative function on X in Lγ(m).

Then, the function g : (t, x) ∈ [0, 1]×X 7→ gt(x) ∈ [0,∞) which is defined for all t ∈ [0, 1],
m-almost everywhere by (14):

gt(Xt) := ER

[
exp

(
−

∫

[t,1]

Vs(Xs) ds

)
g1(X1) | X[0,t]

]
, R-a.s.,

is a nonnegative function in Lγ([0, 1]× X , dtm(dx)) which is in domLR and in domLR.
Moreover, it satisfies

LRg(t, x) = LRg(t, x) = Vt(x)gt(x), dtm(dx)-a.e.

and
∫
[0,1]×X

|Vt(x)|gt(x) dtm(dx) <∞.

Proof. The proof is based on an application of Proposition 2.10 with u(t, x) = gt(x) and
v(t, x) = Vt(x)gt(x). We write Vt = Vt(Xt) and E = ER for short.
We know by Lemma 3.2 that

∫
[0,1]×X

|Vt(x)|gt(x) dtm(dx) = E
∫
[0,1]

|VtGt| dt < ∞. This
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implies that
∫
[0,1]

|VtGt| dt <∞, R-a.s. We have also seen at Lemma 3.1 that Gt is a right

continuous uniformly integrable process. It follows that we can choose τk = ∞ R-a.s. for
all k ≥ 1 in formula (11) and that for all 0 ≤ s ≤ t ≤ 1, t ∈ [s, 1] 7→ E(Gt | Xs) is a
right continuous real function. Therefore, to obtain the announced results, it is sufficient
to show that

lim
h↓0

E

∫

[0,1−h]

∣∣∣∣
1

h
EP [Gt+h −Gt | Xt]− VtGt

∣∣∣∣ dt = 0.

We decompose

−
1

h
E[Gt+h −Gt | Xt] + VtGt = EP [A

t
h +Bt

h + Ct
h | Xt]

where

Ath :=
1

h
θ

(
−

∫

[t,t+h]

Vs ds

)
Gt

Bt
h :=

1

h

(
e−

∫
[t,t+h] Vs ds − 1

)
(Gt+h −Gt)

Ct
h := Gt

1

h

∫

[t,t+h]

(Vt − Vs) ds

with θ(a) := ea − a− 1, a ∈ R which we already met at (15). It remains to prove that

lim
h↓0

E

∫

[0,1−h]

|Ath| dt = lim
h↓0

E

∫

[0,1−h]

|Bt
h| dt = lim

h↓0
E

∫

[0,1−h]

|Ct
h| dt = 0.

• Proof of limh↓0E
∫
[0,1−h]

|Ath| dt = 0. We have

0 ≤
1

h
θ

(
−

∫

[t,t+h]

Vs ds

)

≤

∣∣∣∣
(
1

h

∫

[t,t+h]

Vs ds

)(
e−

∫
[t,t+h] Vs ds − 1

)∣∣∣∣ ≤ λo(e
λoh − 1) +

1

h

∫

[t,t+h]

|Vs| ds.

But Eγ∗
(

1
h

∫
[t,t+h]

|Vs| ds
)
≤ 1

h

∫
[t,t+h]

Eγ∗(|Vs|) ds ≤ suptEγ
∗(|Vt|) < ∞ by assumption.

Since limb→∞ γ∗(b)/b = ∞ because γ doesn’t grow too fast, {Ath; t ∈ [0, 1], h > 0} is
uniformly integrable. This leads us to the desired convergence result since limh↓0A

t
h(ω) =

0 for dtR(dω)-almost all (t, ω) ∈ [0, 1]× Ω.

• Proof of limh↓0E
∫
[0,1−h]

|Bt
h| dt = 0. Since t 7→

∫
[0,t]

Vs ds is absolutely continuous and

t 7→ Gt is right continuous R-a.s., we see that

|Bt
h| ≤ eλoh

1

h

∫

[t,t+h]

|Vs| ds |Gt+h −Gt| →
h↓0

0, R-a.s.

On the other hand we have shown at Lemma 3.2 that {Bt
h; t ∈ [0, 1], h > 0} is uniformly

integrable.

• Proof of limh↓0E
∫
[0,1−h]

|Ct
h| dt = 0. We have

E

∫

[0,1−h]

Gt

∣∣∣∣
1

h

∫

[t,t+h]

(Vt − Vs) ds

∣∣∣∣ dt ≤ E

[
G∗

∫

[0,1−h]

∣∣∣∣Vt −
1

h

∫

[t,t+h]

Vs ds

∣∣∣∣ dt
]

where we put Vt = 0 for all t > 1. By Lemma 3.1, G∗ ∈ Lγ(R). Therefore the mea-
sure G∗R is a bounded measure and we can apply Lemma 2.7 with v(t, ω) = Vt(ω) in
L1([0, 1]× Ω, G∗R) and k

h = 1
h
1[−h,0]. This completes the proof of the theorem. �
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4. Generalized h-transforms of a Markov process

Let R ∈ P(Ω) be a stationary Markov process with the invariant probability measure
m ∈ P(X ) as in Section 3. In the present section we consider the process

P := f0(X0) exp

(
−

∫

[0,1]

Vt(Xt) dt

)
g1(X1)R ∈ P(Ω) (19)

where V : [0, 1]× X → R is a lower bounded measurable potential and

f0 ∈ Lγ
∗

(m), g1 ∈ Lγ(m), f0, g1 ≥ 0. (20)

It is assumed once for all that

R(f0(X0)g1(X1) > 0) > 0

to discard the uninteresting trivial situation where P = 0. We normalize f0 and g1 to
obtain P (Ω) = 1.

Remark that exp
(
−
∫
[0,1]

Vt(Xt) dt
)

is bounded. It follows with the assumption (20)

that f0(X0) ∈ Lγ
∗

(R), g1(X1) ∈ Lγ(R) and that f0(X0) exp
(
−
∫
[0,1]

Vt(Xt) dt
)
g1(X1)

is a nonnegative R-integrable function. Hence, it can be normalized such that P is a
probability measure.

Definition 4.1 (Generalized h-transform of R). Let R ∈ P(Ω) be a stationary Markov
process which admits an invariant probability measure.
A process P ∈ P(Ω) which is specified by formula (19) is called a generalized h-transform
of R, or a generalized h-process for short.

It is not essential that R is assumed to be a stationary Markov process in this definition.
Our aim is to identify P as the solution of a martingale problem. To do it, we are going
to derive the extended generator LP of the generalized h-process P on a class of functions
C which is large enough to characterize P . With Theorem 2.9, we see that we are on the
way to compute its stochastic derivative LP on C.

Playing with the Markov property. Recall that P ∈ P(Ω) is a Markov process if and
only if for all t ∈ [0, 1], X[0,t] and X[t,1] are independent with respect to the conditional law
P (· | Xt). In other words, if and only if the past and future are independent conditionally
on the present. This property is invariant with respect to time reversal. In particular the
time reversed process of R is still Markov. As with the definition of g at (14), one can
define a measurable function ft(x) on [0, 1]×X by the formula

ER

[
f0(X0) exp

(
−

∫

[0,t]

Vs(Xs) ds

)
| X[t,1]

]
=: ft(Xt), t ∈ [0, 1] R-a.s. (21)

since ER(a | X[t,1]) = ER(a | Xt) for any X[0,t]-measurable and integrable function a. As

exp
(
−
∫
[0,t]

Vs(Xs) ds
)
is bounded and f0(X0) ∈ Lγ

∗

(R), we see that ft ∈ Lγ
∗

(m) for all

t ∈ [0, 1].

Proposition 4.2.

(1) The generalized h-process P is Markov.
(2) For every t ∈ [0, 1], Pt ≪ m and

dPt
dm

= ftgt (22)
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where ft and gt are defined respectively by (21) and (14) and stand respectively in
Lγ

∗

(m) and Lγ(m).
(3) For every 0 ≤ s ≤ t ≤ 1,

dP[s,t]

dR[s,t]

=
dPs
dm

(Xs)gs(Xs)
−1 exp

(
−

∫

[s,t]

Vr(Xr) dr

)
gt(Xt) (23)

= fs(Xs) exp

(
−

∫

[s,t]

Vr(Xr) dr

)
ft(Xt)

−1dPt
dm

(Xt) (24)

= fs(Xs) exp

(
−

∫

[s,t]

Vr(Xr) dr

)
gt(Xt)

where no division by zero occurs in the sense that gs > 0, Ps-a.s. and ft > 0,
Pt-a.s.

Proof. • Proof of (1). Fix 0 < t < 1 and take two bounded nonnegative functions
a and b such that a is X[0,t]-measurable and b is X[t,1]-measurable. Let us write α =

f0(X0) exp
(
−
∫
[0,t]

Vs(Xs) ds
)
∈ σ(X[0,t]) and β = exp

(
−
∫
[t,1]

Vs(Xs) ds
)
g1(X1) ∈ σ(X[t,1])

so that P = αβ R and

EP (ab | Xt) =
ER(abαβ | Xt)

ER(αβ | Xt)
X
=
ER(aα | Xt)ER(bβ | Xt)

ER(α | Xt)ER(β | Xt)
= EP (a | Xt)EP (b | Xt)

where we used the Markov property of R at the marked equality. This proves that P is
Markov.

• Proof of (2) and (3). As a general result of integration theory, if P = ZR with Z ∈
L1(R), then the push-forward Pφ := φ#P of the measure P by the measurable application
φ is absolutely continuous with respect to Rφ := φ#R and Pφ = ER(Z | φ)Rφ where
ER(Z | φ) := ER(Z | σ(φ)) is the conditional expectation of Z with respect to the σ-field
σ(φ) generated by φ. In particular, with φ = X[s,t] we obtain

P[s,t] = ER(dP/dR | X[s,t])R[s,t].

We have

ER(dP/dR | X[s,t])

= ER

[
f0(X0) exp

(
−

∫

[0,1]

Vr(Xr) dr

)
g1(X1) | X[s,t]

]

= ER

[
f0(X0) exp

(
−

{∫

[0,s]

+

∫

[s,t]

+

∫

[t,1]

}
Vr(Xr) dr

)
g1(X1) | X[s,t]

]

= fs(Xs) exp

(
−

∫

[s,t]

Vr(Xr) dr

)
gt(Xt)

where the Markov property of R is used at last equality. In particular, when s = t
this gives us (22). But with (22), we see that for all t, ft > 0 and gt > 0, Pt-a.s.,
fs(Xs) = gs(Xs)

−1 dPs

dm
(Xs) and gt(Xt) = ft(Xt)

−1 dPt

dm
(Xt). �

A preliminary result under a finite entropy condition. A seemingly innocent result
is proved at Proposition 4.7 below. But in fact it is a mendatory technical key to our
approach. It states that, provided that the canonical process is a nice R-semimartingale
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(see Definition 2.1), under the assumption that the relative entropy

H(P |R) :=

∫
log

dP

dR
dP <∞

is finite, if a large class of regular functions stands in domLR, then it is also in domLP .
Let r be a probability on DR such that the canonical process x on DR is a nice semi-

martingale

x = x0 +B +Mr, r-a.s. (25)

where B is an absolutely continuous process andMr is a local r-martingale. Suppose also
that the quadratic variation and the jump compensator are absolutely continuous. More
precisely, there exists a nonnegative adapted process a such that

∫
[0,1]

at dt < ∞, r-a.s.

and

d[x, x]ct = at dt, r-a.s.

and the dual predictable projection ℓ of the jump measure
∑

0≤s≤t δ(s,∆xs) has the following
form

ℓt(dtdq) = dtℓt(dq), r-a.s.

This means that ℓt = ℓ(t, x[0,t); ·) is a predictable nonnegative measure on R∗ := R \ {0}
such that ∑

0≤s≤t

f(s, x[0,s); ∆xs) =

∫

[0,t]×R∗

f(s, x[0,s); q) dsℓs(dq) +Mf
t

where Mf is a local r-martingale and this decomposition is valid for any measurable
function f such that

∫
[0,1]×R∗

|f(t, x[0,t); q)| dtℓt(dq) <∞, r-a.s.

It is also assumed that∫

[0,1]×R∗

θ(α|q|) dtℓt(dq) <∞, ∀α ≥ 0 r-a.s. (26)

where θ(a) := ea − a− 1, a ∈ R already appeared at (15).

Lemma 4.3. Let r be as above and p be a probability on DR such that H(p|r) < ∞.
Then, x is also a nice p-semimartingale.

Remarks 4.4.

(1) Girsanov’s theorem tells us that if x is an r-semimartingale and p ≪ r, then x is
also a p-semimartingale. This lemma tells us that the property of being a nice
semimartingale is also hereditary under the stronger condition that H(p|r) <∞.

(2) In case when no jump occurs and the r-semimartingale is built on a Brownian
filtration, it is well-known that Lemma 4.3 is still valid with the weaker assumption
that p ≪ r instead of H(p|r) < ∞. This follows from Girsanov’s theorem and a
martingale representation theorem.

(3) The assumption H(p|r) < ∞ is not very restrictive. Indeed, p ≪ r means that
dp/dr ∈ L1(r), while H(p|r) <∞ means that (dp/dr) log+ (dp/dr) ∈ L1(r).

(4) For more details about extensions of this result, see [Léob].

Proof. The proof is based on the variational representation

H(p|r) = sup{Epu− logEre
u; u measurable : Ere

u <∞} (27)

of the relative entropy which holds true for any probability measure p such that H(p|r)
is finite, see for instance [Léob, Lemma 3.1] for a proof.
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Let h belong to the space S of all simple predictable processes:

ht = h01{0}(t) +

k∑

i=1

hi1(Ti,Ti+1](t)

with k a finite integer, hi ∈ σ(x[0,Ti)), |hi| < ∞ and 0 ≤ T1 ≤ · · · ≤ Tk+1 = 1 an
increasing sequence of stopping times. Its stochastic integral with respect toMr is h·Mr

t =∑k
i=1 hi(M

r

Ti+1∧t
−Mr

Ti∧t
), t ∈ [0, 1] and the stochastic exponential of h ·Mr is

E(h ·Mr)t = exp

(
h ·Mr

t −

∫

[0,t]

h2s
2
as ds−

∫

[0,t]×R∗

θ(hsq) dsℓs(dq)

)

Under the assumption (26), the integrals in the exponential are finite r-a.s. so that the

sequence of stopping times inf{t ∈ [0, 1];
∫
[0,t]

h2s
2
as ds+

∫
[0,t]×R∗

θ(hsq) dsℓs(dq) ≥ k} tends

to infinity r-a.s. as k tends to infinity. It follows that E(h·Mr) is a positive supermartingale
and in particular that: ErE(h ·M

r)1 ≤ 1. Therefore, for any h in S, logErE(h ·M
r

1 ) ≤ 0
and with (27) we obtain

Ep(h ·M
r

1 ) ≤ H(p|r) + Ep

(∫

[0,1]

h2t
2
at dt+

∫

[0,1]×R∗

θ(htq) dtℓt(dq)

)

≤ H(p|r) +

∫

[0,1]×DR

Φ(t, η; ht(η))p(dtdη)

where

p(dtdη) = dtp(dη)

and for all t ∈ [0, 1], η ∈ DR, x ∈ R,

Φ(t, η; x) := at(η)x
2/2 +

∫

R∗

θ(|qx|)ℓ(t, η; dq).

A standard convexity argument (note that θ(|x|) is a convex nonnegative even function)
proves that the gauge functional

|h|p := inf

{
α > 0;

∫

[0,1]×DR

Φ(t, η; ht(η)/α)p(dtdη) ≤ 1

}
∈ [0,∞)

is a seminorm on S. Considering h/|h|p and −h/|h|p in the above inequality, it is easy to
deduce that

|Ep(h ·Mr

1 )| ≤ (H(p|r) + 1)|h|p, ∀h ∈ S.

This means that if H(p|r) < ∞, h 7→ Ep(h ·Mr

1 ) is a | · |p-continuous linear form on S.
But, | · |p is the seminorm of an Orlicz space and by assumption (26),

∫
Φ(ah) dp < ∞

for all a ≥ 0 and h ∈ S. This implies that S is a subspace of the “small” Orlicz space
SΦ(p) := {f : [0, 1] × DR → R, measurable,

∫
Φ(t, η; aft(η))p(dtdη) < ∞, ∀a ≥ 0}

whose dual representation is well-known, see [RR91]: There exists a measurable func-
tion k on [0, 1] × DR which stands in the “large” Orlicz space {k : [0, 1] × DR →
R, measurable,

∫
Φ∗(t, η; aokt(η))p(dtdη) < ∞, for some ao > 0} =: LΦ∗

(p) ⊂ L1(p)
associated with the convex conjugates Φ∗(t, η; ·) of Φ(t, η; ·), such that

Ep(h ·M
r

1 ) =

∫

[0,1]×DR

kt(η)ht(η)p(dtdη), ∀h ∈ S. (28)
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Since h is predictable, we also have
∫
kh dp =

∫
[0,1]

Ep(ktht) dt = Ep

∫
[0,1]

Ep(kt | x[0,t))ht dt

and taking b̃t = Ep(kt | x[0,t)) we see with (28) that

Ep

(∫

[0,1]

ht dM
r

t −

∫

[0,1]

htb̃t dt

)
= 0, ∀h ∈ S.

It follows that Mp

t :=Mr

t − B̃t with B̃t :=
∫
[0,t]

b̃s ds is a local p-martingale and with (25)

we finally obtain that

x = x0 +B + B̃ +Mp, p-a.s.

where B + B̃ has absolutely continuous sample paths p-a.s. �

Let us go back to R and P given at (19).

Definition 4.5 (The class UR). Let the reference Markov process R be given. We say
that the measurable function u : [0, 1]× X → R is in the class UR (with respect to R):
u ∈ UR, if

(a) u ∈ domLR;
(b) d[ut(Xt), ut(Xt)]

c ≪ dt, R-a.s.;
(c) the predictable dual projection ℓu of

∑
t∈[0,1] δ(t,∆ut(Xt)) satisfies ℓu(dtdq) = dtℓut (dq)

and
∫
[0,1]×R∗

θ(α|q|) dtℓut (dq) <∞ for all α ≥ 0, R-a.s.

In other words, u ∈ UR if the process u(t, Xt) is a R-semimartingale and its law r ∈
P(DR) meets the assumptions of Lemma 4.3.

Remark 4.6. For the class UR, we have in mind C1,2
c ([0, 1]× R

d) when R is such that the
canonical process X is a nice R-semimartingale with its values in X = R

d. Indeed, at
least in the continuous case when no exponential moments of ℓu are required, Itô’s formula
immediately implies that C1,2

c ([0, 1]× R
d) ⊂ UR.

Otherwise, if X is not a nice R-semimartingale, then it might happen that UR reduces to
the constant functions.

A useful result is the following

Proposition 4.7. Let us assume that H(P |R) <∞. Then any u ∈ UR is also in domLP .

Proof. Let Ψ : Ω → DR be the application Ψ = (ut(Xt))t∈[0,1]. The measure r = Ψ#R ∈
P(DR) is the law of the process (ut(Xt))t∈[0,1] when the canonical process is governed by
R ∈ P(Ω). By the definition of the class UR, r satisfies the assumptions of Lemma 4.3.
Let p = Ψ#P be the law of (ut(Xt))t∈[0,1] under P ∈ P(Ω). By contraction of the relative
entropy (an easy consequence of (27)), we have H(p|r) = H(Ψ#P |Ψ#R) ≤ H(P |R) <∞.
This is the second assumption of Lemma 4.3, and this lemma tells us that (ut(Xt))t∈[0,1]
is a nice P -semimartingale, i.e. u ∈ domLP . �

Lemma 4.8. Let P ∈ P(Ω) be specified by (19) with inf V > −∞ and f0, g1 ≥ 0. Then,
for H(P |R) <∞, it is sufficient that

∫
X
f 2
0 log

p
+(f0) dm <∞ and

∫
X
g21 log

p
+(g1) dm <∞

for some p > 1.

Proof. Sincem and R are bounded positive measures, only the large values of the functions
are important as regards integrability issues. As exp(−

∫
[0,1]

Vt dt) is bounded, all we

have to show is that if two nonnegative functions F = f0(X0) and G = g1(X1) satisfy∫
F 2 logp+(F ) dR < ∞ and

∫
G2 logp+(G) dR < ∞ with p > 1, then

∫
FG log+(FG) dR <

∞.
For all x, y ≥ 0, we have xy ≤ x2 log+ x when y ≤ x log+ x and in the alternate case when
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y ≥ x log+ x, we see that for any 0 < q < 1 and y ≥ yq large enough, x ≤ y(log+ y)
−q.

Hence,

xy ≤ x2 log+ x+ y2(log+ y)
−q, ∀x ≥ 0, y ≥ yq.

Now, for F,G large enough we have

FG log+(FG) ≤ (F log+ F )G+ FG log+G

≤ F 2 log+ F +G2 log+G+
(F log+ F )

2

logq+(F log+ F )
+

(G log+G)
2

logq+(G log+G)

≤ 2F 2 log2−q+ F + 2G2 log2−q+ G

which completes the proof of the lemma. �

Let χ(a) be a Young function, then

γf(a) := χ(|a| log+ |a|) and γg(b) := χ∗(|b| log+ |b|) (29)

are also Young functions. Clearly, ab log+(ab) ≤ (a log+ a)b+a(b log+ b) ≤ 2[γf(a)+γg(b)]
for any large enough positive numbers a, b. Therefore, if f ∈ Lγf and g ∈ Lγg , then
fg ∈ L logL.

Gathering our last results leads us to the following statement.

Theorem 4.9. Let P be the generalized h-process given at (19) with inf V > −∞ and
the functions f0 and g1 such that one of the following conditions is satisfied:

(i) f0 ∈ Lγf (m) and g1 ∈ Lγg(m) where γf and γg satisfy (29);
(ii)

∫
X
f 2
0 log

p
+(f0) dm <∞ and

∫
X
g21 log

p
+(g1) dm <∞ for some p > 1.

Then, H(P |R) <∞ and any function u ∈ domLR which is in the class UR is also in the
extended domain domLP associated with P.

As particular cases of condition (i) above, we have f0 ∈ L∞(m), g1 ∈ L logL(m) and
f0 ∈ L logL(m), g1 ∈ L∞(m). Condition (ii) is a slight improvement of condition (i) with
χ(x) = x2.

The stochastic derivative of P . Let us start saying some words about the carré du
champ operator ΓR of a Markov process P. It is a general result of the theory of stochastic
processes that the product of two real semimartingales is still a semimartingale. More
precisely, if Y and Z are semimartingales, then

Y Z = Y Z0 +

∫
Y−dZ +

∫
Z−dY + [Y, Z]

where [Y, Z]t is the limit along refining finite partitions of the time interval by means of
stopping times: 0 ≤ T1 ≤ · · · ≤ Tk = 1, of the cross variation

∑
i(YTi+1∧t−YTi∧t)(ZTi+1∧t−

ZTi∧t). It is a remarkable result that [Y, Z] is again a semimartingale. Its compensator is
denoted by 〈Y, Z〉, this means that

[Y, Z] = 〈Y, Z〉+MY,Z

where 〈Y, Z〉 is a predictable bounded variation process and MY,Z is a local martingale.
Nevertheless, the product of two nice semimartingales might not be nice anymore. Let Y
and Z be nice. Clearly, the stochastic integrals

∫
Y−dZ and

∫
Z−dY are nice so that Y Z

is nice if and only if 〈Y, Z〉 is absolutely continuous.
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Definition 4.10 (Carré du champ operator). Let u and v be two measurable real func-
tions on [0, 1]× X . Going back to the canonical process X on Ω, suppose that the pro-
cesses u(X) = (ut(Xt))t∈[0,1] and v(X) = (vt(Xt))t∈[0,1] are P -semimartingales such that
〈u(X), v(X)〉 is absolutely continuous P -a.s. Then, we say that the couple of functions
(u, v) is in the domain domΓP of the carré du champ operator ΓP which is defined by

d〈u(X), v(X)〉t =: ΓR(u, v)(t, Xt−) dt, P -a.s.

This identity determines the function (t, x) ∈ [0, 1]× X 7→ ΓP (u, v)(t, x) ∈ R, dtPt(dx)-
almost everywhere.

As a direct consequence of this definition, we obtain the following result which is often
used as a definition of ΓP .

Proposition 4.11. Let u and v be two continuous functions on [0, 1]× X such that u, v
and their product uv belong to domLP . Then, (u, v) ∈ domΓP and

ΓP (u, v) = LP (uv)− uLPv − vLPu.

Proof. We denote Ut = u(t, Xt) and Vt = v(t, Xt). By hypothesis, we have dUt =
LPu(t, Xt) dt + dMu

t , dVt = LPv(t, Xt) dt + dMv
t and d(UV )t = LP (uv)(t, Xt) dt+ dMuv

t

where M stands for any local R-martingale. Therefore,

d[U, V ]t = d(UV )t − UtdVt − VtdUt

= [LP (uv)− uLP (v)− vLP (u)](t, Xt−) dt+ dMt

with dMt = dMuv
t −UtdM

v
t −VtdM

u
t . Hence, d〈U, V 〉t = [LP (uv)−uLPv−vLPu](t, Xt−) dt,

which is the announced result. �

There are no tractable general conditions on P which imply that 〈u(X), v(X)〉 is ab-
solutely continuous P -a.s. whenever u, v ∈ domLP . Counterexamples are known, see
[Mok89]; u, v ∈ domLP doesn’t imply in general that (u, v) ∈ domΓP . Some additional
assumptions are needed.

Theorem 4.12. Let the h-process P and the function gt(x) be defined by (19) and (14).
Let the hypotheses of Theorem 3.3 and Proposition 4.7 be satisfied:

(i) R ∈ P(Ω) is a stationary Markov process with invariant law m = Rt ∈ P(X ) for all
t ∈ [0, 1];

(ii) γ is a Young function which satisfies (16) and γ∗ is its convex conjugate;
(iii) V is a measurable function on [0, 1]× X which is bounded below and is such that

{γ∗(Vt); t ∈ [0, 1]} is uniformly integrable in L1(m);
(iv) g1 is a nonnegative function on X in Lγ(m).

We also assume that f0 and g1 satisfy the hypotheses of Theorem 4.9 to insure that
H(P |R) <∞.
Then, UR ⊂ domLP ⊂ domLP and for all u ∈ UR which satisfies for almost all t ∈ [0, 1)
and m-almost all x,

sup
s∈[t,t+ho]

ER(|L
Rus|

p | Xt = x) <∞, for some ho > 0 and p > 1, (30)

we have
(g, u) ∈ domΓR

and

LPu(t, x) = LPu(t, x) = LRu(t, x) +
ΓR(g, u)(t, x)

gt(x)
, dtPt(dx)-a.e.

where no division by zero occurs since gt > 0, Pt-a.s.
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Proof. Let u be in UR, then we know by Theorems 2.9 and 4.9 that

u ∈ domLP ⊂ domLP . (31)

With (23) we see that for all 0 ≤ t < t + h ≤ 1 and Pt-almost all x,

EP (ut+h(Xt+h)− ut(x) | Xt = x)

= ER

(
gt(x)

−1[ut+h(Xt+h)− ut(x)] exp

(
−

∫

[t,t+h]

Vr(Xr) dr

)
gt+h(Xt+h) | Xt = x

)

with gt(x) > 0, Pt(dx)-a.s. We write for simplicity us(Xs) = Us, gs(Xs) = Gs, Vs = Vs(Xs),
DhUt = ut+h(Xt+h)−ut(x), D

hGt = gt+h(Xt+h)−gt(x) and D
hFt =

∫
[t,t+h]

Vr(Xr) dr. The

inner term in the right-hand side expectation is

gt(x)
−1DhUte

−DhFtGt+h

= DhUt(1 + [e−D
hFt − 1])(1 +DhGt/gt(x))

= DhUt +DhUtD
hGt/gt(x) + [e−D

hFt − 1][DhUt +DhUtD
hGt/gt(x)]. (32)

As it is assumed that u ∈ domLR, (Ur)r∈[0,1] is a R-semimartingale. Since its sample
paths are in DR, they are bounded R-a.s. and the sequence of stopping times inf{r ∈
[0, 1]; |Ur| + Gr ≥ k} converges R-a.s. to infinity. Therefore, we can assume without loss
of generality that U and G are bounded without introducing integration times.
The contribution of the first term DhUt of (32) is well understood. Since u ∈ domLR, we
have

lim
h↓0

1

h
Ex
RD

hut = LRu(t, x) (33)

where we denote Ex
R = ER(· | Xt = x) for simplicity.

Let us control, the last term of (32). As G and U can be assumed to be bounded, DUt
and DGtDUt are also bounded. Hence, DUt + DGtDUt/gt(x) is bounded and by right
continuity of the sample paths, it tends to zero R-a.s.. By dominated convergence, we
obtain

lim
h↓0

Ex
Rγ(DUt +DGtDUt/gt(x)) = 0.

On the other hand, |e−D
hFt − 1| = |[e−D

hFt − 1]/(−DhFt)| |D
hFt| ≤ eλoh|

∫
[t,t+h]

Vr dr| and

Ex
Rγ

∗

(
1

h
[e−D

hFt − 1]

)
≤ cγ∗,λoE

x
Rγ

∗

(
1

h

∫

[t,t+h]

Vr dr

)
≤ cγ∗,λoE

x
R

1

h

∫

[t,t+h]

γ∗(Vr) dr

= cγ∗,λo
1

h

∫

[t,t+h]

Ex
Rγ

∗(Vr) dr ≤ cγ∗,λo sup
r∈[0,1]

Ex
Rγ

∗(Vr) <∞.

It follows with Hölder’s inequality that

lim
h↓0

1

h
Ex
R

∣∣∣[e−DhFt − 1][DhUt +DhUtD
hGt/gt(x)]

∣∣∣

≤ 2 lim
h↓0

∥∥1
h
[e−D

hFt − 1]
∥∥
Lγ∗(Rx)

∥∥DUt +DGtDUt/gt(x)
∥∥
Lγ(Rx)

= 0. (34)

Let us look at DhUtD
hGt coming from the second term of (32). By means of basic

stochastic calculus we arrive at

DGtDUt =

∫

[t,t+h]

(Gr −Gt) dUr +

∫

[t,t+h]

(Ur − Ut) dGr + [G,U ]t+h − [G,U ]t.
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With dUr = LRur dr+ dMu
r and dGr = LRgr dr+ dMg

r = VrGr dr+ dMg
r where we relied

on Theorem 3.3 in last equality, taking the expectation leads us to

Ex
R(DGtDUt)

= Ex
R

∫

[t,t+h]

(Gr −Gt)L
Rur dr

︸ ︷︷ ︸
Ah

+Ex
R

∫

[t,t+h]

(Ur − Ut) VrGr dr

︸ ︷︷ ︸
Bh

+Ex
R([G,U ]t+h − [G,U ]t)︸ ︷︷ ︸

Ch

.

Let us control Ah, Bh and Ch. By Hölder’s inequality with 1/p+ 1/q and q ≥ 1,

Ah ≤

(
Ex
R

∫

[t,t+h]

|Gr −Gt|
q dr

)1/q (
Ex
R

∫

[t,t+h]

|LRur|
p dr

)1/p

.

But Ex
R

∫
[t,t+h]

|Gr − Gt|
q dr = o(h) since {Gr; r ∈ [0, 1]} is bounded and G is right con-

tinuous. We also obtain, Ex
R

∫
[t,t+h]

|LRur|
p dr =

∫
[t,t+h]

Ex
R|L

Rur|
p dr = O(h), under the

condition that (30) holds. It follows that Ah = o(h)1/qO(h)1/p = o(h).
Let us control Bh. We can take U bounded and we already know by Lemma 3.2 that
{VtGt; t ∈ [0, 1]} is uniformly integrable. Since U is right continuous, it follows that
Bh = o(h).
We know by (31) that the limit

lim
h↓0

1

h
Ex
R

{
DhUt +DhUtD

hGt/gt(x)

+ [e−D
hFt − 1][DhUt +DhUtD

hGt/gt(x)]
}
=: LPu(t, x)

exists. We have also shown (33) and (34) which imply that, dtPt(dx)-a.e. :

LPu(t, x) = LRu(t, x) + gt(x)
−1 lim

h↓0

1

h
Ch

= LRu(t, x) + gt(x)
−1 lim

h↓0

1

h
Ex
R([G,U ]t+h − [G,U ]t)

= LRu(t, x) + gt(x)
−1 lim

h↓0

1

h
Ex
R(〈G,U〉t+h − 〈G,U〉t)

and in particular that the limit limh↓0
1
h
Ex
R(〈G,U〉t+h − 〈G,U〉t) exists. Since this is true

for all t and x, this shows that (g, u) belongs to the domain of ΓR. We conclude noticing
that by definition limh↓0

1
h
Ex
R(〈G,U〉t+h − 〈G,U〉t) = ΓR(g, u)(t, x). �

We note for future use the following result.

Corollary 4.13. Under the assumptions of Theorem 4.12, we have

ΓR(g, u)(t, x) = lim
h→∞

1

h
ER

(
[gt+h(Xt+h)−gt(x)][ut+h(Xt+h)−ut(x)]|Xt = x

)
, dtm(dx)-a.e.

(35)
The product ug is in domLR and ΓR(g, u) = LR(gu)− gLRu− uLRg.

Proof. The identity (35) has been proved during the previous proof of Theorem 4.12. Next
assertion follows from D(GU) = DGDU +UDG+GDU and the convergences which are
implied by u, g ∈ domLR and (g, u) ∈ domΓR. �
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Remark 4.14. Let us also remark that applying Lemma 4.3 to the quadratic variation
[u(X)], under the assumption H(P |R) < ∞ we see that d〈u(X)〉Rt ≪ dt, R-a.s. implies
that d〈u(X)〉Pt ≪ dt, P -a.s. It follows that

domΓP ⊂ domΓR

in the sense that we consider dtPt(dx)-a.e.-defined functions instead of dtm(dx)-a.e.-
defined functions.
In the special case when X is continuous R-a.s., we also have 〈u(X)〉P = 〈u(X)〉R, P -a.s.,
which implies that ΓP (u, v)(t, x) = ΓR(u, v)(t, x), dtPt(dx)-a.e., (u, v) ∈ domΓP .

5. Continuous diffusion processes on R
d

In this section we examplify the previous abstract results with simple continuous dif-
fusion processes on R

d.

The reference process R. The reference process R is the law of a Markov continuous
diffusion process on the state space X = R

d which admits an invariant probability measure
m. To fix the ideas, we assume in the whole section that it is the solution of the stochastic
differential equation (SDE)

Xt = X0 +

∫

[0,t]

b(Xs) ds+

∫

[0,t]

σ(Xs) dWs, t ∈ [0, 1]

where W is a R
d-valued Wiener process, b : Rd → R

d and σ : Rd →Md×d are locally Lip-
schitz functions which are respectively vector-valued and matrix-valued. We also assume
that R-a.s., X doesn’t explode on the time interval [0, 1].

Result 5.1. Under these hypotheses on R, it is known that R is the unique solution of the
martingale problem MP(L, C;µo) in the sense of Definition 2.4 with the initial measure
µo = m and the generator LR given for all u ∈ C = C1,2

c ([0, 1]× R
d) by

LRu(t, x) = ∂tu(t, x) +

d∑

i=1

bi(x)∂xiu(t, x) +
1

2

d∑

i,j=1

aij(x)∂xi∂xju(t, x)

where (aij)1≤i,j≤d = a := σσ∗ ∈Md×d.
We denote this martingale problem MP(b, a;m).

Extended gradients. We introduce the notion of extended gradient. Let P be a solution
to the martingale problem MP(bP , a;P0), for some drift vector field bP : [0, 1]×R

d → R
d.

A simple computation based on Proposition 4.11 gives us

ΓP (ϕ, v)(t, x) = ∇ϕt(x)·a(x)∇v(x), dtPt(dx)-a.e., ϕ ∈ C1,2
c ([0, 1]×R

d), v ∈ C2
c (R

d). (36)

One proves the Cauchy-Schwarz type inequality
(∫

[s,t]

d〈A,B〉r

)2

≤

∫

[s,t]

d〈A,A〉r

∫

[s,t]

d〈B,B〉r, 0 ≤ s ≤ t ≤ 1

with the usual discriminent argument. Let us take u, v in C2
c (R

d) and ψ a measurable
function on [0, 1]× X such that (ψ, u) and (ψ, v) are in domΓP and such that ΓP (v −
u, v − u) = 0. Then, the above Cauchy-Schwarz inequality implies that ΓP (ψt, u)(t, x) =
ΓP (ψt, v)(t, x), dtPt(dx)-a.e. Consequently, the linear operator u 7→ ΓP (ψ, u) only depends

on the equivalence class defined by u ∼ v
def
⇔ ΓP (v − u, v − u) = 0, dtPt(dx)-a.e. ⇔
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a · ∇(v − u) = 0, dtPt(dx)-a.e., and it follows that there exists some vector field β on
[0, 1]× R

d such that ΓP (ψ, ·) is represented by

ΓP (ψ, v)(t, x) = βt(x) · a(x)∇v(x), dtPt(dx)-a.e., v ∈ C2(Rd). (37)

Moreover, up to dtPt(dx)-a.e. equality, there is a unique such β with its values in the
range of a.

Comparing (36) and (37), it is natural to introduce the following definition.

Definition 5.2 (Extended gradient). Let ψ be a measurable function on [0, 1]× R
d such

that for all u ∈ C2
c (R

d), (ψ, u) is in domΓP . The unique vector field β which satisfies

(37) and βt(x) ∈ Range a(x) up to dtPt(dx)-a.e. equality is denoted by β = ∇̃Pψ and it is
called the P -extended gradient of ψ.
When no confusion can occur, we simply drop P and write ∇̃Pψ = ∇̃ψ.

It is clear with our previous discussion that for any u ∈ C2
c (R

d), ∇̃u is the orthogo-

nal projection of ∇u on the range of the diffusion matrix a. In particular, ∇̃u = ∇u,
dtPt(dx)-a.e., when a(x) is invertible for all x ∈ R

d.

The martingale problem which is solved by P . Now we consider the generalized
h-process P . We are going to see that P solves a martingale problem MP(b+ aβ, a) and
that the additional drift β has the special form

β = ∇̃Pψ, P -a.s.

with ψ = log g, i.e.

ψ(t, x) := logER

[
exp

(
−

∫

[t,1]

Vs(Xs) ds
)
g1(X1) | Xt = x

]
, dtPt(dx)-a.e. (38)

which is well-defined dtPt(dx)-a.e. since g(t, x) > 0, dtPt(dx)-a.e., but might not be defined
dtm(dx)-a.e. in general.

Lemma 5.3. Assume that R satisfies the hypotheses of Result 5.1 and P defined by (19)
satisfies the hypotheses of Theorem 4.12. Then, for all u ∈ UR which verifies (30), (ψ, u)
is in domΓP and

ΓR(g, u)

g
(t, x) = ΓP (ψ, u)(t, x), dtPt(dx)-a.e.

Proof. Let us denote Zt = dP[0,t]/dR[0,t]. As Z admits a continuous version and Zt =

f0(X0) exp
(
−
∫
[0,t]

Vs(Xs) ds
)
Gt with Gt := gt(Xt), G also admits a continuous version.

Applying Itô’s formula to the continuous process ψt(Xt) = logGt, we obtain

dψt(Xt) =
dGt

Gt
−

1

2

d〈G〉t
G2
t

P -a.s. (39)

We deduce from this with Theorem 4.12 that for any u ∈ UR which verifies (30),
d〈ψ(X), u(X)〉t = d〈G, u(X)〉t/Gt = [ΓR(g, u)/g](t, Xt) dt, P -a.s. This completes the
proof of the lemma. �

Theorem 5.4. Assume that R satisfies the hypotheses of Result 5.1 and let P be the
generalized h-process which is defined by (19). Assume also that f0, g1 and V satisty the
hypotheses of Theorem 4.12.
Then P is the unique solution in {Q ∈ P(Ω);H(Q|R) <∞} of

P ∈ MP(b+ a∇̃Pψ, a;P0)
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with P0 = f0g0m and where the function

ψ(t, x) := log g(t, x) = logER

[
exp

(
−

∫

[t,1]

Vs(Xs) ds

)
g1(X1) | Xt = x

]
, dtPt(dx)-a.e.

is defined by (14) and (38).

Proof. Choosing UR = C1,2
c ([0, 1] × R

d) in Theorem 4.12, the assumption (30) holds true
for all u ∈ C1,2

c ([0, 1] × R
d). The result now follows from Theorem 4.12 and Lemma 5.3.

The assertion P0 = f0g0m is (22).
The uniqueness is implied by a general result of Girsanov’s theory since R is the unique
solution to its own martingale problem and H(P |R) < ∞. For an entropic point of view
under the present requirement that H(P |R) < ∞, see [Léob]. Otherwise, when P ≪ R
is only assumed this is a standard result of Girsanov’s theory, see [JS87]. �

Kolmogorov diffusion process. We illustrate this theorem by means of a diffusion
process which plays an important role in the area of functional equalities connected with
the concentration of measure phenomenon [Bak94, Roy99, Led01, Vil09].
The Kolmogorov diffusion process is the unique solution of the SDE

dXt = −∇U(Xt) dt+ dWt

where U is a C2-differentiable function on R
d such that ZU :=

∫
Rd e

−2U(x) dx < ∞. This
SDE admits the Boltzmann-Gibbs probability measure

mU (dx) := Z−1
U e−2U(x) dx

as a reversing measure. We take this reversible Kolmorov diffusion as the reference process
R. Hence, the initial law is R0 = mU and

R ∈ MP(−∇U, Id).

The generalized h-process to be considered here is P specified by (19) with the assumptions
of Theorem 5.4. This theorem tells us that

P ∈ MP(−∇U + ∇̃Pψ, Id).

In the special case when the potential V is zero, we have for all 0 ≤ t < 1,

gt(x) = ER(g1(X1) | Xt = x) = [2π(1− t)]−d/2
∫

Rd

g1(y) exp

(
|y − x|2

2(1− t)

)
dy.

Therefore, g ∈ C∞([0, 1)× R
d) and gt is positive for all 0 ≤ t < 1. It follows with

ψt(x) = logER(g1(X1) | Xt = x), t ∈ [0, 1), x ∈ R
d,

that ∇̃Pψt = ∇ψt and

P ∈ MP
(
−∇[U − ψ], Id)

and with Theorem 3.3 we see that ψ is a classical solution of the Hamilton-Jacobi-Bellman
(HJB) equation

{
LRψ(t, x) + 1

2
|∇ψt(x)|

2 = 0, t ∈ [0, 1), x ∈ R
d

limt↑1 ψt(x) := ψ1(x) = log g1(x), t = 1, x ∈ {g1 > 0}

where

LRu(t, x) =
(
∂t −∇U(x) · ∇ +

1

2
∆
)
u(t, x).
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Let us go back to the general case when V is not constant. The positivity improving
property of the heat kernel implies that ψt is well-defined for all t ∈ [0, 1). But it might
not be smooth enough to be a classical solution of the HJB equation:

{
LRψ(t, x) + 1

2
|∇ψt(x)|

2 − V (t, x) = 0, t ∈ [0, 1), x ∈ R
d

limt↑1 ψt(x) := ψ1(x) = log g1(x), t = 1, x ∈ {g1 > 0}

Because of its semigroup representation (38), ψ is a continuous viscosity solution of this
equation, see [FS93, Thm II.5.1] for instance.

6. Continuous-time Markov chains

In this section we examplify our results with simple Markov jump processes on a count-
able discrete space X which are analogous to the Kolmogorov diffusion processes. The
set of paths is Ω = D([0, 1],X ).

The reference process R. Since X is a countable discrete space, every function is
measurable and continuous. Let B(X ) denote the space of all real bounded functions on
X . The first ingredient is a Markov generator

∫

X

[u(y)− u(x)] J0(x; dy), u ∈ B(X ) (40)

where J0 is a kernel of positive measures on X such that J0(x; {x}) = 0 for all x ∈ X and

(i) J0(x;X ) <∞, for all x ∈ X ;
(ii) J0 induces an irreducible process in the sense that J0(x;X ) > 0 for all x ∈ X and for

any couple of distinct states (x, y), there exists a finite chain x = z1, z2, . . . , zn = y
such that J(zi; {zi+1}) > 0 for all i;

(iii) J0 satisfies the detailed balance condition

m0(dx)J0(x; dy) = m0(dy)J0(y; dx) (41)

for some nonnegative measure m0 on X (possibly with an infinite mass).

We say that Q ∈ P(Ω) solves the martingale problem MP(K) associated with the pre-
dictable jump kernel K = K(t, X[0,t); dy), if

u(t, Xt)− u(0, X0)−

∫

[0,t]

ds

∫

X

[u(s, y)− u(s,Xs−)]K(s,X[0,s); dy), t ∈ [0, 1]

is a local Q-martingale for a large class of functions u.
Under the assumption (i), there is a unique law R0 ∈ P(Ω) which solves the martingale

problem with a prescribed initial law and the Markov generator (40): R0 ∈ MP(J0).
Under the assumption (iii), the measure m0 is its invariant measure which is unique (up
to scalar multiplication) under the irreducibility assumption (ii).
The second ingredient is a potential U on X such that ZU :=

∫
X
e−2U dm < +∞. The

reference process R is the law of the Markov jump process with generator

LRu(x) :=

∫

X

[u(y)− u(x)] J(x; dy), u ∈ B(X ) where

J(x; dy) := exp(−[U(y)− U(x)]) J0(x; dy)

which is well defined for all u ∈ B(X ) provided that
∫

X

e−U(y) J0(x; dy) < +∞, ∀x ∈ X ,
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as this last integrability assumption implies that

J(x;X ) <∞, ∀x ∈ X . (42)

It is easily seen that the Boltzmann-Gibbs probability measure

mU(dx) := Z−1
U e−2U(x)m0(dx)

is the reversing measure of the jump process R since the detailed balance conditions are
satisfied. Indeed,

mU(dx)J(x; dy) = e−2U(x)e−[U(y)−U(x)]m0(dx)J0(x; dy)

= e−[U(x)+U(y)]m0(dx)J0(x; dy) = e−[U(x)+U(y)]m0(dy)J0(y; dx) = mU(dy)J(y; dx)

where (41) has been used at the last but one equality. Therefore,

R ∈ MP(J ;mU).

Moreover, it is the unique solution of this martingale problem. Indeed, thanks to (42) it
is possible to build a unique strong solution on some auxiliary probability space: a com-
bination of a discrete-time Markov chain with transition probabilities J(x; dy)/J(x;X )
and independent exponential clocks with frequencies J(x;X ), x ∈ X .

This reference law is sometimes called a Metropolis dynamics on the set X . It is useful
for estimating mU when the very high cardinality of X prevents us from computing the
normalizing constant ZU .

The martingale problem which is solved by P . Now we consider the h-process P.
Applying Theorem 4.12, we need to compute ΓR(g, u)/g for a large class of functions
u ∈ UR. We choose this class to be B(X ) for the following reasons. On one hand, we
can see that B(X ) ⊂ UR because with (42) it is clear that B(X ) ⊂ domLR and for all
u ∈ B(X ) and α ≥ 0,

∫
[0,1]×X

exp(α[u(y)−u(Xt−)]) dtJ(Xt−; dy) <∞. On the other hand,

we also see immediately with (42) that (30) holds for any bounded function u.

Theorem 6.1. Let R ∈ MP(J ;mU) be as above, P be the h-process specified at (19) and
assume also that f0, g1 and V satisty the hypotheses of Theorem 4.12.

Then P is the unique solution in {Q ∈ P(Ω);H(Q|R) <∞} of MP(JP ;P0) with P0 =
f0g0m and

JP (t, x; dy) = exp
(
ψt(y)− ψt(x)

)
J(x; dy) =

gt(y)

gt(x)
J(x; dy), dtPt(dx)-a.e.

where the function

ψ(t, x) := log g(t, x) = logER

[
exp

(
−

∫

[t,1]

Vs(Xs) ds

)
g1(X1) | Xt = x

]
, dtPt(dx)-a.e.

is still defined by (14) and (38).

Proof. Corollary 4.13 tells us that for all u ∈ B(X ), ΓR(g, u) = LR(ug)− uLRg − gLRu.
Hence, ΓR(g, u)(t, x) =

∫
X
[u(y)− u(x)][gt(y)− gt(x)] J(x; dy), dtm(dx) and

ΓR(g, u)

g
(t, x) =

∫

X

[u(y)− u(x)]

(
gt(y)

gt(x)
− 1

)
J(x; dy)

=

∫

X

[u(y)− u(x)]
(
eψt(y)−ψt(x) − 1

)
J(x; dy), dtPt(x)-a.e.



STOCHASTIC DERIVATIVES AND GENERALIZED h-TRANSFORMS 31

We conclude with Theorem 4.12 that P solves the announced martingale problem. The
uniqueness statement follows from the general Girsanov theory: because P ≪ R, it is
inherited from the fact that R is the unique solution of its martingale problem. �

As with the continuous diffusion processes, we see that some gradient of ψ is involved
in the shift from the dynamics of R to the dynamics of the h-process P. Indeed, denoting

Du(x; y) := u(y)− u(x)

the discrete gradient of u at x, we have

JP (x; dy) = exp
(
Dψt(x; y)

)
J(x; dy).

With Theorem 3.3 we know that LRg = V g. If g is time-differentiable and positive on
[0, 1)×X , we deduce that ψ is a classical solution of the following integro-differential HJB
equation

LRψ(t, x) +

∫

X

θ(Dψt(x; y)) J(x; dy)− V (t, x) = 0

where θ(a) := ea − a − 1 and LR is the generator whose value on any t-differentiable
bounded function u is

LRu(t, x) = ∂tu(t, x) +

∫

X

Dut(x; y) J(x; dy).

In the general case when g might not be time-differentiable and positive on [0, 1)×X , the
semigroup representation of ψ implies that ψ is the unique continuous viscosity solution
of the HJB equation

{
LRψ(t, x) +

∫
X
θ(Dψt(x; y)) J(x; dy)− V (t, x) = 0, t ∈ [0, 1), x ∈ R

d

limt↑1 ψt(x) := ψ1(x) = log g1(x), t = 1, x ∈ {g1 > 0} .
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Ann. Inst. H. Poincaré. Probab. Statist., 30:83–132, 1994.
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de probabilités. Tome 19, volume 1123 of Lecture Notes in Mathematics, pages 12–26. Springer,
1985.

[Nel67] E. Nelson. Dynamical theories of Brownian motion. Princeton University Press, 1967. Second
edition (2001) at: www.math.princeton.edu/∼nelson/books.html.

[Nel88] E. Nelson. Stochastic mechanics and random fields, in Ecole d’Eté de Probabilités de Saint-Flour
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