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Abstract

We consider a non necessarily complete financial market with one bond and one risky asset,
whose price process is modelled by a suitably integrable, strictly positive, cadlag process S over
[0,T]. Every option price is defined as the conditional expectation under a given equivalent (true)
martingale measure P, the same for all options. We show that every positive contingent claim
on S can be approximately replicated (in L?-sense) by investing dynamically in the underlying
and statically in all American put options (of every strike price k and with the same maturity
T). We also provide a counter-example to static hedging with European call options of all strike
prices and all maturities t < T'.
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1 Introduction

The aim of this paper is to investigate the issue of hedging in a market where agents are allowed to
invest continuously on time in a risky asset and statically in American put options of all strike prices
and with a fixed maturity 7. Such additional investment opportunities are of particular interest in
incomplete markets, in which case the payoffs cannot, in general, be replicated by a trading strategy
in the underlying.

Since in real financial markets many types of options are becoming more and more liquid, it
is very natural to reformulate hedging and optimal investment problems incorporating those larger
trading opportunities. Indeed, in the recent years many papers have treated problems like absence
of arbitrage, hedging, optimal portfolio choice in a financial market where investors are allowed to
trade in the underlying assets as well as to assume static positions in some class of derivatives. Here,
we recall only few of them: Campi [1] for no-arbitrage and completeness issues, the papers by Ilhan
et al. [11, 12] and Carr et al. [5] for optimal investment problems, and the more recent papers by
Schweizer and Wissel [20, 21] and by Jacod and Protter [14] where an HJM approach for European
call options is developed.

Our paper is much closer in spirit to that part of literature initiated by Ross [19], where it has
been shown that in a single period model with a finitely many states and n stocks, simple options
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(i.e. written on only one stock) can be replicated by trading in European call (or put) options on
that stock. Ross [19] established also the existence of a portfolio in all n stocks such that call (or put)
options written on that portfolio span the set of all options, simple as well as complex, i.e. written
on all stocks at the time. This result has been generalized in an infinite state space setting by Green
and Jarrow [10] (see also Nachman [16]). For a similar result in a dynamic discrete-time setting
with a general state space, we quote only a paper by Rogge [18], where the market completeness is
characterized in terms of a so-called “call-completeness”: there exists a strike price k > 0 such that
if a claim is attainable then also a call written on it with strike & is.

A more explicit result has been established in Carr and Madan [4], where it is shown that a
European option with pay-off f(St) (f sufficiently regular) can be hedged by a unique initial position
of f(So) — f'(S0)Sp unit discount bonds, f’(Sg) stock shares, and f”(k)dk out-of-the-money call and
put options of all strikes. Even more importantly, this result is model-free, so that it holds also in
a continuous-time framework. For static hedging of exotic options in a diffusion setting, we refer
to Carr et al. [3]. Moreover, in a discontinuous setting, Corcuera et al. [7] proved that a Lévy
market can be completed by trading statically in power-jump assets, which are somewhat related to
contracts on realized variance. In [6], a link between power-jump assets and European call options
is established, allowing Corcuera and Guerra to prove that a Lévy market can be completed by
trading in a continuum of European call options along strikes. Finally, in the paper [8], Davis and
Obloj provide necessary and sufficient conditions for a market model to be complete by trading in
given finite set of European-type derivatives driven by finitely many factors modelled as diffusion
processes.

To sum up, all these papers deal with the problem of finding a good class of derivatives capable
to span all contingent claims written on the same underlying. By “good class of derivatives” we
mean a class of options sufficiently liquid in real financial markets in order to reproduce with a
certain precision the hedging strategies suggested in these papers.

The present paper identifies American put options of all strike prices and with the same maturity
as a good class of derivatives allowing an investor to replicate approximately (in L2-sense) every
positive contingent claim written on the same underlying in a very general frictionless financial
market with one risk-free asset and one stock. Our main result, stated in Theorem 6, can be viewed
as a generalization to a continuous-time setting of previously quoted Ross’s result in [19] - notice that
in Ross’s single period setting there is no need to distinguish between European and path-dependent
options like American puts. Moreover, our result is model-free. Indeed, we will make only the very
mild assumption that the price process is a square-integrable and possibly discontinuous martingale
with no jump at maturity. The price we have to pay is that the agent has to trade in infinitely
many securities, in contrast with, e.g., Davis and Obloj [8] where, since agents can trade only in
finitely many assets, the authors need to assume more regularity as, e.g., analiticity of the coefficients
together with a non-singularity condition, to get the market completeness.

The present paper is structured as follows: In Section 2, we give a short description of the model,
Section 3 contains the main result on hedging with American put options. Finally, in Section 4, we
exhibit a two-periods market model where static investments in all European call (equivalently, put
options) of all strike prices and all maturities are not enough for replicating all contingent claims,
so justifying the use of their American counterparts.

2 The model

We consider a financial market composed by a riskless asset and a stock. More precisely, let (Q, F,P)
be a probability space equipped with a filtration (F;):c[o, 7], where T' > 0 is a finite horizon, F = Fr
and Fo is trivial. (Fi)seo,7) is the natural filtration - right-continuous and P-saturated - generated



by a strictly positive, cadlag process S = (S¢)icjo,r] modelling the price of the risky asset. We
assume without loss of generality that the price at time t of the riskless asset satisfies SY = et
where r > 0 is the spot interest rate (see Remark 7 for a straightforwad generalization). In the
sequel E[-] will denote expectation with respect to P and, for any process X, we set X=X /5% and
AX; = X; — X;_ for any t €]0,T). Finally, H?(P) will denote the space of all martingales bounded
in L2(P) := L?(P, Fr).

Our first assumption concerns the behaviour of the risky asset process S.

Assumption 1 S = S/S° belongs to H2(P) and it does not jump at T, i.e. ASp =0 a.s..

Since by assumption (F;)icjo,7) is the natural filtration of S, the equality ASr = 0 a.s. is
equivalent to Fr = Fp_, i.e. the underlying filtration is left-continuous at T'. We notice that this
property is satisfied, e.g., by all diffusion models and also by all exponential Lévy models. Indeed,
it is well-known that the natural filtration of any Lévy process is quasi-left continuous, i.e. it does
not jump at predictable stopping times (see, e.g., Protter [17], p. 150, Exercises 8 and 9, and p. 191
for details).

In this setting, a contingent claim pay-off on S with maturity 7 is naturally modelled by a random
variable f € L?(P). This model is not necessarily complete, so there may exist infinitely many
equivalent (local) martingale measures different from P and so, equivalently, not every contingent
claim can be hedged by trading only in the underlying, so that allowing an investor to trade also in
some class of options can enlarge considerably his hedging opportunities.

The following assumption can be viewed as a kind of no-arbitrage consistency among prices of
different options written on the same underlying S.

Assumption 2 In this financial market every option price comes from the same equivalent martin-
gale measure P.

Observe that Assumption 2 has a very natural financial motivation. Indeed, let us forget about
integrability issues for a while and consider two contingent claims with pay-offs f and f’ and cor-
responding risk-neutral prices f; and f; at time ¢. Assume that they come from two equivalent
martingale measures Q and Q' respectively, i.e. f; = Eq[f|F:] and f; = Eq/[f'|F:]. If we want the
enlarged market (S, f, f') to be arbitrage-free, there must be an equivalent martingale measure Q"
for (S, f, '), so that one has

fr = Eolf| 7] = Eqr [f| 7]
and the same for f’. This means that one can assume without loss of generality that the risk-neutral
prices of f and f’ come from the same measure Q".

3 Hedging with American put options

In this section, we will prove that additional static investments in American put options of every
strike price and with the same maturity 7" allow an investor to hedge any contingent claim written
on the underlying S. We make the following model assumption:

Assumption 3 American put options with any maturity T and any strike price k > 0 are available
for trading and all are issued at t = 0.

Let us denote 7 the set of all [0, T]-valued stopping times and 7, the smallest optimal exercise
time corresponding to a given strike price k. Such stopping times do exist (see Remark 4 for details)

so that we have

Po(k‘, ?k) = SggE[B_TT(kJ - S‘F)—w = E[e_r?k (k - S?k)+]’ (1)



which is the price that an agent must pay for buying at time 0 an American put option with strike
k and maturity 7. More generally, we set

Pi(k,7) :=Ele " (k — S;)* | A,

for any stopping time 7 € 7. Notice that under our assumptions each price process ]5(14;,7') is a
martingale in H?(P).

Remark 4 Observe that 7y, exists for all strike prices k > 0. Indeed, the underlying discounted price
process S is a strictly positive martingale in H?(P) over a finite time interval [0,T], so that it is of
class (D) and, obviously, constant in expectations. Thus, Théoréme 2.43 in El Karoui St. Flour’s
Lecture Notes [9] applies, so giving existence of Ty, for all k > 0.

Now, we consider the set R, of all discounted contingent claims which can be approximately
replicated by investing dynamically in the underlying S and statically in finitely many American
put options as follows: the American puts that the agent buys at time ¢ = 0 can be exercised at any
stopping time 7 € 7, while the American puts that he sells will be exercised at their corresponding
optimal times by their buyers.

Mathematically speaking, R, is the set of all Fp-measurable random variables of the form

T n m
x+ / 0:dS; + Z o (Pr(ki, i) — Po(ki, Ti,)) — ZﬁnJrj(PT(knJrj» Thnss) = Po(kntjs Thoiy)) (2)
0

i=1 j=1
where
e z € R is the initial endowment of the agent,

e 0 is a real-valued S-integrable predictable process such that [ 0dS is a martingale in H?(PP)
modelling the dynamic investment strategy in the stock S,

e n > 0 is the number of American puts that the agent buys at time 0, while m > 0 is the
number of American puts sold at time 0,

e each weight «; > 0 is a nonnegative real number representing the number of American puts
with strike k; (i = 1,...,n) bought by the agent at time 0 paying the price Py(k;, 7k, ), while
Bn+j >0 (j =1,...,m) represents the number of American puts with strike k,,+; sold by the
agent at time O receiving the price Py(knyj, T, ;)

We adopt the convention that any summation over an empty set of indexes is equal to zero. Notice
that R, is not a linear subspace, it is nonetheless a convex cone. We will denote R its (positive)
dual, i.e.

R::={f € L*(P) : E[fg] > 0,Yg € R.},

and by R:* its bidual, i.e. R} := (R})*. We recall that the bidual C** of any convex cone C in
a vector topological space coincides with the closure of C', and that for any pair of convex cones C'
and C’ such that C' C C” one has C* D (C")* (see, e.g, [22], Chapter 1).

Remark 5 Notice that in the first summation appearing in (2), denoting the final gain coming from
a long position taken at time t = 0 in American puts with strikes k;, the puts are mot necessarily
exercised at their optimal exercise times Ty,. The agent, willing to hedge against the risk of a given
final pay-off f, can in principle exercise his puts at any stopping time between today and the maturity
T. The question if hedging purposes may lead an agent to exercise such options at sub-obtimal times
TEMains open.



Our main result is that R, N L3 (P) is dense in LZ (P) which denotes the set of all positive
random variables in L?(P). In financial terms, it means that every positive contingent claim can be
(approximately) replicated by a mixed investment as in (2): dynamic in the underlying and static
in American put options.

Theorem 6 Under our assumptions, the closure of R, contains Li (P).

Proof. We recall once more that the closure of a convex cone C in a topological vector space
equals its bidual C**, so that all we need to prove is that the bidual R}* contains L2 (P). In order
to do that, it suffices to show that L2 (P) contains the dual cone R}, i.e. that any random variable
Nr € L?(P) which is positive over R,, i.e. E[Nzf] > 0 for all f € R,, is a.s. positive itself. Denote
N the martingale in H?(P) associated to Nr, i.e. N is the cadlag version of the martingale E[Np|F],
for t € [0, 7.

First observe that, since R, contains R, we have E[Ny] = Ny = 0. From the fact that E[N f] > 0
for any f equal to the static hedging part appearing in (2), we can deduce in particular that

o1 B[Ng Pr(ky, 71)] — oo B[NpPr(ka, Tr,)] > 0

for all nonnegative real numbers aq, ao, all strikes ki, ko, and all stopping times 71 € 7. Taking
ag = 0, we get that

0 < E[NzPr(ky,m)] = E[N Py, (k1,71)] = E[N;, e 7" (k1 — S7,) "] = E[N:, (ks — 87,) "],

for every strike price ki and every stopping time 71 € 7. Doob’s optional sampling theorem implies
that the process N(k — S)T is a P-submartingale for every k¥ > 0. The integration by parts formula
gives

Ni(k =St = Ny(Sy — k)™ = /t(su_ — k)"dN, + /t Nu—d(S —k); +[N,(S — k)]s

for all £ € [0,T]. By Tanaka’s formula for discontinuous semimartingales (e.g. Protter [17], Theorem
68, p. 216) and since dS,, = rS,du + €"™dS,,, we have that

t t
/Nu,d(S—k); = —/ Nu-1(s, <p}(rSudu+e™dS,) (3)
0 0
+ > N [Lgs, sk (Su— k)" +1gs,_<xy(Su—F)7]
o<u<t
1 [t
s / No—dLE(S), (4)
0

for every instant ¢t € [0, 7] and strike price k& > 0.

The fact that Ny belongs to the dual of R, implies also that Ny is weakly orthogonal to S and
so strongly orthogonal to S as well,! i.e. NS =NS belongs to H!(P), the space of all martingales
bounded in L'(P) (use, e.g., Lemma 2, Section IV, in [17]). Moreover, being d[N, (S — k)~]; =
e "d[N, (S — k)~]; and L¥(S) a continuous increasing process, one has

[N’ (S_ k)_]t = Z ANuA(S_ k);v

O0<u<t

I'We recall that, in this H? setting, weak orthogonality between two martingales M and N in H2(P) is equivalent
to strong orthogonality, i.e. MN € H!(P). See, e.g., Lemma 2, Section IV, in Protter’s book [17].



which is a pure jump process. Notice that N(k — 8)* is a P-submartingale with Doob-Meyer
decomposition N(k—S)* = M + B, where M is a local martingale and B is a predictable increasing
process. The local martingale part M include certainly the following term

t t
/ (Su, — k)_dNu - / Nu,l{su_gk}emdSu
0 0

and, since any cadlag local martingale with finite variation must be purely discontinuous (see, e.g.,
[15, Lemma 4.14 b)]), M cannot contain the finite variation terms with continuous paths appearing
in (3) and (4). Thus, those terms have to belong to the increasing part B, which could in principle
contains some additional terms of pure jump type. An important consequence of it is that the
process

1 [t t
5/ Nu_dLﬁ(S)f/ rkNy1s, <pydu, t€[0,T],
0 0
must be increasing, i.e.

t t
/rkNu1{Su§k}dug %/ No_dLk(S), (5)

for all s,¢t € [0,7] with s < ¢t and all & > 0. Using a standard class monotone argument, the
inequality in (5) can be generalized as follows

- 1 -
/rkNul{S <ppdu < f/ N,_dLk(S), (6)
A v 2 Ja

for all Borel set A and all £ > 0. First, observe that in the two integrals in (6) the same function
u — N,_ is integrated with respect to two dt-a.e. mutually singular® measures (1/2)dL¥(S) and
rklis, <kydu, which implies that such an inequality is verified only if N <0 dP ® dt-a.e. on the set
{(w,t) : St(w) < Kk}, for all k£ > 0. As a consequence, one has N < 0 dP ® dt-a.e. on § x [0,T] and,
since N is cadlag, one has also that Ny_ < 0 a.s.. Finally, notice that Assumption 1 consequence
Fr = Fr_ implies that no martingale can jump at T' (see Protter [17], p. 191, for details), so that
one has also that Ny < 0 a.s.. To end the proof, it suffices to recall that N is martingale with
Ny =0, so that E[Nr| = 0 and, Nt being a.s. negative, it must be a.s. zero.

Remark 7 A careful inspection of our proof reveals that Theorem 6 holds true even if the spot
interest rate r is not necessarily constant but a positive and bounded deterministic function of time,
more precisely: SY = exp(fot r(u)du) where r(u) is measurable positive function defined on [0,T] and
such that S% is bounded above by some constant.

Remark 8 Note that if one considers contingent claims depending on some randomness source
different from S, then the previous completeness result breaks down. Indeed, just consider a model
whose price processes are identically equal to one, i.e. S° = S = 1, so that the natural filtration
of S is trivial and the collection of all American put option pay-offs {(k — 1)T : k > 0} coincides
with [0,00). Thus, Rq = R. Then, consider a sufficiently large filtration (Fi)icjo,r) such that Fr
contains at least one non-degenerate square-integrable positive random variable f. It is now clear
that, even if we allow the strategies to be F-adapted, in such a market it is not possible to hedge f
as in Theorem 6.

2Indeed, the support of dLE(S) is {u : Sy = Su— = k} (see, e.g., Protter’s book [17], Theorem 69, p. 217) while
that of 17, <ydu is {u: Sy < k}. Thus, their intersection is contained in {u : Sy = k} which is at most countable
and so it has zero Lebesgue measure.



4 A counter-example to hedging with European call options

In this section, we will exhibit a financial market in discrete time with a finite horizon T' € N and
defined on a finite probability space, where it is not possible to hedge all contingent claims by trading
dynamically in a given underlying and statically in all European call options of every strike price
k > 0 and every maturity before T.

Let (2, F,P) be a finite probability space supporting a martingale S = (S;)Z_, modelling the
price evolution of a stock. This space is assumed to be equipped with the filtration (F;)L_, naturally
generated by S and for which F = Fr. As usual, we denote S° the price process for a riskless asset
and assume S° = 1. For a given discrete-time process X, we set AX; =X, — X;_q1,t=1,...,T.

Consider the linear space R, spanned by all random variables f of the form

T n
f=a+) 0:AS+Y ai(Cr(Ti ki) — Co(Ti, ki), (7)

t=1 i=1

where x € R is an initial endowment, 6 is any predictable process modelling the dynamic strategy
inS, a=(ag,...,a,) € R" is any static strategy in n > 1 European call options with maturities
T; < T and strike prices k; for 1 < ¢ < n, whose no-arbitrage prices are denoted by Cy(T;, k;) :=
E[(S, — ki)"|F:]. n > 1 is an arbitrary positive integer.

Our aim is to construct a process S such that R. is not dense in the set of all positive Frp-
measurable random variables LY, equipped with the usual scalar product (f,g) = E[fg]. To do so,
we use the following consequence of Theorem 3 in Campi [1]. We provide its short proof for reader’s
convenience.

Lemma 9 Assume that R. N Lg 18 dense in L(Jr. Then the set of all P-equivalent martingale
measures Q under which S has the same marginals as under P reduces to a singleton.

Proof. Let Q be an equivalent martingale measure under which S has same marginals as under
P. In this case, for all postive random variable f as in (7) we have E[f] = = Eg[f] and, since the
family of those random variables is assumed to be dense in L?F, we can conclude that Q = P on Fr.

In the light of that result, it suffices now to exhibit a process S admitting two different equivalent
martingale measures P and Q under which S has the same marginals. Here it is: T = 2, Sy = 3/2, the
marginals at time ¢t = 1 are given by P[S; = 1] = Q[S; = 1] = 1/2 and P[S; = 2] = Q[S; = 2] =1/2,
and Sy takes the values 0, 1,2,3 each one with probability 1/4 under both P and Q. To complete
the description of P and @, we only need to assign the transition probabilities between t = 1 and
t = 2. This can be done in many ways to get P,Q € M and nonetheless keep them different. For
instance, set p;; 1= P[Sy = j|S1 = i] and ¢;; := Q[S2 = j|S1 = ] for 7,5 € {0,1,2,3}, and consider
P23 = pio = 0.4, pas = p11 = 0.3, po1 = p12 = 0.2 and pyy = p13 = 0.1 for the measure P, and
423 = q10 = 039, q22 = 411 = 033, q21 = q12 = 0.17 and q20 = q13 = 0.11 for the measure @ It can
be easily verified that this example is exactly what we were looking for.

Remark 10 As it is formulated, this example does not satisfy the assumption Sp = Sp_. Indeed,
Sr_ =S, =51 # S3. Nonetheless, it can be easily embedded in the framework of the previous
section, where the price process S is assumed to be left-continuous at T as in Assumption 1, by
simply adding a date T + 1 and setting Sty1 = St.

Remark 11 By the call-put parity, trading in all European call options as in (7) is equivalent to
trading in S and in all Furopean put options. As a consequence, our example also shows that it
is in gemeral not possible to replicate each square-integrable positive contingent claim by trading
dynamically in the underlying and statically in all European put options.
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