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Abstract

A new approach to the description of stationary plane waves in ideal density stratified
incompressible fluid is considered without the application of Boussinesq approximation.
The approach is based on the equation derived by Dubreil-Jacotin [4, 5, 6] and Long [7]
with the additional assumption that the mean vorticity of the flow is zero. It is shown
that in the linear approximation the spectrum of eigenmodes and dispersion equations
corresponding to these eigenmodes can be found in the closed analytical forms for many
particular relationships between the fluid density and stream function. Examples are
presented for waves of infinitesimal amplitude. Exact expression for the velocity of solitary
wave of any amplitude is derived.
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1 Introduction

The problem of analytical description of surface and internal waves in density stratified fluid
is still topical both from the academic and practical point of views. Practical interest to the
problem is conditioned by its application mainly in the physical oceanography, although other
applications are also possible. Analytical methods of investigation of water wave structure
are traditionally based on the consideration of the cases when the fluid is either exponentially
stratified, so that the buoyancy parameter (alias the Brunt–Väisälä frequency, see below), is
constant or when the fluid stratification can be modeled by a few numbers of homogeneous
layers. For the problem simplification, it is also traditionally used Boussinesq approximation
within the framework of which the fluid density ρ(y) is treated as a constant, ρ(y) ≈ ρ0,
everywhere in the governing equations, except those terms which contain the gravity accel-
eration g as the multiplier (see, e.g., [1, 2, 3]). Formally mathematically, this approximation
corresponds to the limit when dρ/dy → 0, g → ∞, whereas g dρ/dy = Cst. In other cases,
the numerical methods are usually applied to construct solutions describing a structure of
linear and nonlinear waves. But, even in the cases when the problem is studied by means of
numerical methods, Boussinesq’s approximation is widely used.

In the meantime, the development of rigorous analytical methods for the description of
water wave structure still remains topical as this allows one to gain an insight about the
peculiarities of water waves in density stratified fluids and obtain some benchmark solutions
for testing numerical results. In this paper we present an attempt to develop a method
of rigorous description of surface and internal waves in density stratified fluid beyond the
Boussinesq approximation. Our approach is based on the exploitation of the well-known
Dubreil-Jacotin–Long (DJL) equation [4, 5, 6, 7] relating the fluid density ρ and stream
function ψ (see below). It is shown that in several particular case of the relationship between
these two quantities, the DJL equation can be solved analytically, at least, in the linear
approximation in the wave amplitude. We define the class of wave motions with the zero mean
vorticity (ZMV) and investigate the boundary-value problem for the waves of infinitesimal
amplitude for various dependences ρ(ψ). The most detailed results are obtained, in particular,
for the linear dependence ρ(ψ). The dispersion relation and mode structure are obtained in
the shallow- and deep-water limits beyond the Boussinesq approximation. We show also that
the velocity of a finite amplitude solitary wave can be deduced in the closed form for the wave
of arbitrary amplitude.

The paper is organized as follows. For the easy self-contained reference, the hypothesis,
notations and derivations are detailed in section 2. Further details can be found in the
Appendix A. Peculiar types of stratifications and some parameters are introduced in section
3. Main results are derived in sections 4–9. In the Conclusion, we summarize and discuss the
results obtained.

2 Formulation of the problem

In this section, we present the main hypothesis and equations of motion. Further technical
details can be found in the Appendix A.
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2.1 Basic equations

Let us consider a two-dimensional steady wave motion in a perfect incompressible fluid of den-
sity ρ > 0 which may vary in the vertical direction (density stratified fluid). The unperturbed
fluid depth h is assumed constant (0 < h 6 ∞), the surface tension is neglected in this study,
and g denotes the acceleration due to gravity. Let x and y be the horizontal and vertical
coordinates, respectively, as shown in the sketch of Fig. 1. Denote by y = η(x) the shape of
the free surface perturbed by a wave; in the absence of wave, the unperturbed water surface
is described by equation y = 0, whereas y = −h denotes the impermeable horizontal bottom.
The wave propagates toward the positive x-direction if the phase velocity c is positive in the
immovable (reference) coordinate frame.

The condition of fluid incompressibility – viz. ∇·u = 0, where u = (u, v) is the velocity
vector and ∇ is the gradient operator – allows us to introduce a stream-function ψ such that
the horizontal and vertical velocity components, u and v respectively, can be presented as
u = ∂ψ/∂y and v = −∂ψ/∂x. Since the flow is assumed steady, the bottom and the free
surface are stream lines; let us denote the corresponding constant values of these streamlines
as ψb ≡ ψ(y=−h) and ψs ≡ ψ(y=η). Without loss of generality, we can impose arbitrarily
the value of one of these constants (ψb or ψs); this determines the function ψ univocally
(a convenient choice will be taken below). Finally, by P we denote the pressure, which is
assumed to be zero at the free surface, and by ω = ∂v/∂x − ∂u/∂y = −∇

2ψ we denote the
flow vorticity, the only nonzero component of which is directed perpendicular to the xy-plane.

For incompressible fluids, the mass conservation equation yields Dρ/Dt = 0, where D/Dt ≡
∂/∂t + u·∇ is the traditional notation of the substantial derivative (here D/Dt = u·∇ be-
cause the flow is steady). As follows from this equation, ρ is constant along the trajectory of
a fluid particle. Hence, for a steady flow the streamlines are simply coincide with the particle
trajectories and thus

ρ = ρ(ψ). (1)

Note that this relation is not revertible in general, i.e., it does not necessarily implies that
ψ = ψ(ρ). For example, in the homogeneous fluid ρ is constant in the all space occupied by
fluid, whereas ψ may vary.

The Euler momentum equation for the incompressible fluid can be written as

ρ
Du

Dt
= −∇(P + ρgy) + g y∇ρ. (2)

After scalar multiplication of this equation by u, exploiting the relations u·∇ρ = Dρ/Dt = 0,
u·∇(P+ρgy) = D(P+ρgy)/Dt and ρu·Du/Dt = ρD(|u|2/2)/Dt = D(ρ|u|2/2)/Dt, we obtain
after some elementary algebra

D

Dt

[

ρ
|u|2
2

+ P + ρ g y

]

= 0.

This implies that the expression in the brackets is constant along each stream function:

P

ρ
+ g y +

u2 + v2

2
= B(ψ), (3)

3



where B(ψ) is the Bernoulli integral (see, e.g., [2]).

Substituting Eqs. (1) and (3) into the y-component of the Euler equation (2), one readily
obtains the equality

P

ρ2
d ρ

dψ
+

dB

dψ
= −ω. (4)

We emphasize that in Eqs. (1)–(4) the quantities ρ and B are functions of ψ solely, while
the stream function ψ, as well as other quantities, u, v, ω and P , depend of both spatial
coordinates x and y and time t. Eliminating P between (3) and (4), we obtain the well-
known DJL equation [4, 5, 6, 7]:

ρ∇2ψ +
1

2

d ρ

dψ

[

(∇ψ)2 + 2gy
]

=
d (ρB)

dψ
. (5)

Let us consider a periodic solution to this equation with the spatial period λ = 2π/k,
where k is a wave number. The period of a solution may be infinite, in particular; in this case
the corresponding solution describes a non-periodic wave.

Let us define the zero water level as the perturbation of the water surface η averaged over
the spatial period λ:

〈η〉 ≡ k

2π

π/k
∫

−π/k

η(x) dx = 0. (6)

Similarly, we define by −c the mean horizontal velocity of the fluid in the coordinate frame
related with the stationary wave with the velocity c (moving to the right if c > 0):

c ≡ − k

2πh

π/k
∫

−π/k

η
∫

−h

u(x, y) dy dx =
ψb − ψs

h
. (7)

With the condition (6) and zero pressure at the water surface, Eq. (3) defines the Bernoulli
integral at the free surface:

Bs ≡ B(ψs) =

〈

u2s + v2s
〉

2
=

k

4π

π/k
∫

−π/k

[

(∇ψ)2
]

y=η
dx. (8)

The definition of B for ψ 6= ψs requires a further consideration.

2.2 Wave motions with the zero mean vorticity

Note first that if ω = 0, then Eq. (4) implies that either ρ and B are constants (this corre-
sponds to homogeneous fluid), or P is the specific function of ψ, namely:

P (ψ) = − ρ2
dB

dψ

(

d ρ

dψ

)

−1

, (9)
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(this corresponds to isobaric streamlines). But, as has been proven by Dubreil-Jacotin [5],
the only wave motion with the isobaric streamlines is Gerstner wave [9] (see also [10]), which
is, however, rotational, i.e. with ω(ψ) 6= 0. Hence, any wave motion of density stratified fluid
with dρ/dψ 6= 0 is necessarily rotational.

In general, the vorticity associated with the wave can co-exist with the ambient vorticity
of the mean flow. In this paper we focus, however, on the particular case of such motions
when the mean-flow vorticity is zero. In addition to that, we assume that the mean vorticity
associated with the wave motion is also zero, i.e. 〈ω〉 = 0. Here, the averaging integral is
calculated over the spatial period on x along each constant streamline ψ. We call such special
flow the zero-mean vorticity (ZMV) flow. Notice that Gerstner wave does not belong to this
class of wave motion; the mean vorticity of such wave is nonzero.

For wave motion with the zero mean vorticity, Eq. (4) after the averaging along the
constant streamline yields the equation for the mean pressure:

〈P 〉 = − ρ2
dB

dψ

(

d ρ

dψ

)

−1

, (10)

provided that d ρ/dψ 6= 0. Averaging now the DJL equation (5) over the wave period, we
also obtain (see Appendix A for details):

d (ρB)

dψ
=

[

Bs +
g (ψs − ψ)

c

]

d ρ

dψ
. (11)

This completes the definition of the Bernoulli integral for the ZMV-flows and allows us to
present the DJL equation (5) in the form:

∇
2ψ +

1

ρ

d ρ

dψ

[

1
2 (∇ψ)2 − Bs + (g/c) (ψ − ψs) + g y

]

= 0. (12)

This equation has to be augmented by the bottom and surface boundary conditions to com-
plete the problem statement. This will be done further. Assuming then a specific dependence
of ρ(ψ) we will investigate the resultant equations.

Notice that Brown and Christie has stated [11] that in application to solitary waves
Eq. (12) remains valid not only when all streamlines go to infinity, but when they are closed
and confined within a certain space domain too. In the latter case, the corresponding solitary
waves are strongly nonlinear representing flows with compact vortex cores.

2.3 Remarks

(i) For solitary waves, it is often assumed (see, e.g., [11, 12]) that the fluid flow is uniform
at the infinity. However, since we are dealing here with the periodic waves, in general, the
upstream condition of uniform flow is replaced by the condition of the ZMV. The latter
condition reduces to the former one for solitary waves.
(ii) After multiplication of Eq. (5) by (ρ0/ρ)

1

2 , where ρ0 > 0 is a constant reference density,
and introducing new dependent function

Ψ(ψ) ≡
∫
(

ρ

ρ0

)
1

2

dψ ⇐⇒ ψ(Ψ) =

∫
(

ρ0
ρ

)
1

2

dΨ,
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Eq. (5) reduces to

ρ0∇
2Ψ +

d ρ

dΨ
gy =

d (ρB)

dΨ
. (13)

This is the DJL equation in the Yih form [13, 2]. For the ZMV-flows, Eqs. (11) and (13) give

ρ0∇
2Ψ +

d ρ

dΨ

[

gy − Bs +
ψ(Ψ)− ψs

c/g

]

= 0. (14)

Yih equation (13) is of special interest when both derivatives dρ/dΨ and d(ρB)/dΨ are linear
functions of Ψ. Several solutions of this kind have been investigated by Yih (see Chap. 3
in the book [2]). It can be easily seen that the peculiar exact linear forms of the general
Eq. (13) are not peculiar cases of the specific Eq. (14) because dρ/dΨ and d(ρB)/dΨ cannot
be linear functions of Ψ simultaneously for the ZMV-flows. Moreover, for the special types of
the dependence ρ(ψ) considered below, Yih equation (13) does not bring any simplification
and therefore, it is not considered here.

(iii) Brown and Christie [11] have noticed that, for solitary waves with a uniform upstream
current, Eq. (12) can be derived from the Hamilton principle. For the considered here ZMV-
flows, Eq. (12) also follows from that principle with the following Lagrangian density:

L ≡ ρ(ψ)

[

(∇ψ)2

2
− gy + Bs − ψ − ψs

c/g

]

+
g

c

ψ
∫

ψs

ρ(ϕ) dϕ.

And the functional to be minimized is:

J(ψ) =

∫

η
∫

−h

L dy dx.

This can be easily verified by the direct calculation.

3 Linearly related density and stream-function

Here we investigate steady wave motion in a stratified fluid assuming that ρ linearly depends
of ψ, whereas the dependence of unperturbed density on depth, ρ(y), may be arbitrary, in
general. In what follows we do not assume that the density variation with depth is small
and do not use Boussinesq approximation which is traditionally exploited in the physical
oceanography (see, for instance, [1, 2, 3]).

Without loss of generality, the linear dependence ρ(ψ) can be taken in the form:

ρ(ψ) = ρs ψ /ψs, (15)

where ρs > 0 is a constant representing fluid density at the free surface. Note that this choice
of linear dependence is rather general as any possible additive constant ρ0 can be absorbed
into the redefined stream function by the simple gauge transformation ψ = ψ⋆ − ψs ρ0/ρs
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which does not affect the velocity field. In other words, the stratification (15) defines ψs

univocally.

In accordance with Eq. (15), the constant density at the bottom is ρb = ρsψb/ψs =
ρs(1+ ch/ψs), where we put ψb = ψs+ ch. In this paper we consider only the statically stable
case when the fluid density increases with the depth (stable stratification). This implies that
ρb > ρs and ψs/c > 0.

A fluid stratification is commonly characterized by the local buoyancy, alias Brunt–
Väisälä, frequency [1, 2, 3]:

Nl ≡
(

− g

ρ

d ρ

dy

)
1

2

, (16)

where ρ is unperturbed density. Nl is not constant for linearly related stratification and
stream function, in general, but depends of y. In addition to Nl, we define also a global
Brunt–Väisälä frequency which is used sometimes in fluid mechanics too:

Ng ≡
(

− g

ρs

ρs − ρb
h

)
1

2

=

(

g c

ψs

)
1

2

. (17)

This quantity characterizes the global buoyant property of the fluid, rather than the charac-
teristics of internal waves, whereas the local parameter Nl directly determines the dispersion
properties of internal waves and their vertical structure. This implies that the parameter
ψs/c does not depend on the wave characteristics such as wave amplitude, velocity, frequency,
wavelength, etc. Hence, ψs must be proportional to c if NG is fixed.

In order to characterize the flow regime, we introduce some more dimensionless parameters
– the Froude number Fr, global density variation ̺ and densimetric Froude number Fd:

Fr2 ≡ c2

g h
, ̺2 ≡ ρb − ρs

ρs
,

Fd2 ≡ c2

g h

ρb − ρs
ρs

=

(

cNg

g

)2

= ̺2 Fr2. (18)

Then, we have the relationships

c3

g ψs
= Fd2,

c3

g ψb
=

Fd2

1 + ̺2
, (19)

which will be used later on in the subsequent sections.

Finally, for the linearly related ρ and ψ, as per Eq. (15), and the ZMV-flows, the DJL
equation (12) takes the form

ψ∇
2ψ + 1

2 (∇ψ)2 + (g/c)ψ = Bs + (g/c)ψs − g y. (20)

This is the governing equation which we will study first in the next section for the limiting
case of infinitesimal waves.
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4 Waves of infinitesimal amplitude

Consider first stationary periodic waves of infinitesimal amplitude and the period 2π/k in the
background homogeneous flow. This case corresponds to the linear approximation, when the
perturbation of the mean flow can be presented in the form of a harmonic wave:

ψ ≈ ψs − c y + c f(y) a cos(kx), η ≈ a cos(kx), (21)

where ka ≪ 1, and f(y) is a function which must be determined. As follows from this
equation, without wave perturbation, i.e., when a = 0, the stream function linearly depends
on the depth. The same is true for the density ρ(y) thankful to Eq. (15).

To satisfy the impermeability boundary conditions at the surface and bottom we have to
impose the following conditions on the function f(y):

f(0) = 1, f(−h) = 0. (22)

At the free surface, the definition of the Bernoulli constant (8) yields

Bs = 1
2 c

2 + O(a2), (23)

whereas the isobarity of the free surface (the condition of a constant pressure) gives in turn
from Eq. (3)

a cos(kx)
[

g − c2 f ′(0)
]

+ O(a2) = 0, (24)

where f ′ = df/dy. Thus, neglecting the terms of the order of a2 (and higher) we obtain in
the linear approximation:

c2 = g
/

f ′(0). (25)

Now, when all boundary conditions were addressed and satisfied, determine function f(y);
it can be found from the solution of the DJL equation (20). By substitution of the trial solution
(21) into Eq. (20), one finds that to the first-order approximation in a, function f(y) obeys
the second-order linear ODE:

[ (ψs − cy)f ′ ]′ + [ g/c − k2(ψs − cy) ]f = 0. (26)

This equation formally has a singularity at the point y = ψs/c > 0, but in the domain
occupied by the fluid with the surface waves of infinitesimal amplitude, y 6 0, therefore the
singularity does not affect the solution as it is above the free surface.

Introduction of new variables

z ≡ 2 k (ψs/c − y ) = 2 k
(

h/̺2 − y
)

and F (z) ≡ f(y) e−ky, (27)

allows us to rewrite Eq. (26) in the standard form determining the confluent hypergeometric
function [14]:

z F ′′ + (1− z)F ′ − αF = 0, (28)

where

α ≡ 1

2

(

1 − g

k c2

)

=
1

2

(

1 − 1

k hFr2

)

=
1

2

(

1 − ̺2

k hFd2

)

. (29)
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Introducing also the following parameters

zs ≡ 2 k ψs

c
=

2 g k

N 2
g

=
2 k h

̺2
, zb ≡ 2 k ψb

c
=
(

1 + ̺2
)

zs, (30)

we can present the boundary conditions (22) and (25) in the form:

F (zs) = 1, F (zb) = 0, F ′(zs) = α. (31)

Equation (28) together with the boundary conditions (31) forms the eigenvalue problem.
Eigen solutions of Eq. (28) may be expressed in terms of special Kummer functions alias the
confluent hypergeometric functions (see, e.g., [14] §13):

F (z) =
M(α, 1; zb)U(α, 1; z) − U(α, 1; zb)M(α, 1; z)

M(α, 1; zb)U(α, 1; zs) − U(α, 1; zb)M(α, 1; zs)
, (32)

where M and U are the Kummer functions of the first and second kind, respectively. The
solution (32) fulfills the two first boundary conditions (31). The third boundary condition
(31) gives the following dispersion relation

[

1 +
M(α, 1; zb)U(α+1, 2; zs) + U(α, 1; zb)M(α+1, 2; zs)

M(α, 1; zb)U(α, 1; zs) − U(α, 1; zb)M(α, 1; zs)

]

α = 0. (33)

Introducing the dimensionless horizontal coordinate X ≡ kx and stream function Ψ ≡
kψ/c, present solution (21) with the eigenfunction (32) in the dimensionless form

Ψ(X, z) =
z

2
+ ǫ cos(X) exp

(

zs − z

2

)

F (z),

where ǫ ≡ ka. This solution contains four dimensionless parameters: ǫ, α, zs and zb, which
are directly related with the physical parameters such as the densimetric Froude number Fd
[see Eq. (18)] and the dimensionless wave number

K ≡ k c2

g
= k hFr2 =

1

1− 2α
. (34)

Instead of analyzing this solution at once, it is enlightening and simpler to start with the
limiting cases of shallow and deep fluids first.

Remark: An alternative case can be considered separately when the rigid lid boundary
condition is used instead of the free-surface condition. Such condition is frequently used in
physical oceanography to filter out the surface mode and focus on the internal modes only
(see, e.g., [1, 2, 3]). In such case, stationary periodic wave of infinitesimal amplitude and
period 2π/k in the homogeneous background flow can be presented in the following form:

ψ ≈ c (h + y) + c f(y) a cos(kx) (35)

with the surface value of the stream function, ψ(0) ≡ ψs = c h. The zero boundary conditions
are used at the surface and bottom:

f(0) = 0, f(−h) = 0. (36)

The Bernoulli integral is not applicable in the rigid-lid case, therefore Eq. (25) is no longer
valid. Instead of that one can use the condition of eigenfunction normalization |f(y)|max = 1.
This condition jointly with the conditions (36) and Eq. (26) forms a boundary-value problem
which completely defines the structure of internal modes.
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5 Waves in the shallow water limit

Let us consider the shallow-water limit (kh ≪ 1), keeping h constant and turning the wave-
length to infinity (k → 0+). In this case, the parameter α (29) goes to minus infinity, and
the Kummer functions reduce to the Bessel functions (Appendix B). Then, the dispersion
relation (33) becomes

0 = J0

(

2
√

1 + ̺2

̺Fr

)

Y0

(

2

̺Fr

)

− Y0

(

2
√

1 + ̺2

̺Fr

)

J0

(

2

̺Fr

)

−

̺Fr

[

J0

(

2
√

1 + ̺2

̺Fr

)

Y1

(

2

̺Fr

)

− Y0

(

2
√

1 + ̺2

̺Fr

)

J1

(

2

̺Fr

)

]

. (37)

where Jn and Yn are, respectively, the Bessel and Neumann functions of the order n [14].
Note that it is rather cumbersome to derive this limiting expression from the arbitrary depth
solution (32)–(33); it is much simpler to derive it directly from Eq. (26) letting k = 0. For
the given stratification ̺ > 0, this dispersion relation has an infinite number of roots, which
correspond to surface wave and set of internal wave modes. Each root defines a critical Froude
number, i.e., the maximal normalized speed of infinitely long waves.

For the weak stratification (̺≪ 1), Eq. (37) yields

Fr2 − 1 +
(

1
2 − 1

3 Fr
−2
)

̺2 + O(̺4) = 0.

In particular, for the homogeneous fluid (̺ = 0), Eq. (37) defines the critical Froude number

of the zeroth mode Fr = Fr
(0)
crit ≡ 1 (i.e., c2 = gh, as expected for shallow-water waves in the

linear approximation). Thus, the zeroth mode is nothing but small-amplitude infinitely long
surface wave. The zeroth mode is called the surface mode since it exists even in the absence
of stratification.

When ̺ > 0, in addition to the zeroth-mode root, Eq. (37) possesses an infinite number
of real positive roots. These roots exist only in the presence of stratification; they are called
the internal modes. Graphical solution of Eq. (37) in terms of the critical Froude numbers
Fr(n) is shown in Fig. 2 for ̺ = 1. All roots corresponding to internal modes with n > 1 are
close to zero if ̺ ≪ 1, while the surface mode is close to 1 in this limit. This can be seen
from the asymptotic expansion of Eq. (37) which, after some algebra, yields for Fr → 0:

̺Fr ∼ tan

(

√

1 + ̺2 − 1

̺Fr / 2

)

.

The critical Froude numbers are designated as Fr
(n)
crit (n = 0, 1, 2, · · · ) and sorted in the

decreasing order of magnitude (so that Fr(n) → 0 as n → ∞). The corresponding critical

phase velocities and eigenfunctions are then designated as c
(n)
sf and f

(n)
sf , respectively, where

the subscript ‘sf’ stands for the ‘shallow fluid’.

The critical Froude numbers Fr
(n)
crit depend of the stratification parameter ̺. As ̺ increases,

the zeroth-mode critical Froude number Fr
(0)
crit monotonically decreases, while other critical

10



Froude numbers monotonically increase (Fig. 3). However, there is no intersections between

the roots even when ̺ → ∞. The limiting values of the roots are Fr
(0)
crit(̺ = ∞) ≈ 0.832,

Fr
(1)
crit(̺=∞) ≈ 0.362, Fr

(2)
crit(̺=∞) ≈ 0.231, Fr

(3)
crit(̺=∞) ≈ 0.169, etc. They are shown in

Fig. 3 by horizontal dashed lines. Thus, there is a finite gap between the possible velocities

of the surface and internal modes, e.g., Fr
(0)
crit(̺=∞)− Fr

(1)
crit(̺=∞) ≈ 0.47.

In the limit ̺ = 0, only the zeroth-mode exists, the corresponding velocity field turns into

the uniform current, and the eigenfunction f
(0)
sf (y) becomes a linear function of y:

f
(0)
sf (y) = 1 + y/h + O(̺2).

If ̺ > 0, the infinite set of internal modes do exist. The current induced by each mode is
described by the following eigenfunctions, which follows from Eqs. (27) and (32) in the limit
of kh→ 0:

f
(n)
sf (y) =

Y0

(

Gn

√

1− ̺2 yh

)

− R0

(

Gn

√

1 + ̺2
)

J0

(

Gn

√

1− ̺2 yh

)

Y0(Gn) − R0

(

Gn

√

1 + ̺2
)

J0(Gn)
, (38)

where Gn = 2/̺Fr
(n)
crit , and function R0(x) = Y0(x) / J0(x).

The structures of the first three modes are presented in Fig. 4 for the case when ̺ = 1.
As one can see from this figure, the modes structure is qualitatively similar to the structure
of linear modes in the exponentially stratified fluid, when the Brunt–Väisälä frequency Nl =

const [3]. Notice also that our definition of eigenfunctions f
(n)
sf (y), as per Eq. (21), is such

that each mode has the same velocity c; this results in the boundary conditions (22) and
(25). Hence, all eigenfunctions turn to unity at the fluid surface, whereas their maxima and
minima attained in the bulk of the fluid may be much greater in absolute value than one, as
it is illustrated in Fig. 4.

In the asymptotic limit Fr
(n)
crit → 0, the expansion of Eq. (38) yields:

f
(n)
sf (y) ∼

sin

[

(

2/̺Fr
(n)
crit

)

(

√

1 + ̺2 −
√

1− ̺2y/h

)]

4

√

1− ̺2y/h sin

[

(

2/̺Fr
(n)
crit

)

(

√

1 + ̺2 − 1

)] .

It can be readily seen from this formula that the number of nodes of the eigenfunction f
(n)
sf (y)

increases with the mode number n as Fr
(n)
crit tends to zero. The behavior of the eigenvalues

Fr
(n)
crit and eigenfunctions f

(n)
sf (y) is in accordance with the general Sturm oscillation theorem

[15].

6 Waves in the deep-water limit

In the deep-water limit (i.e., when h → ∞ and hence, {ψb, ρb, zb} → ∞) solution (32) and
the dispersion relation (33) become

F (z) =
U(α, 1; z)

U(α, 1; zs)
,

[

1 +
U(α+1, 2; zs)

U(α, 1; zs)

]

α = 0, (39)
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with
α = 1

2 − 1
2 K

−1, zs = 2K Fd−2.

Notice that in the deep-water limit, the Froude number Fr as defined above is zero, but the
densimetric Froude number Fd may be finite, in general. Similar to the shallow-water case, for
the fixed parameter Fd > 0, the dispersion relation has the infinite number of roots (Fig. 5),
whereas there is only one root if Fd = 0. Below we explain this fact.

In the limiting case of a homogeneous fluid, i.e. when ̺ = 0, and {z, zs} = +∞, whereas
z/zs = 1, solution (39) for the eigenfunction becomes trivial1:

F (z) = 1, α = 0. (40)

According to Eqs. (27) and (29), this yields f(y) = exp(ky) and c2 = g/k in agreement
with the linear theory of surface gravity waves in the deep homogeneous fluid. This solution,

corresponding to the zeroth mode, is characterized by the dimensionless wave number K
(0)
df ≡

kc2/g = 1 (subscript ‘df’ stand for the ‘deep fluid’).
For the heterogeneous fluid (̺ > 0), the infinite number of other roots of the dispersion

relation (39) appears in addition to the zeroth mode, α = 0. These roots are solutions of the
equation

U(α+1, 2; zs) + U(α, 1; zs) = 0. (41)

The corresponding eigenmodes are numbered in the decreasing order of magnitude of the

dimensionless wave number K, i.e. K
(0)
df > K

(1)
df > K

(2)
df > · · · (see Fig. 5). Each root K

(n)
df

increases when the stratification becomes stronger, i.e. when ̺ increases.
In contrast to the zeroth mode, the eigenfunctions f (n)(y) do not vanish monotonically

when y → −∞ (see Fig. 6). The eigenfunction f (n)(y) of the nth-mode has n local extrema
for 0 > y > −∞. The behavior of the eigenvalues and eigenfunctions is again in the complete
accordance with the Sturm oscillation theorem [15].

7 The general case of a finite-depth fluid

In the general case of the finite-depth fluid, the dispersion relation (33), similar to two previous
cases of shallow and deep water, has an infinite number of roots if ̺ 6= 0, and only one root
if ̺ = 0. However, in contrast to the previous case, in general, α = 0 is not a root of Eq. (33)
if h < ∞, because the expression in the square brackets of Eq. (33) goes to infinity, when
α → 0. In the result of this the first term of the Taylor expansion of Eq. (33) around α = 0
is (for details see Appendix B):

exp(zs)

zs

1

chi(zb)− chi(zs) + shi(zb)− shi(zs)
+ O(α) = 0, (42)

where chi(x) and shi(x) are the hyperbolic cosine and sine integral functions, respectively
[14].

1Note that the expression in the square brackets of the dispersion relation (39) remains bounded when
α → 0.
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In the limiting case of a homogeneous fluid (̺ = 0), the dispersion relation (33) reduces
after some (rather cumbersome) algebra to the usual dispersion relation for surface water
waves in the fluid of finite depth [1, 3]:

c2

gh
=

tanh(kh)

kh
. (43)

In the case ̺ 6= 0, no further simplification of Eq. (33) were found, and the roots of this
equation, including the zero-mode root, can be found only numerically.

8 Solitary waves

For solitary waves, the flow represents a uniform current in the far field. If we consider solitary
waves decaying exponentially2, than it is natural to seek for a solution having the following
asymptotic behavior when x→ ±∞:

ψ ∼ ψs − c y + a c exp(−κ|x|) f(y), η ∼ a exp(−κ|x|), (44)

where κ > 0 is a parameter characterizing the spatial decay of the solitary wave. Substitu-
tion of this asymptotic expression for ψ into governing equation (20) gives a straightforward
derivation of the wave velocity c. However, to obtain the result, it is even simpler to apply the
transformation k 7→ iκ (where i2 = −1) to the dispersion relation (33), which was formally
derived in the linear approximation consistent with the far-field asymptotic of the soliton tail.
In the result, we obtain:

U(α̂, 1; iẑs) + U(α̂+1, 2; iẑs) +
U(α̂, 1; iẑb)

M(α̂, 1; iẑb)
[M(α̂+1, 2; iẑs) − M(α̂, 1; iẑs) ] = 0, (45)

with

α̂ =
1

2

(

1 +
ig

κc2

)

, ẑs =
2κh

̺2
, ẑb =

(

1 + ̺2
)

ẑs. (46)

In the limiting case of a homogeneous fluid (̺ = 0), the dispersion relation (45) yields

c2

gh
=

tan(κh)

κh
. (47)

This formula was derived for the first time by McCowan [16]. Stokes [17] noticed that Eq. (47)
is actually the exact relation for a solitary wave of arbitrary amplitude, unlike Eq. (43), which
is valid for sinusoidal waves of infinitesimal amplitude. Similarly, the dispersion relation (45)
is exact for solitary waves of arbitrary amplitude, whereas Eq. (33) is just an approximation
for sinusoidal waves of infinitesimal amplitude.

In the limit of κh→ 0, it follows from Eq. (47):

c ≈
√

gh

(

1 +
κh

3

)

. (48)

2Algebraic solitary waves, whose asymptotic decay is of a power type ∼ x
−p, where p > 0 is some constant,

may be also considered, but in a separate representation.
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This formula can be compared with the known dependence of soliton velocity on depth which
follows from the Boussinesq or Korteweg–de Vries theory in the shallow-water limit, κh→ 0,
(see, e.g., [18]):

c ≈
√

gh
(

1 +
η0
2h

)

, (49)

where η0 is the amplitude of a surface soliton. By comparison of Eqs. (48) and (49), we can
identify (at least in this shallow-water limit) κ = 3η0/2h

2. For large depths and amplitudes
this relation between κ and η0 is not valid, nevertheless substituting it formally into Eq. (47),
we may roughly estimate the maximal possible amplitude of the surface soliton when its
velocity turns to infinity: (η0)max ≈ πh/3 ≈ h, whereas more precise value is (η0)max ≈ 0.83h
(see [19] and references therein).

9 Other cases of density dependences on the stream function

As has been shown above, when the fluid density is linearly related to the stream function, the
linearized problem for infinitesimal waves can be solved in the closed analytical form. This
gives an useful insight to the problem of water waves in stratified fluid and helps in the more
advanced analytical and numerical investigations. However, in some more complicated cases
when the density and stream function are related by certain nonlinear functions, the problem
of analytical description of water waves is still tractable to analysis. Below we consider some
of such cases.

9.1 The generic density function

Let us consider a general dependence between ρ and ψ in the form:

ρ(ψ) = ρs Q(ψ/ψs), (50)

where ρs > 0 is a constant representing fluid density at the free surface and Q is a non-
decreasing function such that Q(1) = 1. If dρ/dψ 6= 0, one may impose Q(0) = 0 or any other
convenient relation providing a gauge condition for ψ. The constant density at the bottom is
ρb = ρsQ(1 + ch/ψs). For statically stable stratifications, ρb > ρs and ψs/c > 0.

9.2 The power density dependence

A first example having a special interest consider the power dependence of the density on the
stream function:

ρ(ψ) = ρs (ψ /ψs)
β, (51)

where β is a constant. This relation reduces to the cases of homogeneous fluid, if β = 0, and
linearly related ρ and ψ, if β = 1.

The DJL equation (12) with the relationship (51) reads:

β−1 ψ∇
2ψ + 1

2 (∇ψ)2 + (g/c)ψ = Bs + (g/c)ψs − g y, (52)
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This equation only slightly differ from Eq. (20) due to the coefficient β in front of the first
term. For the waves of infinitesimal amplitude described by Eq. (21), equation (52) can be
also solved in the closed analytical form. The corresponding equation for the eigenfunction
f(y) in this case is (cf. Eq. (26)):

[ (ψs − cy)f ′ ]′ + (1− β) c f ′ + (βg/c − k2ψs + k2cy)f = 0. (53)

Introduction of new variables and parameters

z ≡ 2 k (ψs/c − y ) , F (z) ≡ f(y) e−ky, α ≡ β

2

(

1 − g

k c2

)

, (54)

zs ≡ 2 k ψs

c
=

2 g k

N 2
g

=
2 k h

̺2
, zb ≡ 2 k ψb

c
=
(

1 + ̺2
)

zs, (55)

allows us to rewrite Eq. (53) in the standard form determining the confluent hypergeometric
function [14]:

z F ′′ + (β − z)F ′ − αF = 0. (56)

The latter equation augmented by the boundary conditions [cf. Eq. (31)]:

F (zs) = 1, F (zb) = 0, F ′(zs) = α/β. (57)

forms the eigenvalue problem. Solution of Eq. (56) may be expressed again in terms of the
confluent hypergeometric functions (see, e.g., §13 in the book [14]):

F (z) =
M(α, β; zb)U(α, β; z) − U(α, β; zb)M(α, β; z)

M(α, β; zb)U(α, β; zs) − U(α, β; zb)M(α, β; zs)
. (58)

The solution (58) fulfills two first boundary conditions (57), whereas the third boundary
condition (57) yields the dispersion relation:

[

1 +
βM(α, β; zb)U(α+1, β+1; zs) + U(α, β; zb)M(α+1, β+1; zs)

M(α, β; zb)U(α, β; zs) − U(α, β; zb)M(α, β; zs)

]

α

β
= 0. (59)

As in the case of linearly related functions ρ and ψ, this dispersion relation has an infinite
number of real roots, if ̺ > 0, and only one root, if ̺ = 0. The roots with pure imaginary
wave numbers k correspond to solitary waves.

9.3 The exponential dependence of the density on the stream function

Another interesting example leading to exactly solvable model is the case when fluid density
ρ exponentially depends on the stream function ψ:

ρ(ψ) = ρs exp [−γ (1− ψ/ψs) ] , (60)

where γ is a constant (positive in the case of stable stratification).
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Let us define the analog of the Brunt–Väisälä frequency as follows [cf. Eq. (16)]:

N(ψ) ≡
(

g c

ρ

d ρ

dψ

)
1

2

. (61)

This parameter is constant in the case of exponential dependence of ρ(ψ) (60): N =
√

γ g c /ψs. In this particular case, the DJL equation (12) reads:

∇
2ψ +

N
2

gc

[

1
2 (∇ψ)2 − Bs + (g/c) (ψ − ψs) + g y

]

= 0. (62)

For the waves of infinitesimal amplitude as per Eq. (21) taking into account Eq. (23) one
obtains the corresponding equation for the eigenfunction f(y):

f ′′ − N
2

g
f ′ + k2

[

(

N

ck

)2

− 1

]

f = 0. (63)

This constant coefficients second-order ODE can be readily solved. The solution subject to
the boundary conditions (22) is:

f(y) =
sin[ δ (y + h) ]

sin( δ h )
exp

(

N
2 y

2 g

)

, (64)

provided that δ ≡ k
√

N2/(ck)2 − 1− (N2/2gk)2 is real. The dynamic boundary condition at

the water surface (25) yields the dispersion relation

δ h =
g h

c2

[

1 − 1

2

(

cN

g

)2
]

tan(δ h). (65)

This equation has the zero-mode root at the point δh = 0,

c20 =
g h

1 +N2h/(2g)
, (66)

and numerous internal modes, whose roots are equal approximately to

c2n ≈ N
2

k2 + π2(2n + 1)2/(4h2) +N4/(4 g2)
, (67)

where n = 1, 2, 3 ..., and the higher the mode number n, the more accurate formula (67) is.
Notice also the well-known fact that the wave speed decreases with the mode number for the
fixed value of k. These results agree with the results by Yanowitch [20] who has proven that
the greatest speed of water waves which can be attained in stratified fluid with piecewise
smooth density profile is (gh)1/2.

If, however, the parameter δ (see above) is pure imaginary, so that δ = iκ where κ is real,
then the solution of Eq. (62) subject to the boundary conditions (22) is

f(y) =
sinh[κ (y + h) ]

sinh(κh )
exp

(

N
2 y

2 g

)

. (68)
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And the dynamic boundary condition at the water surface (25) yields the dispersion relation

κh =
g h

c2

[

1 − 1

2

(

cN

g

)2
]

tanh(κh). (69)

This equation has only one solution given by Eq. (66) for the zero mode at the point κh = 0.

9.4 The power-exponential dependence

All above considered cases can be presented through the following combination of power and
exponential dependence of the density on the stream function:

ρ(ψ) = ρs (ψ /ψs)
β exp [−γ (1− ψ/ψs) ] , (70)

where β and γ are constants. If γ = 0, this dependence naturally reduces to the case of
the power-type stratification, Eq. (51), whereas if β = 0, the dependence reduces to the
exponential stratification , Eq. (60).

For the peculiar stratification (70), the DJL equation (12) becomes

ψ∇
2ψ + (β + γψ/ψs)

[

1
2 (∇ψ)2 − Bs + (g/c) (ψ − ψs) + g y

]

= 0. (71)

Then, for the waves of infinitesimal amplitude as per Eq. (21), the following equations
follows from Eq. (71)

f ′′ − c

(

β

ψs − c y
+

γ

ψs

)

f ′ +
g

c

(

β

ψs − c y
+

γ

ψs
− ck2

g

)

f = 0. (72)

With the help of new variables

z ≡ 2 k δ (ψs/c − y ) , F (z) ≡ f(y) e−(kδ+γc/2ψs)y (73)

and parameters

δ ≡

√

1 − γ g

k2 cψs
+

(

γ c

2 k ψs

)2

, α ≡ β

2

(

1 − g

k δ c2
+

c γ

2 k δ ψs

)

, (74)

equation (72) can be rewritten in the standard form (56) determining the confluent hypergeo-
metric function. The boundary conditions for the function F (z) are the same as in Eqs. (57).

The solution of the boundary value problem is formally given by Eqs. (58) and (59) with
different definition of the variables and parameters.

9.5 The rational dependence of the density on the stream function

In addition to the previously considered cases of the relationship between the fluid density
and stream function, there is also the case of rational dependence between these quantities,
which also leads to the tractable equation for infinitesimal waves. To derive the corresponding
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governing equation, note first that the factor (1/ρ)(dρ/dψ), appearing as the multiplier in
front of the square brackets in the DJL equation (12), for the power-exponential dependence
(70) considered above is:

ψs

ρ

d ρ

dψ
=

β + γ ψ /ψs

ψ /ψs
. (75)

This is a particular case of the rational function, and its generalization is an arbitrary rational
function:

ψs

ρ

d ρ

dψ
=

R(ψ/ψs)

S(ψ/ψs)
⇒ ρ(ψ) = ρs exp









ψ

ψs
∫

1

R(ϕ)

S(ϕ)
dϕ









, (76)

where R(ϕ) and S(ϕ) are the polynomials in ϕ of the degrees r and s, respectively. With the
suitable choice of these polynomials, a fairly complicated stratification can be modeled on the
basis of the Padé-like approximation.

Substituting (76) into the DJL equation (12), we obtain

ψs∇
2ψ +

R(ψ/ψs)

S(ψ/ψs)

[

1
2 (∇ψ)2 − Bs + (g/c) (ψ − ψs) + g y

]

= 0. (77)

For the waves of infinitesimal amplitude, substitution here the ansatz (21) yields

ψs S̄ (f ′′ − k2f) − c R̄ f ′ + [ (g/c) R̄ + (c2/2ψs) R̄
′ ] f = 0. (78)

where R̄ ≡ R(1 − cy/ψs) and S̄ ≡ S(1 − cy/ψs) are polynomials in y in the small-amplitude
approximation.

Equation (78) represents again a linear second-order ODE with polynomial coefficients.
It can be solved in terms of generalized hypergeometric functions. Augmenting Eq. (78) by
the boundary conditions (22) and (25), one obtains the boundary-value problem which allows
one to find the discrete spectrum of eigenvalues and corresponding eigenfunctions.

Thus, the structure of the stationary wave field in the continuously stratified fluid can
be effectively solved, at least, for the waves of infinitesimal amplitudes. In addition to that,
velocities of solitary waves can be also found. Such solutions are of a practical interest allowing
one to gain physical insights to the problem. They can be used also as a starting point for
more advanced analytical and numerical investigations.

10 Conclusion

In this paper we introduced a wide class of stationary nonlinear wave motions with zero mean
vorticity in density stratified fluids. The equations describing such motions were derived and
analyzed. The characteristic features of wave motions with the ZMV are similar, to certain
extant, to the potential waves in nonstratified fluids. For the waves of infinitesimal amplitudes
the boundary-value problems can be analytically solved in many cases when the fluid density
is a specific function of the stream function. Both the eigenvalues and the corresponding
eigenfunctions can be found in the closed analytical form without usage of Boussinesq ap-
proximation. Examples of dispersion relations were obtained for deep and shallow water in
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the case when water density linearly depends of the stream function. Eigenmodes were also
obtained both for the surface and internal modes.

It was also shown that the velocity of a finite amplitude solitary waves can be deduced in
the exact form for any amplitude of the wave in density stratified fluid.

Appendices

A Complements on the derivations

With the change of independent variables (x, y) 7→ (x, ψ) and introduction of dependent
variable y = Y (x, ψ), we have the following transformation of derivatives

∂ •
∂x

7→ ∂ •
∂x

− Yx
Yψ

∂ •
∂ψ

,
∂ •
∂y

7→ 1

Yψ

∂ •
∂ψ

,
D •
Dt

7→ 1

Yψ

∂ •
∂x

, (79)

and the relationships

u 7→ U =
1

Yψ
, v 7→ V =

Yx
Yψ
, (80)

ω 7→ Ω =
∂

∂x

(

Yx
Yψ

)

− ∂

∂ψ

(

1 + Y 2
x

2Y 2
ψ

)

, (81)

where Yx ≡ ∂Y/∂x and Yψ ≡ ∂Y/∂ψ.

For (2π/k)-periodic waves, the definition of ω(x, y) = Ω(x, ψ) in Eq. (81) implies that the
mean vorticity is

〈Ω〉 = − d

dψ

〈

1 + Y 2
x

2Y 2
ψ

〉

= − d

dψ

〈

U2 + V 2

2

〉

, (82)

where the averaging over x, denoted by angular brackets, 〈 • 〉, is taken along streamlines, i.e.
keeping ψ constant. Thus, if we define the ZMV-flow with 〈ω〉 = 0, the relation (82) implies
that

〈

u2 + v2
〉

is independent of ψ. Hence, the constant pressure condition at the free surface
yields in turn [see Eq. (8)]:

〈

u2 + v2
〉

=
〈

u2s + v2s
〉

= 2Bs. (83)

In accordance with definition of the ZMV-flow, the mean horizontal velocity of such flow
is a uniform current. This implies that the mean velocity between two arbitrarily chosen
streamlines is constant. Considering the free surface y = η(x) as the first streamline and
y = Y (x, ψ) as another arbitrarily chosen streamline, we have (see the definition (7) of the
phase velocity c):

c = −

π/k
∫

−π/k

η
∫

Y

u dy dx

π/k
∫

−π/k

η
∫

Y

1 dy dx

= −

π/k
∫

−π/k

ψs
∫

ψ

1 dψ dx

π/k
∫

−π/k

ψs
∫

ψ

Yψ dψ dx

. (84)
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From the definition of the mean surface level as per (6), it follows at once that

〈Y 〉 ≡ k

2π

π/k
∫

−π/k

Y (x, ψ) dx =
ψs − ψ

c
. (85)

Averaging now the DJL equation over the wave period (5), we obtain

d (ρB)

dψ
=

[

Bs +
g (ψs − ψ)

c

]

d ρ

dψ
. (86)

Then, after some elementary algebra, we deduce

B(ψ) = Bs +
g (ψs − ψ)

c
+

g

ρ c

ψ
∫

ψs

ρ(ϕ) dϕ. (87)

This equation defines the Bernoulli ‘constant’ for the peculiar ZMV-flow. In the case of linear
relationship between the density and stream function, i.e. ρ = ρs ψ/ψs, we have

B(ψ) = Bs − g (ψs − ψ)2

2 cψ
. (88)

Note that for a solitary wave (k → 0), the flow in the far field (x → ±∞) is a uniform
current, i.e.

u ∼ − c, v ∼ 0, ω ∼ 0, Y ∼ (ψs − ψ)/c, (89)

and therefore the Bernoulli ‘constant’ is given by

B(ψ) =
c2

2
+

g (ψs − ψ)

c
+

g

ρ c

ψ
∫

ψs

ρ(ϕ) dϕ. (90)

The relation (87) with Bs =
1
2c

2 is thus recovered. This shows that the fluid motion with the
zero mean vorticity is a natural generalization of periodic waves for the case of solitary waves
with the uniform upstream current.

Note also that in the case of deep fluid (h = ∞) and ZMV-flow, the motion tends to a
uniform current when y → −∞ and thus,

〈

u2 + v2
〉

= c2 = 2Bs.

B Kummer functions and their properties

For the easy references, we introduce here the Kummer functions (confluent hypergeometric
functions) and give few their properties used in this paper. More information can be found
in special books [21, 14, 22].

The Kummer function of the first kind M is defined as

M(α, β; z) ≡
∞
∑

n=0

(α)n
(β)n

zn

n!
,
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where (α)n ≡ α(α + 1)(α + 2) · · · (α + n− 1) is the Pochhammer symbol. The function M is
also sometimes denoted by 1F1 or Φ in the literature.

The Kummer functions of the second kind U is defined as

U(α, β; z) ≡ π

sinπβ

[

M(α, β, z)

Γ(1+α−β) Γ(β) − z1−β
M(1+α−β, 2−β, z)

Γ(α) Γ(2−β)

]

where Γ(z) ≡
∞
∫

0

tz−1e−t dt is the standard gamma-function. The function U is also sometimes

denoted by Ψ.

The Kummer functions are two linearly independent solutions of the differential equation
zF ′′ + (β − z)F ′ − αF = 0. Their derivatives with respect to z are

∂nM(α, β; z)

∂zn
=

(α)n
(β)n

M(α+n, β+n; z),

∂nU(α, β; z)

∂zn
= (−1)n (α)n U(α+n, β+n; z),

and we have the identities

M(α, β; z) = ez M(β−α, β;−z), U(α, β; z) = z1−β U(1+α−β, 2−β; z).

For the particular choice of parameters, the Kummer functions are reduced to:

M(0, 1; z) = U(0, 1; z) = 1,

M(1, 2; z) = (ez − 1) z−1, U(1, 2; z) = z−1,

∂ M(α, 1; z)

∂α

∣

∣

∣

∣

α=0

= chi(z) + shi(z) − γ − log(z),

∂ U(α, 1; z)

∂α

∣

∣

∣

∣

α=0

= − log(z),

where γ ≈ 0.57721 is the Euler–Mascheroni constant, and chi(z) and shi(z) are the hyperbolic
cosine and sine integral functions, respectively.

The following asymptotic expansions are valid for the Kummer functions with Re z > 0:

M(α, β; z) ∼ Γ(β) ez zα−β

Γ(α)
+

(−1)−α Γ(β) z−α

Γ(β − α)
as z → ∞,

U(α, β; z) ∼ z−α + α(β − 1− α) z−α−1 as z → ∞,

M(α, β; z) ∼ Γ(β)
(√
αz
)1−β

Iβ-1
(

2
√
αz
)

as α→ ∞,

U(α, β; z) ∼ 2

Γ(1+α−β)
(√
αz
)1−β

Kβ-1

(

2
√
αz
)

as α→ ∞,

where Iν(z) and Kν(z) are the modified Bessel functions of the first and second kind, respec-
tively.
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Figure 1: Sketch of the two-dimensional fluid flow in the reference coordinate frame linked
with the immovable bottom. Wave of a positive velocity c propagates to the right as shown
by the arrow.
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Figure 2: Graphical solution of the dispersion relation (37) with ̺ = 1 for long waves of
infinitesimal amplitude in shallow water. Solid line represents the right-hand side function in
Eq. (37); dots are the roots of that equation.
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Figure 3: (color online) Froude number against the stratification parameter ̺ for the first
four modes of infinitely long waves. The surface mode is labeled by 0, and first three internal
modes are labeled by numbers 1, 2, 3. Line 0′ shows the asymptotic dependence for the
surface mode when ̺→ 0, and line 0′′ shows the asymptotic dependence for the surface mode
when Fr → 0. The color dashed horizontal lines show the asymptotic values of corresponding
dispersion lines when ̺→ ∞.
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Figure 4: (color online) The structure of the first three modes of infinitely long waves in linear
stratification (15) for ̺ = 1. The numbers in the plots indicate the mode numbers.
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Figure 5: Graphical solution of the dispersion relation (41) for the deep-water limit with
Fd = 1.
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Figure 6: (color online) The first three eigenfunctions f (n)(y) in the case of deep water for
Fd = 1. a): n = 0 (K(0) = 1); b): n = 1 (K(1) ≈ 0.303); c): n = 2 (K(2) ≈ 0.188). All
eigenfunctions are normalized such that f (n)(0) = 1 [see Eq. (22)].
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