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Stark effect and Franz-Keldysh effect of a quantum wire realized by conjugated polymer chains of a diacetylene 3NPh2

I. INTRODUCTION

Polydiacetylenes (PDAs) are still unique among conjugated polymers since they can be prepared through solid-state polymerization in a highly ordered state. 1 Large sidegroups attached to the diacetylene molecule reduce interchain interaction while -conjugation delocalizes the corresponding electron states. As criteria were developed for successful polymerization in monomer single crystals [2][3][4][START_REF] Bloor | Developments in Crystalline Polymers-1[END_REF][START_REF] Bloor | [END_REF][7] two classes of PDAs emerged with a strong fundamental exciton centered either near 2.0 eV or 2.3 eV which are called blue and red chains by the color of partially polymerized crystals. Despite that di¤erence X-ray and Raman studies indicate the same basic building block, C C C=C . Long range coherence within the polymer chains enables in some cases the detailed study of their electronic structure by electroabsorption spectroscopy as in wide band semiconductors. The free electron gap is resolved by a pronounced Franz-Keldysh e¤ect although its absorption is hidden under vibronic progressions of a strong exciton which responds to an external …eld by a quadratic Stark shift. 8 The EA spectra yield not only the band gap and an exciton binding energy of about 500 meV but derive from …eld broadening of Franz-Keldysh oscillations a reduced mass of about 0:05m o of blue chains in DCH polymer single crystals 9 and those diluted in monomer single crystals of 3BCMU and 4BCMU, 10 much smaller than the free electron mass m 0 .

Controlled polymerization in single crystals provides -conjugated chains with properties expected for quantum wires of very small radius and luminescence studies on red chains of 3BCMU proved the one-dimensional density of states of the exciton band. 11,12 Coherent coupling of excitons on a single chain to a propagating laser …eld was veri…ed by micro- ‡uorescence 13 and by spatially coherent emission of a single chain. 14,15 By increasing the density of blue chains coherent coupling of excitons to radiation modes of the monomer crystal leads to a tightly bound polariton which enables transmission of light in resonance to the exciton through thick crystals of 3BCMU. 16,17 Despite such unique properties the very same C 4 building block leaves little room for variation of these quantum wires. A promising mod-i…cation is doubling the repeat unit as in poly-THD (1,6-bis(diphenylamino)-2,4-hexadiyne)

where C 4 units are alternatively tilted by 7.5 degrees relative to their average plane. 18,19 The large thermal reactivity of this monomer prevented studies of highly diluted chains but electrore ‡ectance spectra of opaque crystals resolved the exciton at 2.171 eV and the band gap at 2.727 eV. 19 Although the exciton transition energy is larger than that of blue chains the binding energy 0.56 eV is similar and lends no support to a signi…cant change of the electronic structure.

Synthesis of several analogues of THD led to 3NPh2, (1,10-bis(diphenylamino)-4,6decadiyne), as material of proper reactivity for controlled polymerization. Two pairs of molecules with twisted molecular planes stack along the a-axis of the monomer crystal and polymerization proceeds along that axis. The inequivalent molecules in the host crystal double the polymer repeat unit and calculations indicate substantial tilting of the C 4 units by 20 degrees. [START_REF] Deschamps | submited to Chemistry[END_REF] Absorption and luminescence spectra submitted in context with the present paper show a remarkable increase of the exciton transition energy to 2.4 eV, larger than in any other PDA. 21 We present here supplementary electroabsorption spectra which despite unexpected birefringence e¤ects con…rm not only the anticipated change of the electronic structure but show an excellent agreement of the spectra at the bandgap with the Franz-Keldysh e¤ect of a one-dimensional energy band.

II. EXPERIMENTAL DETAILS

The molecules crystallize in the monoclinic space group P21/n with Z = 4 (table 1) and pile up along the a-axis with alternating stacking distance of 4.917 Å and 5.329 Å. The lattice constant a = 9.948 Å is slightly larger than twice the usual C 4 repeat unit of relaxed PDA chains. Details of the structure and polymerization of 3NPh2 are given elsewhere. [START_REF] Deschamps | submited to Chemistry[END_REF]21 Crystals were grown in the dark from a solution in acetone at 4 C reaching about 5 mm length along the a-axis and their thickness, 0. 

Since the lock-in ampli…er returns the e¤ective value of the selected Fourier component the reading has been scaled to the amplitude of I by an appropriate factor which is 2 p 2 in case of a quadratic response to a sinusoidal …eld.

III. EXPERIMENTAL RESULTS

A. Samples with low polymer content

Absorption and electroabsorption spectra

Transmission studies with light polarized parallel to the conjugated chain, ! e k a, require samples with low polymer concentration. Fig. 1 compares spectra of samples A and B exposed to -radiation for 1 and 3 min, respectively. All features below the monomer absorption threshold at 3.7 eV belong to transitions of conjugated chains. The absorption spectra show an exciton peak X at 2.4 eV with strong satellites D and T due to coupling to stretch modes of double and triple bond. These features are typical for polydiacetylene and the narrow linewidth con…rms an excellent quality of the samples. Combination modes lead to more peaks at higher energy and additional vibronic excitons appear about 100 meV above the exciton. The spectra show also a small peak Xc at 3.12 eV which does not …t into a vibronic progression. The apparently smaller exciton peak in sample B is an artefact caused by its larger thickness. The corresponding transmittance is about 1 % for the 190 m thick sample A but only 0.07 % for the 360 m thick sample B which is not much above the background of scattered light. Similar signals far above the exciton in other PDA have been attributed to the Franz-Keldysh e¤ect at the free electron gap. 8 A new feature is the regular pattern with 46.2 meV period and almost constant amplitude which is distorted only by the response of the strong vibronic excitons. Sample B with larger polymer concentration shows a similar pattern of 32.6 meV period but smaller amplitude which allows resolving the response of the vibronic excitons D and T. The noisy spectrum at 2.4 eV shows some splitting of the exciton which is also observed in sample A. The most prominent feature occurs again far above the exciton with the strong negative peak at the same energy as the weak absorption peak Xc at 3.12 eV.

Absorption spectra for light polarized perpendicular to the chain are presented in …g. 2

together with the integrated absorption. The exciton peak of sample A is with 3 cm -1 about 100 times smaller than for polarization parallel to the chain and has smaller linewidth. 21 We therefore use the integrated absorption, S = 5.2 eV/cm and 0.027 eV/cm for polarizations parallel and perpendicular to the chain, respectively to derive an optical anisotropy close FIG. 2: Absorption and integrated absorption for polarization of light perpendicular to the chain.

to 200. The sum rule of the oscillator strength f provides also an estimate of the polymer

content x p . f = 4mc 2 " 0 hce 2 n N Z peak (E)dE = x p f P DA (2) 
N = 1:5 10 21 cm 1 is the density of diacetylene molecules. With n = 1.5 as refractive index of the host crystal and the typical oscillator strength f PDA = 0.5 of the exciton the fraction of polymerized diacetylene molecules in sample A is x p = 6 10 5 . Since the exciton peak of sample B is obviously truncated we derive the polymer content x p = 13:2 10 5 from the peak height of the vibronic satellites D and T which exceeds those in sample A by a factor 2.2. These concentrations yield a polymerization rate dx p =dt = 3:6 10 5 =min which corresponds to a rate of 0.72 %/MRad in satisfactory agreement with the rate 0.75 %/MRad obtained from the weight of insoluble material of -irradiated crystals. 21 

Optical birefringence

The periodic pattern of the EA spectra and the saturated optical density of the exciton for light polarized along the chain in samples of higher polymer content results from optical birefringence of the monoclinic crystal. The saturation cannot result from undamped propagation of a tightly bound polariton state of exciton and photon as in 3BCMU since it is independent of temperature. 16 Light of polarization ! e k a provides best coupling to the transition dipoles of the chain but excites on the ac face two propagating electromagnetic waves of orthogonal polarization since only the b-axis de…nes a principal axis of the dielectric tensor. 22 The other axes lie in the ac plane and electric …elds polarized along these When the waves arrive at the back of the sample their …elds add up to the polarization ! e of transmitted light. This polarization deviates from ! e k a at the front surface due to di¤erent loss and the phase di¤erence accumulated along the optical path of length d:

! e = exp(in 1 kd i!t) [ ! e 1 + ! e 2 exp (i )] (3) 
= (n 3 n 1 )kd = (n 3 n 1 ) ! c d
The transmitted light is linearly polarized in the ac plane and the …eld vector rotates ac- cording to the phase di¤erence within a cone de…ned by being an even or odd multiple of which opens up with decreasing amplitude of the strongly absorbed mode. Since the …elds of the propagating modes are orthogonal the phase has no e¤ect on the transmitted light intensity which, c and " 0 denoting the speed of light and vacuum permittivity, is the sum of the intensities of both modes.

I = c" 0 ! e ! e = c" 0 n j ! e 1 j 2 + j ! e 3 j 2 + 2 ! e 1 ! e 3 cos o (4) 
The phase is important if the polarization 

! P = " 0 ! e
I = S 1 ! e 1 ! F 2 + S 2 ! e 3 ! F 2 + 2S 3 ! e 1 ! F ! e 3 ! F cos (5) 
Two terms in eqn.5 are proportional to the intensity of the modes but the third term depends on their phase di¤erence . The phase increases with the frequency of light and maxima appear in the modulated transmittance when the phase di¤erence is a multiple of 2 . Negligible dispersion of the refractive indices below the absorption edge of the monomer leads in samples of small polymer concentration to a periodic pattern of I with the period given by the di¤erence of the refractive indices and the crystal thickness d:

(n 3 n 1 ) ! j c d = j 2 =) ~! = hc (n 1 n 3 ) d (6) 
The periodicity 46. Polymer concentration ' 0:5%. and 4BCMU. 10 The spectrum at room temperature shows again the thermal broadening and blue shift of the absorption edge.

Temperature and …eld-strength dependence

The thermal broadening of the exciton and blue shift is shown elsewhere 21 and appears also in the electroabsorption spectrum. Fig. 6 presents spectra above 3.1 eV for several temperatures. They shift with increasing temperature to higher energy at a rate which agrees with the shift of the exciton and thermal broadening decreases the signal until at 297 K only the most prominent peaks survive. It is mentioned that thermal broadening of this spectrum obtained with a large …eld increases much less than the width of the excitonic features in absorption and electroabsorption spectra. Field-broadening of the EA spectrum above 3.1 eV is demonstrated in …g. 7. Although expected for the Franz-Keldysh e¤ect 24 it has been observed at similar …elds only in semiconductors with small reduced mass like Ge, 25 GaAs 26 and InGaAs 27 but also in fully polymerized DCH 9 and on blue chains in 3BCMU and 4BCMU monomer single crystals. 10 Fieldbroadening leads to a redshift of the …rst peak at 3.10 eV and a blueshift of all peaks above 3.15 eV. The very small shift of the dominant negative peak at 3.12 eV is consistent with the Franz-Keldysh e¤ect. However, the distorted lineshape at very small …elds and the fairly stable position of the strong positive peak near 3.145 eV suggests that additional e¤ects contribute to the EA spectrum.

The series of additional peaks of the EA spectrum at higher energy is shown in …g. 8

which by their distance from the negative peak at 3.12 eV are attributed to vibronic replicas of the Franz-Keldysh e¤ect of the fundamental gap. The strongest satellites near 3.30 and 3.37 eV show also some …eld-broadening. The peak at 3.20 eV which shifts with the …eld belongs to the Franz-Keldysh e¤ect of the gap but not the negative peaks at 3.215 eV and 3.265 eV which keep their position.

FIG. 8: Field strength dependence of the EA spectrum in the range of vibronic bandgaps.

IV. EVALUATION OF THE ELECTROABSORPTION SPECTRA A. Stark e¤ect of the exciton

Inversion symmetry of 3NPh2 leads to dipole selection rules of the electrons based on the parity of states. The …eld F couples the dipole allowed exciton X to states of even parity and energy E j which by second order perturbation theory leads to the quadratic Stark shift.

E X = P j ! j ! F 2 E X E j (7) 
The energy denominators determine the sign of the contributions and reduce coupling to distant states jji. One dipole moment j often dominates and for Wannier-type excitons which couple primarily to the free electron gap at E C the corresponding transition dipole is given by the exciton radius, e ! r , which simpli…es its Stark shift.

E X = e ! r ! F 2 E X E C (8) 
By coupling to states of even parity the exciton loses oscillator strength f and this loss involves the same transition dipoles as the Stark shift but depends quadratically on the energy denominators.

f f = P j ! j ! F 2 (E X E j ) 2 (9) 
In case of large binding energy, (E X E C ) E X , the redshift dominates and the excitonic electroabsorption spectrum is proportional to the derivative of the absorption.

Fig. 9 presents the exciton absorption peak with its …ne structure that can be …tted to four narrow Lorentzians at 2.3926, 2.3985, 2.4024 and 2.4075 eV. The EA spectrum at 48 kV/cm on top is reproduced by the derivative of the absorption band with a redshift by 8 eV. Similar agreement is found with the sum of derivatives of the Lorentzians. The common shift of all transitions proves that the four states are not mixed by the electric …eld but belong to di¤erent chains or chain segments.

The same Stark shift is observed for the vibronic satellites D and T at 2.5885 eV and at 2.6591 eV and even for the weaker satellites as shown in …g. 10. Consequently, all these features result from coupling the same exciton to forbidden states at higher energy or to the continuum of ionized electron-hole pairs. The …rst EA signal which is not part of the exciton occurs at 3.12 eV. Lineshape and …eld strength dependence exclude the quadratic of 36 kV/cm derived from the broadened spectra at 100 K and at room temperature yield an exciton radius of 5.8 Å and 6.7 Å, respectively. The EA spectrum in …g. 1 taken with 50 kV/cm and polarization ! e k a matches a redshift by 14 eV which corresponds to an exciton radius of 6.4 Å. We conjecture that the exciton radius in poly-3NPh2 is (6 1) Å which is about 40 % smaller than the average value of 10 Å found in other PDAs. 8,10 This signi…cant change of the exciton radius is supported by a similar increase of the exciton binding energy from about 0.5 eV to 0.72 eV.

B. Franz-Keldysh e¤ect of the bandgap

Franz-Keldysh e¤ ect a one-dimensional band gap

The Franz-Keldysh e¤ect describes the optical interband polarization in presence of an electric …eld. The plane wave envelope of Bloch states in a periodic potential is replaced by the Airy function Ai(z) as eigenstate of a free electron in a constant electric …eld. 24 The energy W = eF r which electrons gain by moving in the …eld is eliminated by rescaling the kinetic energy E E g of an electron-hole pair to an energy ~ which depends on the reduced mass and on the …eld.

~ = e 2 ~2F 2 2 1=3 (10) 
Scaling to a …eld-dependent energy leads to …eld-broadening of the modulated spectra with the peculiar dependence on F 2=3 . Lifetime broadening by which limits the range of coherent motion enters as imaginary part of the renormalized energy z 28

z = + i = E g E ~ + i ~ (11) 
and results in the …eld-induced absorption of a one-dimensional continuum that can by: 29,30

(E) = B 2n! p ~ 2 exp i 3 Ai(z)Ai(w) H( z) p z ( 12 
)
w = z exp 2 i 3 , B = p 2 e 2 " 0 m 2 ! 2 ~jP j 2
The …eld-independent part B of the amplitude accounts for the interband momentum matrix element P and the refractive index n enters when the imaginary part of the dielectric of Mathematical Functions. [START_REF] Abramovich | Handbook of Mathematical Functions[END_REF] The broadening parameter = 10meV softens the singularity at the gap and the …eld-free absorption resembles an asymmetric absorption peak. The …eld shifts the absorption peak to higher energy and the subsequent oscillations re ‡ect the redistribution of the interband polarization. The di¤erence to the …eld-free absorption predicts an electroabsorption spectrum with a large negative peak at E g which is followed by a strong positive peak and weaker oscillations. These oscillations vanish rapidly as ~ gets smaller than the broadening parameter . Changes below the gap are small and generate a broad and rather weak positive peak of . EA spectra with the peculiar dependence on F 2=3 were observed for blue chains of polydiacetylene and yield the reduced mass t 0:05m o .

However, all these spectra show a strong positive peak below the gap of similar size as the negative peak at E g which does not comply with the predicted lineshape of the Franz-Keldysh e¤ect at a one-dimensional bandgap. 9,10

Spectra at large electric …elds

The one-dimensional Franz-Keldysh e¤ect reproduces the EA spectrum of poly-3NPh2 almost perfectly for large …elds as shown in …g. 12. The broadening parameter = 10meV

was chosen to match the width of the leading peaks and mass, amplitude and energy gap are listed in tab. 3. The gap occurs at 3.12 eV at the energy of the weak absorption peak Xc which supports its assignment to the density of states of one-dimensional bandgap. The Franz-Keldysh e¤ect reproduces also the small positive peak of below the gap and the position of all oscillations up to 3.22 eV. Peaks above 3.16 eV are smaller than predicted but faster damping with increasing carrier velocity has been observed in semiconductors [START_REF] Jaeger | [END_REF] and is anticipated if the energy of an electron-hole pair gets resonant to vibrational modes.

Vibrational excitons appear in absorption spectra 100 meV above the exciton. They limit unperturbed Franz-Keldysh oscillations to a range of 100 meV which in a …eld of 30 kV/cm corresponds to coherent motion over more than 300 Å.

The calculated spectra use scaling energies ~ of 22.93, 19.68 and 16.24 meV, respectively which correspond to a reduced mass = 0:08m 0 . A mass of 0:09m 0 reproduces the peak positions at 50 kV/cm too while a smaller mass of 0:07m 0 improves the …t to the spectrum at 30 kV/cm. Such small reduced mass is consistent with …eld-broadening of the EA spectrum which requires …elds that exceed the perturbation regime, ~ > . It is emphasized that the mass of 0:05m 0 derived from …eld-broadening of the EA spectra of DCH and 3BCMU is far too small to match the numerous Franz-Keldysh oscillations observed for poly-3NPh2.

FIG. 13: Electroabsorption spectra at moderate …elds compared to spectra of the one-dimensional

Franz-Keldysh e¤ect (dashed lines).

Spectra at small electric …elds

Since the Franz-Keldysh e¤ect neglects all correlation e¤ects its excellent agreement with the data indicates that …elds exceeding 30 kV/cm diminish other perturbations of free electron states. Coulomb coupling of electron and hole should show up in spectra at smaller …elds as deviation from the spectral lineshape of the Franz-Keldysh e¤ect. Such deviations appear at moderate …elds as presented in …g. 13. The leading positive and negative peaks are still reproduced with a slight increase of the gap to 3.122 eV but not the peaks at higher energy. The calculations predict narrower spectra and above 3.14 eV smaller peaks than actually observed. Spectra at 12 kV/cm show these distortion quite clearly by an experimental spectrum that extends beyond the Franz-Keldysh oscillations of a gap at 3.122 eV.

It should be mentioned that by shifting the second positive peak of the Franz-Keldysh e¤ect to the experimental peak at 3.146 eV the position of the subsequent peaks is reproduced again which points to a larger gap at smaller …eld.

Spectra at very small …elds, 8 kV/cm and 4 kV/cm are displayed in …g. 14. Franz-Keldysh oscillations of a gap at 3.122 eV vanish 30 meV above the gap where the data still show a strong positive peak at 3.146 eV. Subsequent peaks shift with the …eld strength and, as FIG. 14: EA spectra at small …elds compared with the Franz-Keldysh e¤ect of gaps at 3.122 eV (dashed-dotted) and 3.158 eV (dashed). =10meV. The shaded area shows the weak absorption peak at 3.12 eV reduced by a factor 500 to …t into the scale of the ordinate.

shown by the dashed lines, their position is reproduced by the Franz-Keldysh e¤ect if the gap is increased to 3.158 eV. The resulting lineshape, a leading strong positive peak followed by a negative peak of similar size and weaker oscillations at higher energy is that observed for blue chains of 3BCMU and DCH. The most likely explanation for the large positive peak below the gap is a dipole-forbidden exciton which gains oscillator strength by mixing with the free electron continuum 33 and such shallow dipole forbidden state has been predicted by theory. 34,35 We conjecture that the bandgap of poly-3NPh2 lies at 3.158 eV and is de…ned by the Franz-Keldysh e¤ect at small …elds. This assignment yields a satisfactory description of the spectrum above 3.15 eV.

This assignment requires another interpretation of the high …eld spectra with the gap at 3.120 eV and of the absorption peak Xc. Coulomb interaction of electron and hole generates not only bound states but transfers oscillator strength of electron-hole pairs from the continuum to bound states. 36 It is likely that the strong coupling of electron and hole con…ned to a narrow quantum wire removes the singularity of the density of states at the gap which explains the absence of a corresponding absorption peak in conjugated polymers.

We therefore attribute the absorption peak Xc to a dipole-allowed exciton at 3.120 eV which has about 5 % of the strength of the fundamental exciton. Field-induced coupling of this exciton to a forbidden state near 3.146 eV and to the free carrier continuum passes from the low …eld regime of the quadratic Stark e¤ect to a high-…eld regime where bound excitons are ionized and become part of the continuum. [37][38][39][40] The gradual transition from the Stark e¤ect of a bound exciton to …eld ionization has been observed in cubic semiconductors. 27 The excitonic signal changes its lineshape to that of a …eld-broadened state which joins the continuum when the …eld-induced potential across the exciton radius is about half the binding energy. With further increasing …elds the exciton state is no longer resolved but marks the …rst negative peak of Franz-Keldysh oscillations. Distortion of the Franz-Keldysh e¤ect is evident in the spectra at 20 kV/cm and attributed to decoupling the exciton at 3.120 eV from that at 3.146 eV which is still part of the continuum. Taking 20 kV/cm as critical …eld for strong mixing estimates the exciton radius to 60 Å.

The exciton Xc at 3.120 eV responds to very small …eld by the quadratic Stark e¤ect. A …eld of 4 kV/cm shifts an exciton of 60 Å radius and 38 meV binding energy by 0.15 meV and transfers almost 1 % of its oscillator strength. Corresponding shift and decreasing size of the absorption peak predict an EA spectrum with an asymmetric negative peak of 0.15 cm -1 amplitude. The negative EA peak at 3.122 eV is smaller by a factor 3 which points to a smaller radius of about 40 Å. The spectrum is also narrower and weak …ne structure around 3.13 eV suggests some splitting of exciton Xc, similar as the fundamental exciton at 2.4 eV. We conjecture that the EA spectrum at small …eld resolves a weak dipole allowed exciton at 3.120 eV of large radius, 40 -60 Å, and a forbidden exciton at 3.146 eV which distorts the lineshape of the Franz-Keldysh e¤ect of the gap at 3.158 eV.

4. Vibronic replica of the Franz-Keldysh e¤ ect EA spectra above the gap are described by the superposition of the Franz-Keldysh e¤ect of four vibronic gaps with the same mass and broadening as for the gap itself (…g. 15).

The strongest replica D and T generate their own Franz-Keldysh oscillations with gaps at The vibrational replicas D and T at 12 kV/cm have the lineshape of the Franz-Keldysh e¤ect in the low …eld regime (…g. 8 ), two positive peaks framing a strong negative peak at the gap. The reference energy for the vibronic energies is the still the high-…eld gap at 3.12 eV, the energy of an ionized exciton state as part of the free electron continuum. Since the signal decreases rapidly at smaller …elds it was not possible to observe the separation of weakly bound excitons from the gap in the vibronic spectra.

V. SUMMARY AND CONCLUSIONS

Electroabsorption spectra of -conjugated chains of 3NPh2 reveal signi…cant changes of the electronic structure if the polymer repeat unit consists of two non equivalent C 4 units.

The optical gap, de…ned by a strong exciton has increased to 2.399 eV, larger than in any other polydiacetylene. Even larger is the increase of the band gap to 3.158 eV and of the exciton binding energy to 759 meV, compared to 485 meV in DCH 9 and 560 meV in blue chains of 3BCMU 10 and of THD 19 Consistent with the increased binding energy is the decrease of the exciton radius to 6 Å. The exciton is still of the Wannier type since it extends over 5 conjugated bonds. These changes are attributed to reduced coupling of the C 4 units due to their twisted molecular planes. The twisting angle should be larger than the value of 7:5 o reported for THD 18 since in that material the exciton shows only a moderate increase The large exciton binding energy is consistent with its increased reduced mass and moves the bandgap well beyond the range of vibrational excitons which enabled a detailed study of free electron states in a one-dimensional system. The excellent agreement of the EA spectra at …elds exceeding 30 kV/cm with the lineshape of the Franz-Keldysh e¤ect points to strongly reduced electron correlation e¤ects. Resonant coupling to molecular vibrations limits the range of unperturbed Franz-Keldysh oscillations to about 100 meV which yields a coherence range of bandstates larger than 300 Å, equivalent to 120 conjugated bonds.

Matching the Franz-Keldysh e¤ect to the experimental spectra yields the parameters in tab. 3. The scaling energy ~ determines the spectral lineshape if it exceeds the broadening parameter = 10 meV and yields the reduced mass = 0:08m 0 . The small mass supports wide energy bands predicted by bandstructure calculations. 34,41,42 Assuming the same electron and hole mass yields a free carrier mass of 0.16 m 0 and an exciton mass of M = 0:32m 0 for the centre of mass motion which is in accordance to the value 0:3m 0 estimated from the radiative lifetime of excitons in red chains of 3BCMU. 11,12 The amplitude of the EA spectra which is de…ned by the interband matrix elements has been …tted to the leading peaks of Franz-Keldysh oscillations and is normalized to the value at the highest …eld. The amplitude nevertheless decreases with decreasing …eld since the imaginary part = =~ of the renormalized energy of electron-hole pairs increases. Their Coulomb coupling leads to weakly bound excitons states which are ionized in high …elds and become part of the free carrier continuum. The energy gap at high …elds which denotes the threshold to that continuum therefore occurs at 3.120 eV, the energy of an ionized exciton state with 38 meV binding energy. A small but distinct absorption peak indicates that this exciton is dipole allowed. It is emphasized that such weakly bound dipole allowed exciton has not been observed in other polydiacetylenes. The exciton decouples from bandstates in low …elds and the corresponding spectra yields a gap at 3.158 eV with Franz-Keldysh oscillations which match a slightly smaller mass of 0:07m 0 . These spectra show a strong positive peak at 3.146 eV which is attributed to the …eld-induced gain of oscillator strength of a dipole forbidden exciton of 12 meV binding energy. This state provides a resonance in the free electron continuum which modi…es the shape of the Franz-Keldysh e¤ect. This dipole forbidden exciton seems common to polydiacetylene chains since their EA spectra at the gap have the same lineshape as observed for poly-3NPh2 at small …elds.

  photomultiplier and its intensity measured by a voltmeter. The modulated part I was analyzed by a lock-in ampli…er tuned to twice the frequency of the applied …eld. The ratio of peak voltage and electrode gap of 0.5 mm de…nes the …eld strength and the change of the absorption constant was derived from the ratio of the relative change of transmitted light intensity and thickness d of the sample. = 1 d I I (1)

FIG. 1 :

 1 FIG.1: Absorption and electroabsorption spectra with light polarized parallel to the conjugated chains in samples A and B exposed for 1 and 3 min to -radiation. The EA spectrum of sample B is enlarged as indicated to …t into the scale.

axes propagate with refractive indices n 1 and n 3 .

 3 If the axis n 1 is rotated by out of the a-axis the orthogonal mode with refractive index n 3 acquires the fraction sin 2 of light with polarization ! e k a (…g. 3). Measurements with crossed polarizers indicate a rotation by = 2:5 o 1 o which couples 0.2 % of light of polarization ! e k a into the weakly absorbed mode. Since light polarized perpendicular to the chain, ! e ? a,.excites also the strongly absorbed mode its absorption is enhanced which reduces the optical anisotropy further. The true anisotropy of the exciton therefore is obscured by the birefringence of the crystal since the exciton dipole ! k a is a source for the electric …eld of either propagating wave.

FIG. 3 :

 3 FIG. 3: Polarization of propagating modes excited by light polarized parallel to the a-axis on the ac face of a monoclinic crystal. Di¤erent attenuation and phase rotate the polarisation of transmitted light within the shaded cone.

  as part of a propagating wave couples to the modulation …eld ! F . The tensor of the optical susceptibility rotates the polarization with respect to the driving …elds ! e 1 and ! e 3 and the …eld-induced change ! P of the polarization, given by the coupling strength ! P ! F , accumulates along the optical path. The emitted …eld-modulated intensity I is described by tensor components S j of a non-linear susceptibility which depend on products of the polarization ! e of the propagating waves and the applied …eld ! F .

  FIG. 4: Absorption and electroabsorption spectra of sample C exposed for 2h to -radiation. Part of the EA spectrum is enlarged by the factor 5 to resolve the vibronic replicas of the strong features.

  quadratically with the …eld strength and without change of their lineshape in agreement with the quadratic Stark e¤ect. The strong signal above 3.1 eV has weaker dependence on the …eld and shows …eld-broadening as expected for the Franz-Keldysh e¤ect in the high …eld regime.Table2presents the transition energies of the exciton X, with some of its weak satellites j and strong satellites D and T and of the absorption peak Xc. The exciton splits into several narrow lines separated by a few meV and the vibronic energies are taken from the distance of the respective peaks to the main exciton line. With the high energy signal attributed to the free electron gap the exciton binding energy exceeds 700 meV and the absorption peak Xc could arise from the singularity of the density of states at the gap of a one-dimensional band.Absorption spectra of this sample with polarization ! e k a are shown in …g. 5. The ‡at absorption above 2.4 eV corresponds to the total loss of the strongly absorbed mode. The residual transmittance, 0.045 %, is due to the simultaneously excited weakly absorbed mode which by its absorption generates the small features on top of the saturation level. Additional states are observed below 2.4 eV and the derivative lineshape of their EA spectrum is attributed to the Stark shift of excitons with transition energies of 2.2475, 2.2815 and 2.3798 eV. Similar …eld-sensitive excitons of unknown origin have been observed in 3BCMU

FIG. 5 :

 5 FIG.5: Absorption and electroabsorption spectra for polarization parallel to the chain in sample C with 0.5 % polymer content.

FIG. 6 :FIG. 7 :

 67 FIG. 6: Temperature dependence of the EA spectrum above 3.1 eV.

FIG. 9 :

 9 FIG. 9: Comparison of the EA spectrum and the derivative of the exciton absorption (shaded area) scaled to a redshift by 8 eV.

FIG. 10 :

 10 FIG. 10: Comparison of the EA spectrum and the derivative of the absorption of the strong vibronic excitons D and T.

  response function is replaced by the absorption constant . The unity step function H represents the …eld-free case with the 1= p E E g singularity of the density of states. The …eld generates an exponential absorption tail below the gap and oscillations at higher energy extend over the range of energy gained by coherent acceleration. A corresponding expression for isotropic matter describes the electroabsorption spectrum of a cubic semiconductors over more than 0.4 eV.[START_REF] Jaeger | [END_REF] 

Fig. 11 compares

 11 Fig. 11 compares calculated absorption spectra with and without …eld of one-dimensional bands with small reduced mass and a gap at 3.12 eV. Field and mass correspond to ~ = 21:2meV and de…ne the argument of the Airy functions which were taken from the Handbook

FIG. 12 :

 12 FIG.12: EA spectra (full lines) for large …elds compared with spectra of a one-dimensional Franz-Keldysh e¤ect (dashed lines): = 10meV , = 0:08m 0 . Weak signals at higher energy are enlarged by a factor of 5. The shaded area shows the absorption peak Xc with the background subtracted.

3.301 eV and 3 .

 3 FIG.15: EA spectrum at vibronic gaps (full curve) compared with the sum of four vibronic replica of the Franz-Keldysh e¤ect (dashed curve). Their individual contribution is shown below with the corresponding energy gaps marked by arrows.

of the transition energy to 2 .

 2 171 eV and no signi…cant change of the binding energy. Poorer overlap of the neighboring C 4 units reduces the corresponding charge transfer integral and the width of the free carrier bands. Since the bonds have not changed, the splitting of and states which broaden to the valence and conduction bands is the same but a reduction of the band width increases the fundamental gap at the centre of the Brillouin zone. Doubling the polymer repeat unit reduces the size of the Brillouin zone while the number of subbands increases as band states are folded back into the reduced Brillouin zone. New gaps appear on the edge of this Brillouin zone which decrease the curvature of conduction and valence band at the centre of the Brillouin zone. We propose that this e¤ect and the smaller band width due to a reduced transfer integral between rotated C4 units increases the reduced e¤ective mass at the gap of poly-3NPh2 compared to the mass in blue chains.

TABLE I :

 I Crystal parameter of 3NPh2 at 180 K.[START_REF] Deschamps | submited to Chemistry[END_REF] 

	a (Å) b (Å)	c (Å)
	9.9484 16.0893 16.7643	98.697 o
	Z=4, V= 2652.5 Å 3 , M=468.62 gmol -1

TABLE II :

 II Transition energies of the exciton X and some vibronic satellites and of the peak Xc in sample C with 0.5% polymer concentration.

	Transition	X	1	2	3	D	T	Xc
	Energy (eV)	2.4025 2.4956 2.5070 2.5293 2.5846 2.6595 3.120
	di¤erence to X (meV)	-	93.1 104.5 126.8 182.1 257.0 718

TABLE III :

 III Parameters used to …t the one-dimensional Franz-Keldysh e¤ect to the electroabsorption spectrum above 3.1 eV: the energy gap E g , the electro-optic energy ~ with the corresponding reduced mass . The normalized amplitude represents the …eld-independent part.

	F (kV/cm) 50	40	30	20	12	8	4
	E g (eV) 3.120 3.120 3.122 3.122 3.122 3.158 3.158
	~ (meV) 22.83 19.68 16.24 12.96 9.22 7.04 4.43
	(m 0 )	0.08 0.08 0.08 0.07 0.07 0.07 0.07
	amplitude 1.0	0.9	0.7 0.44 0.28 0.22 0.14
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