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SUMMARY 

 

A tensorial visco-elasto-hysteresis model has been used previously in order to describe the thermomechanical 

behaviour of woven fabrics [1, 2]. Thus, it takes into account the essential features of behaviour, such as the steady state 

viscous stress as a function of strain and strain rate, the time-independent irreversible behaviour and the instantaneous 

modulus increasing with the strain. The aim of the study is to suggest the interest of the theory in the field of sail fabrics 

concerning characterization, testing and design. Moreover, we focus attention on two questions which are of 

fundamental interest, both at the level of principles and in the field of technological research, namely the viscous 

behaviour of sail fabrics and his nonlinear character. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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NOMENCLATURE 

 

ms Surface density ( g m
-2

 ) 

0  Density in the initial configuration (kg m
-3

) 

t Density in the current configuration (kg m
-3

) 

 Cauchy stress for uniaxial tension (Pa) 

 Piola-Kirchhoff-1 stress (Pa) 

m Specific stress  (J/kg) 

l Logarithmic strain for uniaxial tension (%) 

D Strain rate for uniaxial tension (s
-1

) 

 

1. INTRODUCTION 

 

Some authors study the woven fabrics at the 

mesoscopic scale of the weave and proposed nonlinear 

elastic constitutive laws [5]. We consider the fabric as a 

continuum, at the macroscopic scale, in order to 

propose anisotropic highly nonlinear visco-elasto-

plastic constitutive laws. Often, the structural modelling 

of sails considers isotropic [9] or anisotropic linear 

elastic constitutive laws [7, 11, 15]. Paton et al. [10] 

observed that an accurate modelling of racing yacht 

sails demands an accurate structural modelling 

including a precise constitutive law for the material. 

We aim to study the nonlinear viscosity and nonlinear 

elasticity of sail fabrics in order to propose more 

accurate constitutive models.  

A tensorial visco-elasto-hysteresis model has been 

used previously in order to describe the 

thermomechanical behaviour of woven fabrics [1, 2]. 

The aim of the present study was to discern and to 

characterize some generic aspects of the behaviour of 

sail fabrics, starting with the stress-strain-time 

experimental measurements. Two materials were 

studied, branded “Dacron 300 SF HTM” and “Dacron 

300 SF HTP plus”.  Monotonous and cyclic tensile 

loadings with creep and relaxation periods were carried 

out at constant strain and stress rates. The results were 

examined and analysed to characterize the behaviour in 

the warp and fill directions. In addition, we focused 

attention on the viscous behaviour of these two 

materials. This experimental study was completed by 

an implementation of the proposed theoretical approach 

in the simple linear viscoelastic case. In order to 

characterize the impact of viscous effects on the 

structural behaviour of sails, a structural analysis of a 

flat sail is proposed using finite element method. 

Section 2 gives an overview of the theoretical 

approach.  The materials, the sample and the 

assumptions about experimental data will be introduced 

in section 3. The analysis and interpretation of 

experimental results are presented in section 4. Finally, 

section 5 will be devoted to implementation of the 

model and to structural analysis. 

 

2. OVERVIEW OF THE THEORETICAL 

APPROACH 

 

A phenomenological approach at the macroscopic 

level is adopted in order to predict the cyclic 

thermomechanical behaviour of woven materials [1, 4]. 

This approach is based on a fundamental 

superimposition assumption, which considers the stress 

applied ),,( 


 like a sum of three stress 

components: 

),()(),(),,( hrV  


 (1) 

The stress component ),(h   is elastoplastic and 

always irreversible; it is a function of the current strain 

 and of its history denoted here by the parameter . 

The stress component )(r   is nonlinear elastic. The 

stress component ),(V



  is viscoelastic with a 

nonlinear viscosity as this stress has a nonlinear relation 

with the strain rate 


  and is also a function of the strain 

. The Figure 1-a illustrates this assumption, proposing 

a visco-elasto-hysteresis model in the one-dimensional 

case. Each stress component is presented by a symbolic 

model. Its mechanical behaviour is qualitatively 

illustrated in Figure 1-b to 1-e.



 

Figure 1: Visco-elasto-hysteresis model 

 

The figure 1-e illustrates the effect of the stress 

component ),(h  , which makes the C and F points 

different at the end of BC and EF relaxation periods. In 

the case of viscoelastic behaviour, these ends of 

relaxation periods are coincident (Fig. 1-b). 

 

3. EXPERIMENTAL TECHNIQUES 

 

Two sail fabrics were studied, branded “Dacron 300 

SF HTM” and “Dacron 300 SF HTP plus”.  These 

materials are woven with polyester fibers. Their mass 

densities are respectively ms= 312 gm
-2 

and ms= 298 

gm
-2

. 

The sample is clamped to the testing machine by a 

pair of swivel jaws, able to perform off-axis tensile 

tests. In the current study, tests were conducted in the 

warp and fill directions.  

The length of the sample is L=300mm and the width 

is w=50mm. The sample axial strain loc  is measured 

locally by an optical system, with the help of CCD 

camera. This measurement method, with no contact, is 

especially adapted for woven materials. Black marks or 

targets are pre-printed on the specimen. The optical 

system tracks the targets and trajectories are recorded, 

during the test (Fig.2). The measurement base B is 

equal to 100mm, and the local strain is obtained by the 

relative displacement zloc of the targets:  

B

zloc
loc


  

A global axial strain measurement glo is also 

obtained, by the relative displacement zglo of the two 

samples edges. The global strain glo takes into account 

the deformation of the whole sample, including the two 

clamping zones. Thus, we introduce a notion of 

equivalent length Lequ of the sample (Lequ>L), such as: 

locglo

equ

glo

glo and
L

z
 


  

Consequently, the equivalent length Lequ is 

determined by equating the two strain measurements.  

The mean value and standard deviation of equivalent 

length are indicated with the confidence interval (c.i.) 

of 95%:  

10)n c.i., (95% 1mm 329  equ L  

In the following we will not distinguish between 

local and global strain. The sample axial strain will be 

denoted by , such as: 

locglo    

 

 

 
 
In order to extend this definition to the case of large 

deformation, we introduce the stretch , such as: 

 1  

and the logarithmic strain,  such as: 

)(
2

1
)ln( 22  Ol    (2) 

The logarithmic strain rate corresponds to the axial 

strain-rate D, such as: 

Figure 2 - Sample attached to hydraulic testing 

machine 











 lD  

During a tensile test at a given constant strain-rate 

D0, the displacement speed of the sample edges, is 

controlled, as: 

)1()( 0 


tD

equglo eLtz
 

where t denotes the time. 

 

The stress applied to the sample was calculated 

from the load measure according to the assumptions of 

continuum mechanics. The material is assumed to be a 

homogeneous continuum. The tensile stress was 

calculated as the specific stress m, especially useful in 

the case of woven materials, such as: 

t

m



  and   

0



m

 3

where  and  are the Cauchy and Piola-Kirchhoff-1 

stresses; t and 0 the densities in the current and initial 

configurations. At first, this definition of stress may be 

surprising because it’s expressed as N.m.kg
-1

 or J.kg
-1

. 

Besides its theoretical interest, this definition does not 

require the thickness measurement of the sample, which 

is a very delicate operation. Indeed, if we consider the 

surface density ms of the material and the initial cross-

section S of the sample, we obtain: 

s

m
mw

F

S

F


0
  4

the specific stress m derives from the ratio F/w of the 

force per unit length. 

 

4. PRESENTATION AND ANALYSIS OF 

EXPERIMENTAL RESULTS 

 

4.1 MONOTONOUS AND CYCLIC TENSILE 

TESTS AT CONSTANT STRESS RATE 

 

Two cyclic tensile tests interrupted by creep periods 

were conducted on the “Dacron 300 SF HTP plus”. In 

the following, these tests will be called test 1 and test 2. 

The stress rate was controlled and maintained constant 

at )./(671 skgJm 


 . The loading and unloading 

processes were broken by some creep periods, during 

which the stress is constant. The duration of each 

period has been set at one hour. The results of the two 

tests are given in figure 3. Test 2 presents one loading–

unloading cycle (cycle 0c2h2m2). Test 1 was controlled 

at the same stress rate as test 2, but presents no cycle, it 

is a monotonous tensile broken with creep periods 

(loading 0e1). 

 

 

Figure 3 - Results of monotonous and cyclic tensile 

tests with creep periods ( )./(671 skgJm 


 ) 

During the creep stages, the strain may decrease 

(f2g2) or increase (k2l2) according to the location of the 

creep sequence in the stress–strain hysteresis loop. If 

the creep stage breaks a first or monotonous loading, 

the strain always increases regardless of creep location 

(Fig.4). 

 

 

Figure 4 - Strain versus time during creep periods 

Test 2 (Fig. 3) shows that the creep strain amplitude 

could be null, if the creep stage breaks the loading 

branch at a special point. Indeed, the sign of variation 

of strain at a creep stage changes according to the 

location after the reversal point (point c2). Therefore, 

we may assume that a neutral point exists and 

corresponds to a creep stage, which is characterized by 

strain amplitude vanishing to zero. This phenomenon is 

brought to the fore by creeps d2e2 and i2j2 in figure 3. 

Hence, the neutral points are located on the unloading 

branch between creeps d2e2 and f2g2, and on the 

reloading branch between relaxations i2j2 and k2l2 [2]. 

Figure 5 compares the results of a test 1 and the 

beginning of test 2. In this figure the starts and ends of 

the creep sequences are shown by black squares and 

black triangles, respectively. In order to characterize 

the evolutions of the starts and ends of creep sequences, 

we adopted a simple model, such as:  

)
S

M
(thS)( l

0

0
0lm   (5) 



where  0S  denotes a parameter associated with a stress 

threshold and M0 an elastic modulus in the stress-strain 

diagram, such as: 

)(
d

d
limM l

l

m

0
0

l








 

Figure 5 gives the curves of starts and ends of creep 

sequences, identified with the previous model (eq. 5). 

The parameter values obtained are: 

M0=2.6 kJ/g and S0=52 J/g for the curve ‘start of 

creep periods’ and M0=2.0 kJ/g and S0= 46 J/g for the 

curve ‘end of creep periods’ (Fig.5).  

We note a difference in elastic modulus, between 

these two curves, of 30%. This result, obtained 

for )./(671 skgJm 


 , depends strongly on the stress rate. 

This result underlines the importance of viscous effects, 

which may have a significant impact on the structural 

behaviour of sails, even in small deformation. 

 

 

Figure 5 - Change in behaviour between start and 

end of the creep periods ( )./(671 skgJm 


 ) 

 

4.2 MONOTONOUS TENSILE TESTS AT 

CONSTANT STRAIN RATE 

 

Monotonous tensile tests at constant strain rates were 

performed with “Dacron 300 SF HTM”, in warp and 

fill directions. During these tests, the strain rate was 

maintained constant at D=10
-3

s
-1

. Figure 6 presents 

some typical results in the stress-strain diagram. Some 

tests were broken with a stress relaxation period at a 

constant strain (relaxation ab), and other ended by a 

stress relaxation period (relaxation cd).  The curves are 

composed of three zones; in the first zone the stress is 

less than 30 J/g, the second zone is between about 40 

and 80 J/g and the third zone presents stresses above 80 

J/g. The transition between the first and the second 

zone is sharp and the transition between the second and 

third zone is very gradual. During the reloading just 

after the relaxation period ab, the slope in the stress–

strain graph is one of the highest. Moreover, the 

transient state just after a relaxation period ab presents 

a particular shape, like an overshoot above the steady 

state stress; firstly the stress rises linearly with the 

strain and soon beyond the steady state stress and then  

 

Figure 6: Results of monotonous tensile tests  

decreases in a second step and reaches this steady state 

stress. 

The results of these tests were used to characterize 

mechanical parameters, as following: 

 In the warp direction 

Young modulus = 5)n c.i., (68% J/g   28 7271   

Poisson’s ratio = 5)n c.i., (68%  0,004 020,0   

Failure stress = 5)n c.i., (68%  J/g  11 122   

Failure strain = 5)n c.i., (68%  0,015 174,0   

 In the fill direction 

Young modulus = 5)n c.i., (68% J/g   130 2850   

Poisson’s ratio = 5)n c.i., (68%  0,005 046,0   

Failure stress = 5)n c.i., (68%  J/g  12 147   

Failure strain = 5)n c.i., (68%  0,020 177,0   

 

The above results and the figure show that the warp and 

fill directions was distinguished basically by their 

elastic modulus and by their failure stress. Sun et al. 

[12] present Poisson's ratios of polyester fabrics of 0.20 

and 0.34. The difference between these values and our 

measures should be due to the fact that they consider 

the Poisson's ratio at very small strains.  

 
4.3 CREEP AND RELAXATION BEHAVIOUR 

 
Figure 7 groups the creep curves obtained during test 2 

(Fig. 3). The axes of figure 7 are such as: 

0ttt    , 
0

)( lll t     (6) 

and 0t ,
0

l correspond to the time and the logarithmic 

strain at the beginning of the creep stages. The time 

evolution of the creep strain presents a typical shape of 

most creeps whatever their location in the loading [6, 

8]. The time evolution of the strain, during a creep 

stage predicted by the classic linear viscoelastic 

Maxwell model, is also presented in figure 7 (curve a). 

This evolution is of an exponential type. The two 

parameters of the Maxwell model were calculated in 

order to take into account the whole variation of strain 



during the creep and the strain rate at the beginning of 

the creep period. Figure 7 underscores a fundamental 

difference of strain curve shapes between the linear 

viscoelastic Maxwell model and test 2. The time 

evolution of Maxwell strain reaches its limit in a 

duration equal to about three times its characteristic 

time . Whereas the time evolutions of the strain during 

test 2 increase more and more slowly and do not show 

any threshold or asymptotic limit. These experimental 

time evolutions during creep stages show a typical 

shape that could be defined by a theoretical equation as 

follows: 

BtLogA
Max

l

l 



)(




 (7) 

where A = 0,23, B = 0.18 for curve (b) and A = 0,46, B 

=-0.67 for curve (c). Figure 7 allows us to compare the 

experimental results with the two curves corresponding 

to the basic relaxation model defined by relation 7; 

there is a good accordance between them. Indeed, the 

curves (b) and (c) define a high and low limit which 

include all results. 

 

 

Figure 7: Comparison of the time evolutions of 

creep strain of test 2 (Fig. 3) to the linear viscoelastic 

Maxwell model prediction (curve a) and to creep 

behaviour according to relation 7 (curve b and c) 

 
In the same way, figure 8 gives the time evolution of 

stress relaxations ab and cd of figure 6. This figure 

suggests qualitatively that the type of time evolution of 

stress relaxation is similar to that of creep strain defined 

by relation 7 [2]. 

 

 

Figure 8: Time evolution of stress relaxations ab and 

cd of figure 6. 

 
5. IMPLEMENTATION OF THE 

PROPOSED APPROACH IN THE LINEAR 

VISCOELASTIC CASE 

 

To reduce the analysis to essentials and focus 

attention on the influence of viscous behaviour, we 

consider the linear viscoelastic case. Considering this 

simplifying assumption the relation (1) is reduced to: 

)()(),( rV  


 

And in the isotropic biaxial case the constitutive law 

is defined by the following relations: 

rv    

LnVILnVTr rrr .2).(.    

DIDTr vv

v

v

rp

v .2).(. 



 



 

LnV is the logarithmic eulerian strain. The time 

derivative 

rp

A



of a second-order tensor A is the Green-

Naghdi objective rate. 

The constitutive law is implemented in membrane-

like case, such as: 

)1)(1(

.

aa

aa
a

E







    

)1(2

.

a

aa
a

E







  (8) 

The sign ‘a’ is equal to r in the reversible case and 

equal to v in the viscous case. Let us note that, in 

membrane-like case, some classic equations are 

transformed, like for example the classic relations 

between the elastic parameters of Hooke law (eq.8) or 

the trace operator of identity tensor: 

2ITr  
 



 

Figure 9: Meshed flat sail geometry and maximum 

principal specific stress 

 

The mechanical behaviour of a flat sail has been 

simulated by the commercial finite element code 

ABAQUS.  The whole sail is made with “Dacron 300 

SF HTM”, which is supposed isotropic material. The 

model parameters were identified using the tensile tests 

along the warp direction: 

- Young modulus of viscous stress = 1413 J/g 

- Poisson’s ratio of viscous stress = 0.02 

- Relaxation time of viscous stress = 11 s 

- Young modulus of elastic stress = 570 J/g 

- Poisson’s ratio of elastic stress = 0.02 

Fully integrated solid elements (M3D3; 544 linear 

membrane elements, 3-node triangle) were used, as 

presented in Fig. 9. The nodes of the luff and the clew 

node are pinned, i.e. their displacements are null. A 

homogeneous pressure is applied on the sail. 

Nonlinearities due to large deflections are taken into 

account (Nlgeom option of code Abaqus). For instance, 

the pressure load follows the rotation of the elements. 

The strain definition does not assume small 

displacements. 

 

To evaluate the sail stiffness and characterize the 

viscous effect, the leech position is plotted in the y 

(horizontal) and z (vertical) plane (Fig. 10).  The first 

phase of loading corresponds to a constant pressure 

P=80 Pa. The second phase of the load P=150Pa is then 

applied. The span of rising in pressure between the first 

and second phase is 2 seconds. Pressure P=150Pa is 

maintained constant during 2 minutes in the last phase 

of loading.  

 

 

Figure 10: Deformation of the sail during loading  

The tip displacement (points a, b and c) between b and 

c corresponds about 30% higher than the tip 

displacement between a and b. This result is a 

consequence of results already archived in section 4.1. 

The viscous behaviour of material may have a 

significant impact on the structural behaviour of sails, 

even in small deformation. Indeed, the pressure applied 

to the sail correspond to a quite reasonable wind 

speeds, about 22kn for P=80Pa and 30 kn for P = 

150Pa. 

 

6. CONCLUSIONS 

 

Monotonous and cyclic tensile loadings with creep 

and relaxation periods were carried out at constant 

strain and stress rates. The experimental study is 

completed by an implementation of the proposed 

theoretical approach in the linear viscoelastic case. A 

structural analysis of a flat sail is proposed using finite 

element method. The results underline the importance 

of viscous effects, which may have a significant impact 

on the structural behaviour of sails, even in small 

deformation. 
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