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L. Campi†and M. Del Vigna‡
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Abstract

In this paper, we study the optimal portfolio selection problem of weakly informed traders in
the sense of Baudoin [1]. Instead of considering only expected utility maximizers, we also take
into consideration different preference paradigms. In particular, we analyze a representative agent
who follows the tenets of cumulative prospect theory as developed by Kahneman and Tversky
[15], together with an investor acting as in Yaari’s dual theory of choice [16] and a trader who
faces the so-called goal reaching maximizer. For everyone of these different maximizers, we frame
the corresponding optimization problems, one in the non-informed case and the other one when
the agent possesses a weak information. At last, comparison results among different types of
investor and differently informed investor are given, together with explicit examples. Specifically,
the insider’s gain, or the difference between the optimal values of an informed and a non informed
investor, is explicitly evaluated.

Keywords: weak information, insider trading, behavioral finance, loss aversion, probability
distorsion, Yaari’s dual theory of choice, goal reaching maximizer.
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1 Introduction

We start from an idea of Baudoin, [1], when modeling the existence of insiders in financial markets.
In contrast to the well-known strong information approach (see for example [13]), we assume that the
extra-informed investor is endowed with the knowledge of a functional Y (or more simply a random
variable) related to the asset prices and its distribution with respect to the historical probability
measure that underlies the market. In fact, this historical probability P is unknown to every agent,
whereas everyone knows the so-called equivalent martingale measure, namely Q. Therefore, having
a P-knowledge of Y translates in an informational advantage. We also note that in this setting, the
discounted prices of the assets are martingales. This could be well realistic, since a model for the
prices under Q can be calibrated by observed data, while the insider ignores the effective drifts of the
prices.

In [1], the author studies a portfolio optimization problem for a non-informed agent and an insider
respectively. He is then able to characterize the optimal terminal wealth and the corresponding
optimal value; moreover, he founds explicit formula for particular choice of the utility function. It is
important to note that he considers Expected Utility maximizers (EU or classical, in what follows).
Our question is: what happens if we apply this way of modeling insider to different preference
paradigms? More specifically, we now think of an investor whose objective function is not to maximize
the expected utility of the terminal wealth. In the literature, the EU case developed by Von Neumann
and Morgenstern in the early 30’s is the most treated thanks to its relative simplicity and the existence
of a dual theory which permits to elegantly solve rather difficult problems. However, it is not the only
existing paradigm and, more importantly, it is empirically proved that real world people systematically
violate the hypothesis which stands behind EU (this lead to a number of so-called paradoxes and
puzzles). In this paper, we consider three alternative models.

∗This research benefited from the support of the “Chair Les Particuliers Face aux Risques”, Fondation du Risque
(Groupama-ENSAE-Dauphine) as well as from the GIP-ANR “Croyances” project of the Europlace Institute of Finance.
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- Cumulative Prospect Theory (CPT thereafter): this paradigm is fully described in [15] and it
is a further development of the original Prospect Theory by Kahneman and Tversky; see [12].
Briefly, according to CPT an economic agent evaluates its payoff with respect to a reference
level B; if the payoff is greater than B, then it has to be considered as a gain. On the contrary,
a payoff lower than B becomes a loss for a CPT agent, and a loss hurts more than an equivalent
gain (loss aversion). Secondly, this type of investor does not use a utility value; more properly,
she has two value functions, a concave one for the gains and a convex one for the losses. Hence,
the overall form of her “utility” function is so-called S-shaped and she exhibits risk-aversion in
gains while she is risk-lover w.r.t. losses. Finally, actual probabilities are perceived as distorted
by CPT agents; mathematically speaking, there exists two increasing functions, one for the
gains and one for the losses, that describe this distortion. From laboratory evidence, it is
generally assessed that these weighting functions are reversed S-shaped, i.e. they are greater
that the identity for small probabilities and lower than the identity for probabilities near to
1. Intuitively, this means that people tend to overestimate small probabilities and vice versa.
A general mathematical model in continuous time for CPT can be found in [8], where it is
necessary to use Choquet capacities instead of classical expectations and to split the objective
function in the gains and losses parts.

- Goal Reaching Model: in this case, the objective function of the considered investor consists
in maximizing the probability of having a terminal payoff greater than a specified level. This
model has been extensively treated by Browne in [4] and it is usually referred to a fund manager
that has to beat the benchmark. The strangeness of this model is condensed in the objective
function, where the probability of an event should be maximized.

- Yaari’s Dual Theory of Choice: in 1989, Yaari proposed in [16] a different set of hypothesis w.r.t.
those of Von Neumann and Morgenstern. The result was a dual representation of the expected
utility criterion, where the decumulative probabilities where distorted instead of payoffs (recall
that a utility function u(·) is nothing but a distortion over the payoffs). A mathematical
formulation for Yaari’s model in continuous time can be found in [5], where w(·) is used as the
probability distortion function. In [16] it has been shows that risk-aversion is characterized by
a convex w(·), i.e. by a global underestimation of probabilities, whereas risk-loving is identified
by a concave w(·). We note that this is no longer true in the CPT model, as we have two
probability distortions. However, the economic intuition is the same.

In each of the previous cases, we will frame and solve the optimization problem for a non-informed
investor and for an insider. We always have in mind an hypothetical situation of a small trader, in
the sense that her investment choices do not affect the asset prices; otherwise stated, we do not allow
for price impacts.

An important issue in this family of non-classical problem is the well-posedness of the model.
As is shown in [8] and [5], ill-posedness can quite easily arise if we do not make proper assumption
over the value functions and/or the probability distortions. We will give sufficient conditions for
well-posedness during our analysis.

At last, we recall that in the existing literature there is lack of explicit examples and explicit
evaluations of the optimal value for CPT and Yaari’s models. This is why we focused on examples
and, to the best of our knowledge, they are completely new.

The paper is organized as follows. In Section 2, we recover the weak information setting as
developed in [1] and in Section 3 we consider the problems for an EU agent, whose results were
already proved in [1]. Then, Section 4 analyzes the problem in the CPT case and Section 5 is
devoted to comparison results between EU and CPT agents, which are the two most common classes
considered in the literature. Section 6 is about the goal reaching problem and Section 7 concerns a
Yaari-type investor. Finally, Section 8 concludes. Involved proofs are presented in the Appendix.

2 The weak information approach

Fix an atom-less probability space (Ω,F , F, Q), where F := {Ft}0≤t≤T is a completed and right-
continuous filtration with F0 being the trivial σ-algebra and T > 0 a constant terminal time.

We consider a market model with m+1 traded assets in a continuous time setting, where the first
asset S0(t) is the risk-free asset, or bank account, and the other m assets S(t) = (S1(t), . . . , Sm(t))
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are the risky ones, or stocks. It is important to highlight the fact that we do not specify any
particular dynamics for our price processes; on the contrary, the main hypothesis concerning them is
the following one, which retains a no-arbitrage and completeness condition over the market.

Assumption 2.1. The price process (S0(t), S1(t), . . . , Sm(t)) is a continuous and adapted square
integrable martingale over (Ω, F, Q). Moreover, Q is the unique such measure with this property.

From an economic point of view, Assumption 2.1 is equivalent to say that Q is the so-called
discounting or spot martingale measure; its existence implies working in a standard no-arbitrage
financial market, whereas its uniqueness provides completeness.

Having said this, a non informed agent (or N-agent in what follows) is only able to afford on
Q and the observable past and present prices when taking her investment decisions. On the other
hand, an informed agent (briefly, I-agent) also possesses privileged information concerning the law of
a functional Y of the stock prices. Specifically, I-agent knows the distribution of Y under the so-called
“historical” measure P governing market prices.

From now on, we assume that Y is a scalar random variable (everything shown below can be easily
generalized to a vector valued random variable or to more complicated functional Y taking values in
a Polish space P). We will denote with QY the law of Y under Q and with ν the effective law of Y
known by I-agent; therefore we have

QY (B) = Q{Y ∈ B}, ∀B ∈ B(R).

Assumption 2.2. ν is equivalent to QY and the density ξ := dν
dQY

is Q-a.s. bounded.

Note that Assumption 2.2 rules out some interesting cases of information owned by the insider.
Now, the privileged information (Y, ν) can be naturally associated with a new measure called by
Baudoin the minimal probability.

Definition 2.1. The probability measure Qν defined on (Ω,FT ) by:

Qν(A) :=

∫

R

Q(A|Y = y) ν( dy), A ∈ FT (2.1)

is called the minimal probability associated with the weak information (Y, ν).

The meaning of the word minimal used by Baudoin is easily understood referring to the following
proposition, which shows that Qν fulfills a minimum criterion. Specifically, let Eν be the set of
probability measures on Ω which are equivalent to Q and such that the law of Y under those measures
is ν. Then we have

Theorem 2.1 ([1], Proposition 6). For every convex function ϕ : R+ → R,

min
µ∈Eν

E

[

ϕ

(

dµ

dQ

)]

= E

[

ϕ

(

dQν

dQ

)]

.

If dQν

dQ
is bounded, then the preceding values are finite.

In particular, we will see that employing the minimal probability means that the additional value
for the insider is the lowest increase in utility that she can obtain given her extra information.
Moreover, we can observe that Qν does not depend on the choice of the utility function in a standard
portfolio selection model, thus in a behavioral setting this amounts to say that the minimal probability
is unaffected by the probability distortions and the value functions.
It is not difficult to show the following useful properties:

1. If X : Ω → R is a bounded random variable, then Eν [X|Y ] = EQ[X|Y ] Q-a.s., where Eν denotes
the expectation w.r.t. the measure Qν .

2. The law of Y under Qν is ν, i.e. ν(B) = Qν{Y ∈ B}, ∀ B ∈ B(R).

3. Qν = Q ⇐⇒ ν = QY .
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4. We have the following equivalence relationship:

dQν =
dν

dQY
(Y ) dQ. (2.2)

To avoid ambiguity, this means that ∀A ∈ FT we have Eν [IA] = E

[

dν
dQY

(Y ) IA

]

.

5. If A ∈ FT is Q-independent of Y , then it is also Qν-independent of Y .

In particular, (2.2), Property 3 and 5 follow immediately by Definition 2.1; these in turn imply
Property 1 thanks to the Bayes’ rule for conditional expectations; finally Property 2 can be easily
checked for every Borel set (−∞, b], b ∈ R.

3 The classical agents’ models and their solutions

In a classical portfolio selection model, i.e. when N-agent’s objective is to maximize her expected
utility from terminal wealth, all the results have already been derived in [1]. For the sake of com-
pleteness and to perform comparisons, we report here the solution of this problem assuming that the
considered investor is endowed with a positive initial wealth x0 and a utility function which satisfies
the following hypothesis.

Assumption 3.1. The utility function U : (0,+∞) → R is strictly increasing, strictly concave and
twice continuously differentiable and satisfy the Inada conditions U ′(+∞) = 0, U ′(0+) = +∞.

In [1] it is used the convention U(x) = −∞ for x ≤ 0. This is because the initial wealth x0 is
assumed to be positive; however, in the case of a power utility function one could take U(0) = 0.

At this point, we have to define a suitable class of admissible portfolios or strategies. Let’s denote
with Πi(t) the number of shares of the i-th risky asset held by our trader at time t.

Assumption 3.2. Π(·) is a Q-a.s F-predictable process, square integrable w.r.t. the price process
S(·) over [0, T ] and bounded from below. Moreover, Π(·) is Q-tame, i.e. the corresponding discounted
wealth is Q-a.s. bounded from below, where the bound may depend on Π(·).

Under the previous assumption, the value of any portfolio is a Q-martingale whose Q-dynamics
are

dx(t) = Π(t)′dS(t), t ∈ [0, T ]; x(0) = x0 > 0. (3.1)

Furthermore, for every admissible portfolio Π(·) we will find as terminal wealth x(T ) ≡ X a FT -
measurable random variable, Q-a.s. lower bounded and such that EQ[X] = x0. Moreover, thanks to
Assumption 2.1 a standard completeness argument can be applied, so that X can be replicated by
a Q-tame portfolio Π(·).1 Hence, when formulating the optimization problems of our agents, both
EU and CPT, we will impose a set of constraints related to X and not to Π(·) as is usual in the
martingale approach (see e.g. [13]).

3.1 The non informed agent’s problem

For a N-agent, the most natural way to evaluate her own utility from terminal wealth X is to choose
the martingale measure Q when computing the expectation (in fact she does not know the historical
measure P, so she can not use it!). Therefore, the EU non informed agent’s problem is

Maximize EQ[U(X)]

subject to EQ[X] = x0, X is FT -measurable and Q-a.s. lower bounded.
(EU-N)

The solution to Problem (EU-N) is straightforward thanks to Jensen’s inequality and the concavity
assumption on U(·). In fact, for every feasible solution X we have

EQ[U(X)] ≤ U
(

EQ[X]
)

= U(x0),

1See for example [14], Definition 6.1 and Theorem 6.6 or [8], Proposition 2.1. We also remark that in [8], absolute
value portfolio strategies were used instead of our “number of shares” strategies.
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so the best choice for N-agent is X∗ ≡ x0, with optimal value U(x0). In other words, Π ≡ 0 will be the
selected portfolio, which implies null risky investment. The explanation of this behavior is obvious
if one thinks to the risk neutrality which stands behind the Black-Scholes model and is perfectly
reflected by the measure Q. We will see that in the non-informed CPT case, the optimal strategy is
not as trivial as is here.

3.2 The insider’s problem

Let’s have a look at the results obtained by Baudoin in [1] for a classical portfolio optimization
problem with the presence of an extra-informed agent who possesses the weak information (Y, ν) and
an utility function U(·) satisfying Assumption 3.1. If we still denote with X the final wealth, her
portfolio optimization problem will be defined as

Maximize Eν [U(X)]

subject to Eν
[

1
ξ(Y )X

]

= x0 > 0, X is FT -measurable and Qν-a.s. lower bounded.
(EU-I)

Recalling Theorem 2.1, we observe that our definition is strongly connected to Definition 4 in [2],
which we report below.

Definition 3.1 ([2], Definition 4). The financial value of the weak information (Y, ν) for an insider
with initial endowment x0 > 0 is

u(x0, ν) := inf
µ∈Eν

sup
Π admissible

Eµ[U(X)]. (3.2)

The link between our definition and (3.2) is easily deduced from the convexity of the sup function.
Moreover, it would be more natural to perform a shift over u(x0, ν) and define the value of the
privileged information (or insider’s gain) as u(x0, ν) − U(x0), i.e. the difference between the final
utility of the insider and the optimal value of a non informed investor.

We finally remark that the constraint in Problem (EU-I) is a direct consequence of the relation
(2.2); indeed, we see that

ν
{

ξ−1(0)
}

=

∫

{ξ−1(0)}
dν =

∫

{ξ−1(0)}
ξ dQY = 0.

Moreover, thanks to Assumption 2.2, we have

Q {ξ(Y ) = 0} = Q
{

Y ∈ ξ−1(0)
}

= QY

{

ξ−1(0)
}

= ν
{

ξ−1(0)
}

= 0, (3.3)

so that we can write 1
ξ as a density of QY w.r.t. ν, which is Q-a.s. finite and non-zero. Now it

immediately follows x0 = EQ[X] = Eν
[

1
ξ(Y )X

]

, as it appears in (EU-I).

Thanks to convex duality and the martingale dual approach in a complete market framework, we
obtain the following result adapted from [2].

Theorem 3.1 ([2], Theorem 1). Assume that the expectations below are finite. Then for each initial
endowment x0 > 0,

u(x0, ν) = sup
Π admissible

Eν [U(X)] = Eν
[

U
(

(U ′)
−1
(

Λ(x0)
ξ(Y )

))]

, (3.4)

where Λ(x0) is defined by

Eν
[

1
ξ(Y ) (U ′)

−1
(

Λ(x0)
ξ(Y )

)]

= x0.

Moreover, under Qν the optimal terminal wealth is given by

X∗ = (U ′)
−1
(

Λ(x0)
ξ(Y )

)

. (3.5)

Note that if the insider only has a minimal information, i.e. ν = QY , then we have
ξ(Y ) = 1 Q-a.s.. Therefore, we deduce u(x0, ν) = U(x0) and X = x0 Q-a.s., which is nothing but the
N-agent’s solution. Finally, as a corollary one can even show that we always have u(x0, ν) ≥ U(x0)
and the equality takes place for ν = QY .
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Example 3.1. If α ∈ (0, 1) and U(x) = xα then by straightforward calculations

u(x0, ν) = xα
0

(

EQ
[

ξ(Y )
1

1−α

])1−α

,

X∗ = x0
ξ(Y )

1
1−α

EQ

[

ξ(Y )
1

1−α

] .

Example 3.2 ([1], Proposition 67). Let’s fix a (Ω, F, Q)-Brownian motion W Q and assume a market
with only one risky asset whose price dynamics is

dS(t) = σS(t)dW Q(t), t ∈ [0, T ], S(0) = s0 > 0,

for some constant σ > 0. It is widely known that the prices can also be expressed as

S(t) = s0 exp

(

σW Q
t − σ2

2
t

)

.

Hence, by a change of variable, a weak information on the final price S(T ) is equivalent to a weak
information on the Gaussian random variable W Q

T . Suppose I-agent has the privileged information

(W Q
T , ν), where

ν(dx) =
1√
2πs

exp

(

− (x − m)2

2s2

)

dx

is Gaussian with mean m ∈ R and variance s2 ≤ T , with 0 < s ≤
√

T (in what follows, we will write
ν ∼ N (m, s2)). Note that Assumption 2.2 is fulfilled and we can also explicitly compute

ξ(Y ) = ξ(W Q
T ) =

√
T

s
exp

(

− (W Q
T − m)2

2s2
+

(W Q
T )2

2T

)

(3.6)

Therefore, if we set δ = s2−T
T , then for a power utility function U(x) = xα, α ∈ (0, 1), one can

compute

u(x0, ν) = xα
0

1√
1 + δ

(

1 − α
1

1+δ − α

)

1−α
2

exp

(

αm2

2[T (1 − α) − αδT ]

)

.

Specifically, if m = 0 and s2 = T (i.e. δ = 0) then we recover the minimal information case, as
ν = QY . If m 6= 0 and s2 = T then I-agent has some additional information regarding the drift but

not the variance of the Brownian motion; in this case we have u(x0, ν) = xα
0 exp

(

αm2

2[T (1−α)]

)

and the

information is more valuable as m becomes greater. Vice versa, if m = 0 and s2 < T then we obtain

u(x0, ν) = xα
0

1√
1+δ

(

1−α
1

1+δ −α

)

1−α
2

, which tends to infinity as δ ↓ −1, or equivalently as s ↓ 0. Thus a

more precise knowledge on the terminal value of the underlying Brownian motion, which is the same
as on the final price, leads to a higher value of the weak information, as naturally expected.

4 The CPT agents’ models and their solutions

In this section we are going to frame and solve the portfolio selection problems relative to a non-
informed and an insider CPT agent respectively. In particular, we will recover as much as possible
the structure and the notation implemented in [8] by Jin and Zhou to describe the preferences and
the corresponding objective functions of an investor who takes her decisions affording on the CPT
tenets. We immediately point out that our results have a direct link with those in [8]; however, they
need a complete proof as we are working in a slight different setting. Loosely speaking, in [8] the
investor knows the “historical” probability P and she performs a standard change of measure affording
on the so-called pricing kernel (or state price density) ρ, thus obtaining martingale processes for the
prices under an equivalent probability; after that, technical assumptions are imposed and a complete
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solution based on ρ is derived. More specifically, using (4.2) and (4.3) below to define the objective
function V (·), in [8] the optimization problem for a CPT agent is framed in their equation (2.7) as

Maximize V (X)

subject to EP[ρX] = x0, X is FT -measurable and P-a.s. lower bounded.
(4.1)

However, in the present framework we start from the very beginning with martingale prices;
therefore, no change of measure is needed as ρ is totally concentrated. Thus, the structure of our
solution for a N-agent will only be law dependent, in the sense that only the distribution of a random
variable will affect her optimal value.

Now, we recall the cornerstones of the CPT preferences and their mathematical formulations. In
this behavioral scenario, the trader’s goal is to select the portfolio that will engender a terminal wealth
X maximizing her “utility”. This “utility” (or prospect value, in Kahneman and Tversky terminology)
will come up from the algebraic sum of some expected distorted values of gains and losses w.r.t. to a
reference wealth that we set once for all at the value 0. Mathematically speaking, we will make the
following assumptions, corresponding to Assumptions 2.3 and 2.4 in [8].

Assumption 4.1. u+(·) and u−(·) : R+ 7→ R+, are strictly increasing, concave, with u+(0) =
u−(0) = 0. Moreover, u+(·) is strictly concave and twice differentiable, satisfying the Inada conditions
u′

+(0+) = +∞ and u′
+(+∞) = 0.

Assumption 4.2. T+(·) and T−(·) : [0, 1] 7→ [0, 1], are differentiable and strictly increasing, with
T+(0) = T−(0) = 0 and T+(1) = T−(1) = 1.

If the random variable X represents a final wealth at time T and our CPT agent takes µ as her
reference measure, then she will assign to X the prospect value V (X), defined by

V (X) := V+(X+) − V−(X−) (4.2)

where

V+(Y ) :=

∫ +∞

0

T+(µ{u+(Y ) > y}) dy, V−(Y ) :=

∫ +∞

0

T−(µ{u−(Y ) > y}) dy (4.3)

for any random variable Y ≥ 0 µ-a.s.; here, X+ and X− denote the positive and the negative part of
X respectively.

Regarding the market, we maintain Assumption 3.2 over the class of admissible portfolios; hence
our CPT agent will search a terminal wealth X, FT -measurable and a.s. lower bounded w.r.t. her
reference probability. However, her initial endowment can be any amount x0 ∈ R and not necessarily
non-negative. Thus, the initial budget constraint will be simply adapted to this generalization.

4.1 The non informed agent’s problem

Before formulating the most general version of the model, we proceed step by step and for the moment
we consider a non-informed agent who evaluates her total utility distinguishing gains from losses w.r.t.
to the reference level set to 0; no probability distortion is allowed, i.e. T±(·) = id(·). Such an investor
stands in the middle between a classical agent and a behavioral agent à la Kahneman and Tversky.
Within this framework, it seems reasonable to define the problem of a non informed agent as

Maximize V (X) = EQ[u+(X+)] − EQ[u−(X−)]

subject to EQ[X] = x0, X is FT -measurable and Q-a.s. lower bounded.
(4.4)

Unfortunately there are bad news about Problem (4.4) because with Assumptions 4.1 and 4.2 in
force it can easily be ill-posed. Before proceeding to the proof, we note that for an investor with the
previous objective function it is better to choose a fixed reward x+ whenever X is positive, thanks
to Jensen’s inequality and the concavity of u+(·). Otherwise, conditioned to X ≤ 0, she will choose
a lottery with a Q-a.s. null payoff accompanied by a huge negative payoff with an infinitesimal
probability. This policy will produce an infinite optimal value for the agent; see also Theorem 3.2 in
[8] and the subsequent remark.

Proposition 4.1. If u+(+∞) = +∞ then Problem (4.4) is ill-posed.
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Proof. Consider the sequence of terminal wealths (Xn)n, where

Xn =







n(x+
0 + 1) with probability p,
0 with probability 1 − p − 1

n2 ,
n2[x0 − np(x+

0 + 1)] with probability 1
n2 ,

p ∈ (0, 1 − 1
n2 ) and n is sufficiently big. Note that for every n ∈ N, EQ[Xn] = x0; moreover, for Xn

to be FT -measurable it is sufficient to choose a pair of disjoint events A, Bn ∈ FT with probability
p and 1

n2 respectively, no matter what these events are; e.g. one can choose A = {S1(T ) ≤ α},
where α is such that p = EQ [IA] and for each n, Bn = {S1(T ) ≥ βn}, where βn > α is such that
1

n2 = EQ [IBn
]. Then we can compute

EQ[u+(X+
n )] = pu+(n(x+

0 + 1)) −→ +∞

as n → +∞. Moreover

EQ[u−(X−
n )] =

1

n2
u−
(

n2[x0 − np(x+
0 + 1)]+

)

≤ u−
(

[x0 − np(x+
0 + 1)]+

)

−→ 0

as n → +∞, where the last inequality follows by the concavity of u−(·) and u−(0) = 0.

At this point there are two ways out of this unpleasant situation; the first one is to introduce
probability distortions, specially on the loss part as explained in [8]. The second one is to impose a
loss control, i.e. a lower bound L on the maximal loss which can be suffered by the investor; obviously,
one can consider both modifications. For more details on this subject, see [11].

Let’s consider the case with probability distortions satisfying Assumption 4.2. Thus the problem
for a CPT N-agent will be

Maximize V (X) = V+(X+) − V−(X−)

subject to EQ[X] = x0, X is FT -measurable and Q-a.s. lower bounded,
(CPT-N)

where we set

V+(X+) :=

∫ +∞

0

T+(Q{u+(X+) > y}) dy, V−(X−) :=

∫ +∞

0

T−(Q{u−(X−) > y}) dy.

Now, the big difference between our Problem (CPT-N) and the relative optimization problem which
has to be solved by a behavioral agent in [8] concerns the constraint on the expected value of the
terminal wealth X. More specifically, in [8], equation (2.6), the budget constraint was EP[ρX] = x0,
where the state price density ρ was supposed to be atom-less w.r.t. to P. Now, we do not have that
atom-less density as we are already working under the martingale measure Q. We also recall that
the assumption on ρ being atom-less w.r.t. P was imposed in [8] just to avoid technical difficulties.
In our case, the absence of a weighting random variable (this was actually the role played by ρ) will
change the structure of the solution to Problem (CPT-N) and its economical interpretation.
For a better readability, we will report below only the main results, referring the interested reader to
the Appendix for a detailed proof. Now, for any fixed random variable Z uniformly distributed over
(0, 1) w.r.t. Q (Z ∼ U(0, 1) for short) and given the pair (p, x+) with p ∈ [0, 1] and x+ ≥ x+

0 , define
as v+(p, x+) the optimal value of the following problem:

Maximize V+(X) =
∫ +∞
0

T+(Q{u+(X) > y}) dy

subject to EQ[X] = x+, X ≥ 0 on {Z ≤ p}, X = 0 on {Z > p}.
(4.5)

Next, we set up the optimization problem

Maximize v+(p, x+) − u−
(

x+−x0

1−p

)

T−(1 − p)

subject to

{

p ∈ [0, 1], x+ ≥ x+
0 ,

x+ = 0 if p = 1, x+ = x0 if p = 0,

(4.6)

where we conventionally define u−
(

x+−x0

1−p

)

T−(1 − p) := 0 if p = 1 and x+ = x0. Finally, we denote

with X∗ the optimal solution to Problem (CPT-N) and we make the following hypothesis.
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Assumption 4.3. T ′
+(z) is non-increasing for z ∈ (0, 1], lim infx→+∞ −xu′′

+(x)

u′

+(x) > 0 and for any

Z ∼ U(0, 1) w.r.t. Q we have EQ
[

u+

(

(u′
+)−1( 1

T ′(Z) )
)

T ′(Z)
]

< +∞.

Now, with Assumption 4.3 in force, for any Z ∼ U(0, 1) w.r.t. Q we have

X∗ = (u′
+)−1

(

λ
T ′

+(Z)

)

IZ≤p∗ − x∗

+−x0

1−p∗
IZ>p∗ , (4.7)

V (X∗) = EQ
[

u+

(

(u′
+)−1

(

λ
T ′

+(Z)

))

T ′
+(Z)IZ≤p∗

]

− u−
(

x∗

+−x0

1−p∗

)

T−(1 − p∗), (4.8)

where (p∗, x∗
+) are optimal for Problem (4.6) and the Lagrange multiplier λ satisfies

EQ
[

(u′
+)−1

(

λ
T ′

+(Z)

)

IZ≤p∗

]

= x∗
+. (4.9)

Remark 4.1. Firstly, our result shows that a CPT non-informed investor is only interested in
probabilities (and not in events). This is a by-product of her knowledge of the martingale measure Q;
the risk neutrality arising from Q is reflected by the indifference in the choice of Z. For instance, in
a Brownian motion driven market as in Example 3.2, she can choose Z = FW (W Q

T ), where FW (·) is

the distribution function of W Q
T ; in this way she will obtain a gain when the price of the risky stock is

lower than a certain threshold; however, she is indifferent in choosing Z = 1−FW (W Q
T ), representing

the perfect opposite situation.
Secondly, we highlight the fact that the explicit solution given by (4.7) is only available when T ′

+(·)
is non-increasing over (0, 1]. Combining this observation with Assumption 4.2, a necessary condition
to get (4.7) is T+(·) to be concave. In this way, a reversed S-shaped T+(·), as it is empirically observed,
does not fulfill this condition.

Before proceeding further, we provide a result concerning power utility functions. In [8], the
authors were able to find a much more explicit solution assuming generic probability weighting func-
tions T±(·) and u+(x) = xα, u−(x) = k−xα with α ∈ (0, 1), k− ≥ 1.2 We now adapt their reasoning
and we choose the special distortion on gains T+(p) = pγ , γ ∈ (0, 1], as suggested by the previous
Remark 4.1. Intuitively, this concave function should reflect an overestimation of every probability
of a winning event. With straightforward computations, for α < γ we find

ϕN (p) := EQ
[

T ′
+(Z)1/(1−α)IZ≤p

]

= γ1/(1−α)

(

1 − α

γ − α

)

p
γ−α
1−α , p ∈ [0, 1], (4.10)

kN (p) :=
k−T−(1 − p)

(1 − p)αϕN (p)1−α
=

k−
γ

(

γ − α

1 − α

)1−α
T−(1 − p)

(1 − p)αpγ−α
, p ∈ (0, 1], (4.11)

and following the same lines as in [8], Theorem 9.1, we have

Proposition 4.2. In the CRRA case with x0 ≥ 0 and T+(p) = pγ , γ ∈ (0, 1]:

(i) if 0 < α < γ ≤ 1 and infp∈(0,1] kN (p) ≥ 1, then Problem (CPT-N) is well-posed and

X∗ = x0

(

γ − α

1 − α

)

Z
γ−1
1−α , Z ∼ U(0, 1); (4.12)

V (X∗) = xα
0 γ

(

1 − α

γ − α

)1−α

. (4.13)

(ii) if α ≥ γ or infp∈(0,1] kN (p) < 1, then Problem (CPT-N) is ill-posed.

It is clear by the parameters’ condition in (i) that the curvature of the value function on gains
must be greater than that of the distortion T+(·) if we hope to find a financially meaningful solution;
not only, the well-posedness of this model strongly depends on the shape of T−(·). We also note that
the optimal value V (X∗) is decreasing in γ, whereas it does not exhibit a clear dependence in α. As
a particular case, we have the following corollary.

2We recall that the parameter k− is usually called the loss aversion coefficient, as in this framework it reflects the
concept that “losses loom larger than gains”. In what follows, we will refer to this case as to CRRA, due to the Constant
Relative Risk Aversion coefficient exhibited by the value functions.
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Corollary 4.1. With the same assumptions of Proposition 4.2 and T−(p) = pδ, δ ∈ (0, 1):

(i) if 0 < δ ≤ α < γ < 1 and k− ≥ f(α, γ, δ), where

f(α, γ, δ) := γ
(1 − α)1−α

(γ − α)γ−1

(α − δ)α−δ

(γ − δ)γ−δ
, (4.14)

then Problem (CPT-N) is well-posed;

(ii) if 0 < δ ≤ α < γ = 1, then Problem (CPT-N) is well-posed;

(iii) if δ > α then Problem (CPT-N) is ill-posed.

Proof. Using (4.11) and the special form of T−(·), it is immediate to compute the infimum of kN (p)
over (0, 1] via first order conditions. Now, case (iii) follows if we let p tend to 1; in the other cases,
we have that the infimum is reached for p̂ = γ−α

γ−δ ≤ 1. Hence, we find kN (p̂) = f(α, γ, δ) with the

subsequent well-posedness condition k− ≥ f(α, γ, δ). If γ = 1, equation (4.14) reduces to

f(α, 1, δ) =
(1 − α)1−α(α − δ)α−δ

(1 − δ)1−δ
≤ 1.

To see this, note that we have 1− δ, 1− α, α− δ ∈ (0, 1); moreover, the function g(x) := xx ≡ ex ln x

is well defined for x ∈ (0, 1). To prove the previous relation, we only have to show that for every
0 < y < x < 1 we have

x lnx − y ln y ≤ (x − y) ln(y − x).

But this is true because

sup
0<x<1,0<y<1

x lnx − y ln y − (y − x) ln(y − x) = 0,

as it is easily seen using standard minimization techniques.

We stress that the ad hoc choice of concave T±(·) stands for an investor who overestimates winning
and losses chances, thus being somewhat coherent when taking her decisions.3 Furthermore, lengthy
but not difficult computations show that f(·, ·, ·) is decreasing in γ and increasing in δ, as economic
intuition suggests. In fact, the lower is the overestimation of gains, the higher has the loss aversion
coefficient to be in order to compensate its effect and for the problem to reach well-posedness. How-
ever, the dependence on α is not monotonic. For a better understanding of the preceding corollary,
in Figure 1 we provide a plot representing a 3D surface of the well-posedness threshold f(· · · ) in case
(i), where we arbitrarily fix γ = 0.9 and we take α ∈ [0.7, 0.9) and δ ∈ (0, 0.7]. An horizontal plane at
the level f = 1 is depicted to facilitate the distinction between a surely well-posed case, i.e. when the
surface stands below the plane, or a probable ill-posed case, i.e. when the loss-aversion coefficient has
to be sufficiently high to ensure condition (4.14). More generally, we can also note that for the re-

versed S-shaped T−(·) conjectured by Kahneman and Tversky in [15], namely T−(p) = pδ

(pδ+(1−p)δ)1/δ

with δ ∈ (0, 1), if δ > α then we still have a systematic ill-posedness, whereas in the opposite case we
have to rely on numerical and graphical analysis.

4.2 The insider’s problem

In this section we are going to solve the portfolio optimization problem for an informed agent who
possesses CPT preferences; in particular, this type of investor has to choose her best portfolio among
a suitable class of admissible ones in order to maximize her balanced expected utility from gains and
losses; moreover, she will be able to use the minimal probability Qν in order to exploit her weak
information (Y, ν) but at the same time she weights those probabilities with T± due the her distorting
evaluation criteria. Thus, we retain Assumption 4.1 on the value functions u±(·) and Assumption 4.2

3This is no longer true if we assume T+(·) = id(·), as our trader would be perfectly capable to judge gain chances
whereas it distorts losing probabilities. Nonetheless, the case γ = 1 would have a strong link with the theory of coherent
risk measures if we further assume a linear utility function. But in our setting, this possibility is obviously ruled out as
we require a strictly concave u−(·) at the origin; hence V−(·) and similarly V+(·) can not be risk measures. For more
information, see [3].
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Figure 1: a comparison between the well-posedness threshold and the level of k−.

on the probability distortions T±(·); furthermore, thanks to the equivalence between the measures
Q and Qν stated in Assumption 2.2, this CPT I-agent can still afford on the admissible portfolios
described in Definition 3.2. We remark that the dynamics of the wealth process x(·) under Q remain
the same as in equation (3.1), whereas they drastically change w.r.t. Qν .4 However, when solving this
problem we look for the optimal terminal wealth X; the issue of its replication comes up subsequently.

Now we can define the value of the weak information for I-agent in a way analogous to Definition
3.1:

Definition 4.1. The financial value of the weak information (Y, ν) for a CPT agent with initial
endowment x0 ∈ R is

V (x0, ν) := sup
Π admissible

V ν
+(X+) − V ν

−(X−)

where

V ν
+(X+) :=

∫ +∞

0

T+(Qν
{

u+(X+) > y
}

) dy, V ν
−(X−) :=

∫ +∞

0

T−(Qν
{

u−(X−) > y
}

) dy. (4.15)

Here X represents the terminal payoff obtained via the initial wealth x0 and the dynamics (3.1).

We can now consider any real initial wealth x0, not only the positive ones. In what follows we
will recover some notation we used in Section 3.1 for the classical portfolio selection model for a weak
informed agent. We can now define the problem of a CPT I-agent as

Maximize V ν(X) := V ν
+(X+) − V ν

−(X−)

subject to Eν
[

1
ξ(Y )X

]

= x0, X is FT -measurable and Qν a.s. lower bounded.
(CPT-I)

Note that this definition is in some sense half-way between that of Jin and Zhou in [8] and that of
Baudoin in [1]; in fact, if we suppress the distinction between losses and gains and we do no admit
probability distortions, then we recover Problem (EU-I). On the other hand, in the extreme case
of minimal information ν = QY we have V ν

±(X) = V±(X) thanks to the properties of the minimal
probability, so we turn back to Problem (CPT-N).

At this point it is sufficient to note that Problem (CPT-I) is nothing but a specialization of
Problem (4.1) with only two changes:

1. we use the measure Qν instead of P both in the objective function and in the constraints;

2. the random variable ρ is replaced by the new random variable 1
ξ(Y ) .

Economically speaking, the historical measure P which is unknown to I-agent and thus can not be
used, is replaced by the minimal probability Qν , which now represents the probability valuation
criteria of the insider (and as usual they are perceived as distorted by T±(·)). This fact should reflect
her privileged information and one can wonder if it produces a greater optimal value w.r.t. a non

4For more details, see [1] where the theory of Conditioned Stochastic Differential Equations (CSDEs) is developed.
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informed investor (we will prove in Theorem 5.1 that this fact always hold).
Secondly, the state price density ρ is also unknown; however I-agent can rely on her own density. An
interpretation of this phenomenon is that the typical law dependence which is revealed when ξ(Y ) =
1 Q-a.s. (as it happened in Problem (CPT-N)) is now distorted by a generic random variable ξ(Y ).
This reflects an Ω-dependence of the insider’s preferences once she obtains some extra information,
as now I-agent also cares about events.

Turning back to the mathematical counterpart of Problem (CPT-I), we see that we only have to
check that all the assumptions imposed in [8] on ρ are now fulfilled by 1

ξ(Y ) and then we will be able

to recover all the results found in [8] with the obvious modifications, i.e. substitute for 1
ξ(Y ) and Qν

in every explicit expression.
First of all, to avoid undue technicalities, the assumption of ρ having no atoms w.r.t. P ([8],

Assumption 2.2) is now translated in our

Assumption 4.4. The random variable 1
ξ(Y ) has no atoms w.r.t. Qν , i.e.

Qν
{

1
ξ(Y ) = a

}

= 0 ∀ a ≥ 0.

But it is easily seen that

Qν
{

1
ξ(Y ) = a

}

= EQ
[

ξ(Y )I{ 1
ξ(Y )

=a}
]

= 1
aQ
{

ξ(Y ) = 1
a

}

;

hence we could impose this last condition which is indeed satisfied in most common situations, e.g.
when Y is an absolutely continuous random variable and the law ν preserves its absolute continuity
on the same support. Other technical conditions on ξ(Y ) are straightforward to check; in fact we
have 1

ξ(Y ) ∈ (0,+∞) Qν-a.s. thanks to our Assumption 2.2. Moreover, Eν [ 1
ξ(Y ) ] = 1 follows directly

from the definition of ξ.
We now modify the analysis made in [8] with the necessary modifications for a CPT informed

investor. In what follows, we will need a new set of variables for I-agent; they will be accompanied
with a ν , in contrast to the variables for N-agent which will be recovered by Section 4.1 and do not
have any upper symbol. Unfortunately we will obtain quite cumbersome explicit expressions; however
we decide to retain 1

ξ(Y ) instead of its reciprocal because it will simplify some comparison results in

the subsequent sections. Now we define

1
ξ(Y ) ≡ esssupQν

1
ξ(Y ) := sup{a ∈ R : Qν{ 1

ξ(Y ) > a} > 0},

1
ξ(Y ) ≡ essinfQν

1
ξ(Y ) := inf{a ∈ R : Qν{ 1

ξ(Y ) < a} > 0}.

Once again well-posedness is an important issue as in the case of N-agent’s problem; with some slight
adjustments to Theorems 3.1 and 3.2 in [8] we can formulate:

Proposition 4.3. Problem (CPT-I) is ill-posed if there exists a nonnegative FT -measurable random

variable X such that Eν
[

1
ξ(Y )X

]

< +∞ and V ν
+(X) = +∞.

Proposition 4.4. If u+(+∞) = +∞, 1
ξ(Y ) = +∞, and T−(·) = id(·), then Problem (CPT-I) is

ill-posed.

Thus, to avoid systematic ill-posedness, we will impose:

Assumption 4.5 (see [8], Assumption 3.1). V ν
+(X) < +∞ for any nonnegative, FT -measurable

random variable X satisfying Eν
[

1
ξ(Y )X

]

< +∞.

Remark 4.2. Note that we do not yet have a comparison result between the financial value of the
weak information for a CPT I-agent, V (x0, ν), and the optimal value for a CPT N-agent’s problem,
so for the moment we can not conclude that an insider always gets more than a non informed agent
in this behavioral context, neither we can say that ill-posedness for N-agent implies ill-posedness for
I-agent.
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For reasons of space, we only report the main steps to get the solution to Problem (CPT-I). At
first, for a given pair (A, x+), with A ∈ FT and x+ ≥ x+

0 , define the problem

Maximize V ν
+(X) =

∫ +∞
0

T+(Qν{u+(X) > y}) dy

subject to Eν [ 1
ξ(Y )X] = x+, X ≥ 0 Qν-a.s., X = 0 Qν-a.s. on AC .

(4.16)

Note that Assumption 4.5 implies that V ν
+(X) is a finite nonnegative number for any feasible X. We

now define vν
+(A, x+), the optimal value of problem (4.16), in this way:

- if Qν(A) > 0 then the feasible region of (4.16) is non-empty and vν
+(A, x+) is defined as the

supremum of (4.16);

- if Qν(A) = 0 and x+ = 0, then the only feasible solution for (4.16) is X = 0 Qν-a.s., so
vν
+(A, x+) := 0;

- if Qν(A) = 0 and x+ > 0, then (4.16) has an empty feasible region, therefore vν
+(A, x+) := −∞.

For any c ≥ 0, set vν
+(c, x+) := vν

+({ω ∈ Ω : 1
ξ(Y (ω)) ≤ c}, x+); moreover, define F ν(·) and F Q(·) the

distribution functions of 1
ξ(Y ) w.r.t. Qν and Q respectively. Following the guidelines of [8], equation

(4.4), we set up the "simpler" problem

Maximize vν
+(c, x+) − u−

(

x+−x0

1−F Q(c)

)

T−(1 − F ν(c))

subject to











1
ξ(Y ) ≤ c ≤ 1

ξ(Y ) , x+ ≥ x+
0 ,

x+ = 0 if c = 1
ξ(Y ) , x+ = x0 if c = 1

ξ(Y ) ,

(4.17)

where we use the convention

u−
(

x+−x0

1−F Q(c)

)

T−(1 − F ν(c)) := 0 if c = 1
ξ(Y ) and x+ = x0. (4.18)

Now we are ready to state the results for a CPT agent who has the weak information (Y, ν):

Proposition 4.5. Assume that u−(·) is strictly concave at 0. We have the following conclusions:

(i) If Xν∗ is optimal for Problem (CPT-I), then

cν∗ := (F ν)−1 (Qν{Xν∗ ≥ 0}) , xν∗
+ := Eν

[

1
ξ(Y ) (X

ν∗)+
]

are optimal for Problem (4.17). Moreover, {ω : Xν∗ ≥ 0} and {ω : 1
ξ(Y ) ≤ cν∗} are identical up

to a Qν-null probability set, and

(Xν∗)− =
xν∗

+ − x0

1 − F Q(cν∗)
I 1

ξ(Y )
>cν∗ Qν-a.s..

(ii) If (cν∗, xν∗
+ ) is optimal for Problem (4.17) and Xν∗

+ is optimal for Problem (4.16) with parameters
({ 1

ξ(Y ) ≤ cν∗}, xν∗
+ ), then

Xν∗ := Xν∗
+ I 1

ξ(Y )
≤cν∗ − xν∗

+ − x0

1 − F Q(cν∗)
I 1

ξ(Y )
>cν∗

is optimal for Problem (CPT-I).

Therefore, in order to solve Problem (CPT-I) we can exploit the following algorithm:

Step 1 Solve Problem (4.16) with given parameters ({ 1
ξ(Y ) ≤ c}, x+), where 1

ξ(Y ) ≤ c ≤ 1
ξ(Y ) and

x+ ≥ x+
0 , in order to obtain vν

+(c, x+) and the optimal solution Xν∗
+ (c, x+).

Step 2 Solve Problem (4.17) to get (cν∗, xν∗
+ ).
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Step 3 (i) If (cν∗, xν∗
+ ) = ( 1

ξ(Y ) , x0), then Xν∗
+ ( 1

ξ(Y ) , x0) solves Problem (CPT-I).

(ii) Else Xν∗
+ (cν∗, xν∗

+ )I 1
ξ(Y )

≤cν∗ − xν∗

+ −x0

1−F Q(cν∗)
I 1

ξ(Y )
>cν∗ solves Problem (CPT-I).

To get an explicit solution we now have to impose conditions similar to that in Assumption 4.3. In
particular, we set

Assumption 4.6.

(i) (F ν)−1(z)
T ′

+(z) is non-decreasing in z ∈ (0, 1];

(ii) lim infx→+∞
−xu′′

+(x)

u′

+(x) > 0;

(iii) Eν

[

u+

(

(u′
+)−1

(

1
ξ(Y )T ′

+(F ν( 1
ξ(Y )

))

))

T ′
+(F ν( 1

ξ(Y ) ))

]

< +∞.

Briefly, condition (i) is related to the fact that the distortion on gains should not be too extreme5;
then, hypothesis (ii) on the RRA coefficient on gains is the same as for N-agent (recall that the value
functions, as well as the probability distortions, are supposed to be the same for the two types of
agent in order to facilitate a comparative analysis).
Now, with Assumption 4.6 in force, vν

+(c, x+) and the corresponding optimal solution Xν∗
+ to Problem

(4.16) can be expressed more explicitly, together with the optimal solution Xν∗ of (CPT-I):

vν
+(c, x+) = Eν

[

u+

(

(u′
+)−1

(

λν(c, x+)

ξ(Y )T ′
+(F ν( 1

ξ(Y ) ))

))

T ′
+(F ν( 1

ξ(Y ) ))I 1
ξ(Y )

≤c

]

, (4.19)

Xν∗
+ = (u′

+)−1

(

λν(c, x+)

ξ(Y )T ′
+(F ν( 1

ξ(Y ) ))

)

I 1
ξ(Y )

≤c, (4.20)

Xν∗ = (u′
+)−1

(

λν(cν∗, xν∗
+ )

ξ(Y )T ′
+(F ν( 1

ξ(Y ) ))

)

I 1
ξ(Y )

≤cν∗ − xν∗
+ − x0

1 − F Q(cν∗)
I 1

ξ(Y )
>cν∗ , (4.21)

where λν(c, x+) satisfies Eν

[

(u′
+)−1

(

λν(c,x+)

ξ(Y )T ′

+(F ν( 1
ξ(Y )

))

)

1
ξ(Y )I 1

ξ(Y )
≤c

]

= x+.

Before proceeding further, let’s explore in detail what are the implications of such a policy adopted
by a CPT weak informed investor. As Jin and Zhou noticed in [8], Footnote 7, a non-informed agent
selects a final payoff which resembles a gamble on a good state of the world6. In fact, in their
framework a trader obtained a final wealth greater than her reference point if and only if the event
{ρ ≤ c∗} happened. But in a one risky asset market with constant coefficients and null interest rate,
this amounts to say that the final price of the stock, namely S(T ), must be greater than a certain
threshold which depends on c∗; this can be easily shown by noting that

S(T ) = s0 exp
((

b − σ2

2

)

T + σW P
T

)

,

where W P is a (F, P)-Brownian motion over [0, T ]. This in turn implies

{ρ ≤ c∗} =
{

exp
(

− b2

2σ2 T − b
σ W P

T

)

≤ c∗
}

=
{

S(T ) ≥ s0 exp
(

b−σ2

2 T − σ2

b ln c∗
)}

.

Obviously one can see that the greater is c∗, the higher is the P-probability to reach a final gain. Can
we find a similar explanation for a weak informed CPT investor? It is straightforward from (4.21)
that also this time the final payoff shows a betting strategy adopted by the insider. However, now a
good state of the world for I-agent is the event

{

1
ξ(Y ) ≤ cν∗

}

=
{

ξ(Y ) ≥ 1
cν∗

}

.

5We observe that our Assumption 4.6 is nothing but Assumption 4.1 in [8]. However, in their context conditions (i)
concerned the distribution function of the state prices ρ, thus it involved the market parameters. On the contrary, in
our case (i) imposes a link between the distortion T+(·) and F ν(·), therefore it is a condition about the kind of weak
information that I-agent possesses; a similar remark holds for (iii).

6Remember that in the original framework the agent knows the historical measure P but this is by no means helpful,
i.e. it does not give any advantage because P is common knowledge.
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Again it is clear that the greater is cν∗, the higher is the Qν-probability of a terminal gain. Otherwise
stated, with cν∗ held fixed, the greater is the random variable ξ(Y ), the higher is that probability.
Intuitively, a greater value of ξ(Y ) means a more accurate information; just think of Example 3.2,
where the bell-shaped Gaussian density function becomes more and more concentrated as s ↓ 0. In
the limit this will produce a certain information about the final price, which in turn should imply an
infinite optimal value for the insider, i.e. some kind of arbitrage on the market.

Remark 4.3. The problem here is that this reasoning is more subtle than it could seem; in fact the
optimal threshold cν∗ varies with the weak information (Y, ν)! (Recall that cν∗ is obtained in Step
2 of the preceding algorithm, where one has to solve Problem (4.17)). A correct argument should
analyze how much cν∗ varies depending on ξ(Y ), and this in general is not an easy task. However we
are able to provide an interesting example where this dependence can be estimated, see Example 4.1
below.

As we did for a non-informed agent, let’s now suppose that I-agent has CRRA value functions;
no additional assumption is made on the probability distortions and we also remark that nothing can
be said in general on the distribution of 1

ξ(Y ) , as it strongly depends both on the random variable Y

and on its effective law ν. We follow again the argument described in [8], Section 9, but now we have
to rely on the functions

ϕν(c) := Eν

[

(

ξ(Y )T ′
+(F ν( 1

ξ(Y ) ))
)1/(1−α)

1
ξ(Y )I 1

ξ(Y )
≤c

]

> 0, 1
ξ(Y ) < c ≤ 1

ξ(Y ) , (4.22)

kν(c) :=
k−T−(1 − F ν(c))

ϕν(c)1−α (1 − F Q(c))
α > 0, 1

ξ(Y ) < c ≤ 1
ξ(Y ) . (4.23)

Note that the case c = 1
ξ(Y ) is trivial and once again the sign of the initial wealth x0 is crucial.

Proposition 4.6. Assume that x0 ≥ 0 and Assumption 4.6 holds.

(i) If infc> 1
ξ(Y )

kν(c) ≥ 1, then Problem (CPT-I) is well-posed and

Xν∗ =
x0

ϕν( 1
ξ(Y ) )

(

ξ(Y )T ′
+(F ν( 1

ξ(Y ) ))
)1/(1−α)

, (4.24)

V ν(x0, ν) = xα
0 ϕν( 1

ξ(Y ) )
1−α. (4.25)

(ii) If infc> 1
ξ(Y )

kν(c) < 1, then Problem (CPT-I) is ill-posed.

Note that a null initial wealth is still accompanied by a null risky investment and a null financial
value. Finally, if x0 < 0 it is sufficient to adapt the results of [8], Theorem 9.2, to the present case.

Example 4.1 (Evaluation of V (x0, ν) with T+(·) convex ). We are going to provide a concrete example
where the financial value of the weak information (Y, ν) can be explicitly computed. We assume CRRA
value functions with x0 ≥ 0 for our informed agent and a single risky asset market analogous to that
of Example 3.2, with weak information given by Y = W Q

T and ν ∼ N (0, s2) with 0 < s ≤
√

T . Hence,
it is easy to compute

1

ξ(Y )
=

s√
T

exp

{

T − s2

2Ts2
(W Q

T )2
}

, (4.26)

which immediately gives 1
ξ(Y ) = s√

T
and 1

ξ(Y ) = +∞. Next we are able to check Assumption 4.4,

i.e. that 1
ξ(Y ) has not atom w.r.t. Qν , as 1

ξ(Y ) does not have atoms w.r.t. Q and the two measures

are equivalent. Moreover 1
ξ(Y ) ∈ (0,+∞) Qν-a.s. and its expected value w.r.t. Qν is 1. Thus every

technical condition is fulfilled and we are allowed to proceed in our analysis.
The next step consists in verifying the three conditions in Assumption 4.6; however, (ii) follows
immediately by the CRRA hypothesis and (iii) will be checked a posteriori once we have performed
the necessary computations. Regarding condition (i), we observe that the law of Y w.r.t. Qν is
exactly ν. Hence, with some tedious but elementary computations one can check that the distribution
function of 1

ξ(Y ) w.r.t. to Qν is given by

F ν(c) = Qν
{

1
ξ(Y ) ≤ c

}

=







0 if c ≤ s√
T

,

2N
(
√

2T

T − s2
ln
(

c
√

T
s

)

)

− 1 if c > s√
T

,
(4.27)
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where N (·) is the distribution function of a standard Gaussian random variable. By this last expres-
sion we can obtain the left inverse of F ν(·) as

(F ν)−1(z) =
s√
T

exp

(

T − s2

2T

[

N−1

(

z + 1

2

)]2
)

, z ∈ [0, 1). (4.28)

Now, condition (i) requires the ratio (F ν)−1

T ′

+
(z) to be non decreasing over (0, 1]; if the distortion T+(·)

is assumed to be twice continuously differentiable, we see that this is indeed the case whenever the
derivative of that ratio is non-negative. Note that a sufficient condition for this to happen is T ′′

+(·) ≤ 0
over [0, 1], as it ensures

d

dz

(F ν)−1

T ′
+

(z) =

[

(F ν)−1
]′

T ′
+ − (F ν)−1T ′′

+

(T ′
+)2

(z) ≥ 0, z ∈ (0, 1], (4.29)

thanks to the fact that
[

(F ν)−1
]′

(·), T ′
+(·) and (F ν)−1(·) are non-negative functions. By the way,

T ′′
+(·) ≤ 0 is only a sufficient condition, not a necessary one; therefore, we can try to use a non concave

T+(·) and check the validity of (i).
It turns out that a class of weighting functions that fulfills both Assumption 4.2 and the previous
condition (i) is given by7

T+(p) = 2N
(√

1 − 2a N−1

(

p + 1

2

))

− 1, a ∈
(

0, 1
2

)

. (4.30)

Despite this unusual expression, it is not difficult to check that such distortions are globally convex
over (0, 1), thus implying a prudential criterion when evaluating gains. The lack of concavity restricts
our attention to Problem (CPT-I), as Assumption 4.3 for Problem (CPT-N) is not fulfilled. A closer
look at equation (4.30) shows that they are nothing but the primitives of

T ′
+(p) =

√
1 − 2a exp

(

a

[

N−1

(

p + 1

2

)]2
)

, a ∈
(

0, 1
2

)

. (4.31)

By using (4.28) and (4.31), tedious calculations shows that condition (i) is indeed fulfilled if and only

if a ≤ T−s2

2T < 1
2 (however, we will choose a < T−s2

2T as the equality causes integrability troubles,
leading to violate condition (iii) of Assumption 4.6). Leaving aside the ill-posedness issue, we now
apply Proposition 4.6. After cumbersome (but not difficult) computations, we find

Xν∗ = x0

√
T − s2 − 2aT

s
√

1 − α
exp

(

−T − s2 − 2aT

2Ts2(1 − α)
(W Q

T )2
)

,

V (x0, ν) = xα
0

√

T (1 − 2a)

s

(

s
√

1 − α√
T − s2 − 2aT

)1−α

.

Performing first order derivatives, it is immediate to see that V (x0, ν) is increasing in the terminal
time T , whereas it is decreasing in the parameter a and in s. This is perfectly coherent with intuition,
as the more accurate information is, the greater should be its value. It is interesting to note that
the magnitude of the parameter a determines the “degree” of convexity of T+(·) and as a → 0, T+(·)
tends to the identity function. As expected, we obtain lima→0+ V (x0, ν) = u(x0, ν) as in Example
3.2, because CPT and EU preferences coalesce.

There is an interesting fact about this example which is connected with Remark 4.3. A closer look
to the shape of the distribution function F ν(·) in (4.27) shows that if s → 0 (which corresponds to
a more accurate information), then the random variable 1

ξ(Y ) tends to be more concentrated around

0, i.e. (4.27) tends to Ic>0. In the other extreme case, as s →
√

T (which corresponds to a minimal
information) 1

ξ(Y ) tends to be more concentrated around 1, i.e. (4.27) tends to Ic>1.

We now remark that in order to ensure well-posedness, one has to compute ϕν(c) and this is a
lengthy but easy task; after that, we should specify a particular form for T−(·) and check whether
infc> 1

ξ(Y )
kν(c) ≥ 1 as we did in Corollary 4.1. Nonetheless, we observe that we can also find an

7Obviously, to define T+(1) we use the convention N (+∞) = 1.
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estimate about the value V (x0, ν) in the well-posed case; if infc>0 kν(c) ≥ 1, then we know that
V (x0, ν) = xα

0 ϕν(+∞)1−α and we can compute

ϕν(+∞) = EQ

[

ξ(Y )
1

1−α T ′
+

(

F ν
(

1
ξ(Y )

))
1

1−α

]

≥ EQ
[

ξ(Y )
1

1−α

]

−→ +∞ (4.32)

as s → 0+ whenever infp∈[0,1] T
′
+(p) > 0. On one hand, this fact suggests that well-posedness can

only be assessed for weak information that are not too accurate, i.e. when s2 is close to T . On the
other hand, this condition on T ′

+(·) is fulfilled by our particular choice in (4.31) and it is economically
meaningful as if infp∈[0,1] T

′
+(p) = 0, then there would be a non-negligible interval of actual proba-

bilities which are highly distorted. Not only, this intuition is implicit in the empirical estimation in

[15] where the suggested distortion T+(p) = pδ

(pδ+(1−p)δ)1/δ
automatically satisfy infp∈[0,1] T

′
+(p) > 0

for sufficiently high δ (approximatively δ > 0.28, whereas in [15] it was estimated δ = 0.69).

Example 4.2 (Reversed S-shaped probability distortion T+(·)). We are aware of the fact that empirical
observations suggest probability weighting not to be globally convex neither globally concave. While
in the previous example an ad hoc construction has been performed in order to obtain explicit (and
sensible!) expressions, we now suggest a particular reversed S-shaped T+(·) which may resemble
an observable one. Following the same lines as in [8], Example 6.1, and using the framework we

established in our Example 4.1, it is not difficult to build such a distortion. Posing δ = s2−T
T , for a

given set of parameters a < 0, 0 < b < − 1
δ , c0 > s√

T
we obtained

T+(p) =































4k
(

s√
T

)a

δa

[

N
(

N−1
(

p+1
2

)

δa

)

− 1
2

]

p ∈ [0, p0),

4k
(

s√
T

)a

δa

[

N
(

N−1
(

p0+1
2

)

δa

)

− 1
2

]

+ 4k̃
(

s√
T

)b

δb

[

N
(

N−1
(

p+1
2

)

δb

)

−N
(

N−1
(

p0+1
2

)

δb

)]

p ∈ (p0, 1),

(4.33)

where δa :=
√

1
δ

(

a + 1
δ

)

, δb :=
√

1
δ

(

b + 1
δ

)

, k̃ := kca−b
0 , p0 := F ν(c0) and the real number k is

uniquely determined by the terminal condition T+(1) = 1. Note that such a T+(·) is a non decreasing
function over [0, 1] and T ′

+(p) → +∞ as p → 0 or p → 1, which is consistent with the empirical
estimates. However, it is important to note that the overall construction depends on the weak
information (Y, ν), thus it seems to be completely unrealistic. Effectively, this flaw was still present
in Example 6.1 of [8], where the ad hoc distortion depended on the market parameters! To conclude,
we note that the condition infp∈[0,1] T

′
+(p) > 0 which ensured (4.32) is satisfied for the T+(·) that we

build in (4.33). In fact we have

T ′
+(p) = T ′

+(F ν(x)) =

{

kxa if 0 < x ≤ c0,

k̃xb if x > c0,

which is always greater or equal than kca
0 > 0.

5 Comparison results between EU and CPT agents

In this weak information approach we can consider four different types of investors, depending on the
information level (N-agents versus I-agents) and on the valuation criteria (classical expected utility
maximizers versus behavioral investors à la Kahneman and Tversky).
In [2], the authors already compared an EU N-agent with an EU I-agent; the main result is the fact
that the insider always gets more than a non informed agent and in Examples 3.1 and 3.2 we also
showed some interesting estimates.
Not only, the differences between an EU N-agent and a CPT N-agent are easy to analyze: on one
hand, we have seen in Section 3.1 that the optimal policy for a classical N-agent is to choose a
constant wealth, i.e. X∗ = x0 Q a.s., obtaining the optimal value U(x0), whereas the CPT N-agent’s
strategy is characterized by her substantial indifference between events of the same probability. This
phenomenon thus produce structurally different optimal final wealths, as the behavioral agent can even
exploit a leverage effect by choosing a negative final wealth with positive probability. Furthermore,
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it is obviously seen that this kind of investor can always select (p∗, x∗
+) = (1, x0), thus obtaining

V (X∗) = u+(x0). However this strategy is not necessarily the best one, as she has to face Problem
(4.6) and find its optimal solution.

5.1 EU versus CPT insiders

To make things sensible, we assume that the two types of investors share the same initial wealth
x0 > 0 and the same utility function on gains u+(·), whereas the CPT agent is also endowed with a
value function on losses u−(·) and probability distortions T±(·).
A comparison can be made among the final optimal wealths X∗ and Xν∗, given by (3.5) and (4.21)

respectively. Unfortunately, nothing can be said in full generality; however we see that if cν∗ < 1
ξ(Y )

then the CPT I-agent selects a negative payoff with positive probability, thus the two policies are

substantially different. On the contrary, if cν∗ = 1
ξ(Y ) , then xν∗

+ = x0 and we can say something

more, as now we are comparing two positive random variables8. In particular, in the CRRA case
we can compare the expression appearing in Example 3.1 with (4.24); after some straightforward
computations we see that Xν∗ R X∗ if and only if

T ′
+

(

F ν
(

1
ξ(Y )

))1/(1−α)

R
EQ

[

ξ(Y )1/(1−α)T ′
+

(

F ν
(

1
ξ(Y )

))1/(1−α)
]

EQ
[

ξ(Y )1/(1−α)
] . (5.1)

Note that the comparison between Xν∗ and X∗ concerns two random variables with the same Q

expected value equal to x0, whereas the previous expression contains a random variable on the LHS
and a constant on the RHS. Thus we deduce that it can not happen that the optimal wealth X∗

for a classical I-agent is Q a.s. greater than Xν∗, neither the contrary. The overall results strongly
depends on the shape of T+(·), or equivalently on its derivative.
From a qualitative point of view, we observe that the previous expression is easily reduced to

{

Xν∗ R X∗}⇔
{

T ′
+

(

F ν
(

1
ξ(Y )

))

R c1

}

for a suitable constant c1. Assuming a reversed S-shaped distortion T+(·) with infinite positive

derivative at the endpoints and recalling that F ν
(

1
ξ(Y )

)

is uniformly distributed over (0, 1) w.r.t.

Qν , we can see that a CPT I-agent selects a greater final wealth when F ν(·) takes values near 0 or 1,
i.e. when the random variable ξ(Y ) takes values close to its esssup and essinf. In the case of Example

3.2, this situation corresponds to extremely (positive or negative) high values of
∣

∣

∣
W Q

T

∣

∣

∣
(thus, the final

price should be extremely high or close to its initial value s0) or to
∣

∣

∣
W Q

T

∣

∣

∣
to be quasi-null (hence, the

terminal price should be close to s0 exp
{

−σ2

2 T
}

).9

Remark 5.1 (Finite vs Infinite values of the same weak information). An interesting result is ob-
tained if we compare the optimal values for the two agents; obviously, their magnitudes are not
important as we are comparing two different preference paradigms. On the contrary, what is peculiar
to this approach is the fact that we can have u(x0, ν) < +∞ and V (x0, ν) = +∞ even if the two
insiders share a common extra information (Y, ν). To see this, assume the same market setting as
in Example 4.1; now, for any fixed initial endowment x0 > 0, Example 3.2 shows that for every
s > 0 we have u(x0, ν) < +∞, whereas it tends to infinity only when s ↓ 0. However, if we assume
T−(·) = id(·), then for every s > 0 Proposition 4.4 implies ill-posedness agent, i.e. V (x0, ν) = +∞.
In conclusion, a CPT trader reaches “Nirvana” since she fears losses less than a EU investor fears
small payoffs.

5.2 CPT non-informed agents versus CPT insiders

At last we compare the solutions and the optimal values of the problems faced by a CPT N-agent
and an analogous weakly informed investor; we assume that they share the same initial endowment

8The comparison is however still difficult as the expression for the CPT I-agent depends on the distortion T+(·);
obviously, if there is no distortion on gains then the two expressions are equal.

9Another comparison should concern the portfolios chosen by the two types of investors; the big problem here is
still facing with really cumbersome expressions.
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x0 ∈ R, the same utility functions u±(·) and the same probability weightings T±(·). We suppose that
Assumption 4.3 and 4.6 are in force; hence, we have to choose a concave distortion on gains T+(·)
if we hope to make some explicit comparison. Finally, we assume that I-agent possesses the generic
weak information (Y, ν).

As is standard in asymmetric information models (see e.g. [13]), a fundamental issue consists in
proving that an insider always “gets” more than a non-informed trader and the difference between
the optimal values of these two investors is usually called insider’s gain. Now, we are going to
prove that this fact still holds in such a behavioral setting; in other words, we show the inequality
V (x0, ν) ≥ V (X∗), whose intuitive meaning is that any additional information is an advantage for
the investor, even if she is a behavioral one.

Before stating the main result, we need the following preliminary lemma which links F ν(·) and
F Q(·), the distribution functions of the random variable 1

ξ(Y ) w.r.t. Qν and Q respectively.

Lemma 5.1. The following inequality holds:

F ν(c) ≥ F Q(c), ∀ c ∈
[

1
ξ(Y ) ,

1
ξ(Y )

]

. (5.2)

Moreover, if c ∈
(

1
ξ(Y ) ,

1
ξ(Y )

)

and ξ 6≡ 1 then (5.2) holds strictly.

Proof. If is sufficient to use the following estimation, which holds for every c ∈
[

1
ξ(Y ) ,

1
ξ(Y )

]

:

F ν(c) = 1 − EQ
[

ξ(Y )I 1
ξ(Y )

>c

]

= F Q(c) + EQ
[

(1 − ξ(Y ))I 1
ξ(Y )

>c

]

≥ F Q(c) +
(

1 − 1
c

)

(1 − F Q(c))

≥ F Q(c).

Finally, the strict version is valid thanks to Assumption 2.2, i.e. the equivalence of ν and QY .

At this point we are ready to prove the existence of the insider’s gain; note that it is sufficient to
find a particular feasible solution to Problem (CPT-I) whose prospect value for the informed trader
is greater or equal than V (X∗). A rapid look at Problems (CPT-N) and (CPT-I) shows that they
share the same feasible set; hence, we could even choose X∗ as the insider’s terminal wealth. This
random variable will not be the optimal solution to Problem (CPT-I); however, we are able to prove
that V ν(X∗) ≥ V (X∗) and this in turn implies V (x0, ν) ≥ V (X∗).

Theorem 5.1. Let Assumption 2.2 hold. Then

V (x0, ν) ≥ V (X∗).

Moreover, if ξ 6≡ 1, V (X∗) < +∞ and the optimal solution (p∗, x∗
+) to Problem (4.6) is such that

p∗ ∈ (0, 1), then the inequality is strict.

Proof. First of all, we recall that a behavioral N-agent endowed with a concave T−(·) is indifferent in
choosing (4.7) as optimal solution for any given Z ∼ U(0, 1) w.r.t. Q. Now we distinguish two cases,
namely when the optimal value for N-agent is finite or not. In the first case, the non-informed trader

can select Z̃ = F Q
(

1
ξ(Y )

)

; using (4.7), (4.8) and setting c∗ := (F Q)−1(p∗), we find

X∗ = (u′
+)−1

(

λ(c∗,x∗

+)

T ′

+(Z)

)

I 1
ξ(Y )≤c∗

− x∗
+ − x0

1 − F Q(c∗)
I 1

ξ(Y )<c∗
, (5.3)

V (X∗) = V+(X∗+) − u−

(

x∗
+ − x0

1 − F Q(c∗)

)

T−(1 − F Q(c∗)), (5.4)

where (p∗, x∗
+) are optimal for Problem (4.6) and λ(c∗, x∗

+) is determined by the budget constraint.
On the other hand, if the informed investor chooses X∗ as her terminal wealth, then she obtains the
prospect value

V ν(X∗) = V ν(X∗+) − u−

(

x∗
+ − x0

1 − F Q(c∗)

)

T−(1 − F ν(c∗)). (5.5)
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Now, using Lemma 5.1, it is immediate to see that the negative part of the prospect value for N-agent
is greater (in absolute value) than that of I-agent. Moreover, using the strict decreasing monotonicity
of u+

(

(u′
+)−1

)

(·), we can explicitly write

V+(X∗+) =

∫ +∞

0

T+

(

Q

({

T ′
+

(

F Q( 1
ξ(Y ) )

)

>
λ(c∗,x∗

+)

u′

+(u−1
+ (y))

}

∩
{

1
ξ(Y ) ≤ c∗

}

))

dy. (5.6)

But now it is sufficient to note that T ′
+(·) is monotone decreasing, whereas F Q(·) is monotone in-

creasing; furthermore, V ν
+(X∗+) can be written analogously to V+(X∗+) just by replacing Q with

Qν . Therefore, applying again Lemma 5.1 we have V ν
+(X∗+) ≥ V+(X∗+), which in turn implies the

desired inequality. In the ill-posed case for N-agent, note that we can find a sequence of feasible so-

lutions to Problem (4.6), namely {(pn, xn
+)}n∈N, where pn = (F Q)−1(cn) for some cn ∈

[

1
ξ(Y ) ,

1
ξ(Y )

]

,

for every n ∈ N. This sequence will in turn induce a sequence of feasible terminal wealths {Xν,n}n∈N.
Now, using the previous argument, it is easily seen that if I-agent chooses that sequence of terminal
wealths, then her optimal value will diverge to +∞ too. Finally, the strict version is a consequence
of (5.2) holding strictly.

We remark that in general the optimal pair (c∗, x∗
+) for N-agent will be different w.r.t. (cν∗, xν∗

+ ).
Moreover, we have seen that ill-posedness for (CPT-N) implies ill-posedness for (CPT-I). A natural
question arising from this observation is whether it is possible to find an example where (CPT-N) is
well-posed instead of (CPT-I) being ill-posed. The answer is positive and we are going to exploit some
results previously obtained in a single risky asset market driven by an (Ω, F, Q)-Brownian motion;
see Example 4.1 for the notations.

Proposition 5.1. Assume preferences of the CRRA case with x0 ≥ 0, T+(p) = p and T−(p) = pδ,

0 < δ < α < 1. If the weak information of CPT-I agent is given by Y = W Q
T and ν

d
= N (0, s2) with

0 < s ≤
√

T , then for sufficiently small s Problem (CPT-I) is ill-posed.

Proof. To start, recall that with these assumptions on the agents’ preferences, Corollary 4.1 ensures
well-posedness for Problem (CPT-N). Then, ill-posedness for Problem (CPT-I) follows from Propo-
sition 4.6 if we are able to show that

inf
c> 1

ξ(Y )

kν(c) ≡ inf
c> 1

ξ(Y )

k−(1 − F ν(c))δ

(1 − F Q(c))α
(

EQ

[

ξ(Y )
1

1−α I 1
ξ(Y )

≤c

])1−α < 1. (5.7)

Now, we apply Jensen’s inequality to the convex function f(x) = x
1

1−α , α ∈ (0, 1), and we estimate

the infimum choosing ĉ = (F Q)−1
(

1−α
1−δ

)

; hence we obtain

inf
c> 1

ξ(Y )

kν(c) ≤ inf
c> 1

ξ(Y )

k−(1 − F ν(c))δ

(1 − F Q(c))αF ν(c)
= k−

(

1 − δ

α − δ

)α
(1 − F ν(ĉ))δ

F ν(ĉ)
,

where it is important to note that ĉ depends both on the preference parameters and on the weak
information. At this point it is not difficult to compute

F Q(c) ≡ Q

{

1
ξ(Y ) ≤ c

}

=







0 if c ≤ s√
T

,

2N
(
√

2s2

T−s2 ln
(

c
√

T
s

)

)

− 1 if c > s√
T

,
(5.8)

where as usual N (·) is the distribution function of the standard Gaussian. Next, we find

(F Q)−1(z) =
s√
T

exp

(

T − s2

2s2

[

N−1

(

z + 1

2

)]2
)

, z ∈ [0, 1). (5.9)

Using the explicit expression of F ν(·) in equation (4.27), we can compute

F ν(ĉ) = 2N
(√

T

s
N−1

(

2 − α − δ

2(1 − δ)

)

)

− 1.

Now we see that for every choice of k− ≥ 1 and 0 < δ < α < 1, there exists a s̃ > 0 such that for
every s < s̃ the inequality in (5.7) is fulfilled.
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Figure 2: a graphical analysis for the ill-posedness of the CPT insider’s problem.

Economically speaking, the meaning of the previous proposition is that there can always exists
a particular weak information which ensures well-posedness for N-agent’s problems and ill-posedness
for the informed investor. Obviously, this extra information must be sufficiently accurate (in our case
s < s̃) in order to provide an infinite optimal value for I-agent. We recognize that our estimation
for (5.7) is effectively rough. For a more detailed analysis, we note that an explicit expression for
kν(c) can be provided, even if it is quite cumbersome. However, it is not difficult to perform a
graphical analysis whose results are shown in Figure 2. Fixing α = 0.88, δ = 0.7 and T = 1, kν

reduces to a function of k−, s and c; isolating the loss aversion coefficient k−, we can now see whether
k− ≤ supc>s k(c, s) which in turn implies ill-posedness for the CPT insider’s problem. In the left-side
plot, the 3D surface of k(c, s) shows that even for a quite elevated k− we still have ill-posedness. On
the contrary, if s is sufficiently close to 1, then every k− ≥ 1 leads to well-posedness, as the surface
lies below the horizontal plane at level k ≡ 1 and k(·, s) becomes monotonically decreasing. Finally,
for particular values of s, i.e. for specific types of weak information, we depicted in the right-side plot
the corresponding curves k(c) which confirm what previously stated.

Remark 5.2. It is worth noticing that with the same hypothesis of Proposition 5.1, the analogous
problem for a classical informed trader has a completely different solution. Indeed, Problem (EU-I)
is well-posed for every s > 0 and its optimal value tends to diverge only if s ↓ 0. On the other hand,
if we assume T−(·) = id, then Problem (CPT-I) too becomes ill-posed for every s > 0, thus showing
a substantial lack of robustness.

To conclude this section, we now provide an example where the insider’s gain can be explicitly
computed and the subsequent results have a clear and intuitive economic explanation.

Example 5.1 (Explicit evaluation of the insider’s gain). We recover exactly the same setting of
Example 4.1 only changing the probability distortion on gains of our informed investors; precisely,
this time we assume

T+(p) = 2N
(√

1 + 2b N−1

(

p + 1

2

))

− 1, b > 0. (5.10)

It is important to note that these weighting functions are globally concave over (0, 1) 10; the concavity
allows us to analyze both Problems (CPT-N) and (CPT-I), as now an explicit solution can be found
if we check all the conditions in Assumptions 4.3 and 4.6. Firstly, we see that the distortions T+(·)
previously defined are the primitives of

T ′
+(p) =

√
1 + 2b exp

(

−b

[

N−1

(

p + 1

2

)]2
)

, b > 0. (5.11)

As we did in Example 4.1, we check condition (i) of Assumption 4.3, as (ii) is straightforwardly true
and (iii) will be controlled ex post. Using equation (4.28) and performing the first order derivative,

it is immediate to see that (F ν)−1

T ′

+
(·) is non decreasing over (0, 1] for every b > 0. Hence, we can

10Thus, we observe a general overestimation of gain chances.
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start making our computations assuming well-posedness for Problem (CPT-I), which implies that of
Problem (CPT-N) thanks to Theorem 5.1. For the non-informed investor, we exploit the results of
Proposition 4.2, which give us

X∗ = x0

√

1−α+2b
(1−α)(1+2b)1/(1−α) T

′
+(Z)1/(1−α), (5.12)

V (X∗) = xα
0

√
1 + 2b

(
√

1−α
1−α+2b

)1−α

. (5.13)

On the other hand, for the CPT insider we apply Proposition 4.6 which returns

Xν∗ = x0
T−s2α+2bT

s2(1−α) exp
{

−T−s2+2bT
2Ts2(1−α) (W

Q
T )2
}

, (5.14)

V (x0, ν) = xα
0

√

T (1+2b)
s2

(

√

s2(1−α)
T−s2α+2bT

)1−α

. (5.15)

The insider’s gain is thus given by V (x0, ν) − V (X∗); for our purposes, it is more convenient to
compute the ratio

V (x0, ν)

V (X∗)
=

√
T

s

(

√

s2(1 − α)

T − s2α + 2bT

)1−α

≥ 1, (5.16)

which is increasing in both b, T and decreasing in s, whereas the dependence on α is not monotone.
Note that this makes perfectly sense as greater T (or lower s) improve the accuracy of the privileged
information; moreover, if s ↑

√
T , the ratio (5.16) tends decreasingly to 1. On the contrary, performing

the limit s ↓ 0 does not makes sense as Problem (CPT-I) easily becomes ill-posed. On the other hand,
as b ↓ 0 we see that T+(·) converges uniformly to the identity function and, in case of well-posedness,
we recover the same results of Example 3.2, where the agent was a classical insider. Finally, if α ↑ 1,
then (5.16) tends to

√
T/s; this is equivalent to say that if the trader becomes risk neutral, then the

ratio between the optimal values is nothing but an index of the “goodness” of the extra information.
The comparison between the optimal terminal wealths X∗ and Xν∗ exhibits the already know

flaw of being dependent on the choice of Z; in particular, if Z = F Q
(

1
ξ(Y )

)

then straightforward

computations show that Xν∗ ≥ X∗ if and only if the terminal price of the stock lies in a certain

range, whereas if Z = 1 − F Q
(

1
ξ(Y )

)

then we obtain the opposite result.

At last, we remark that it is not possible to merge the previous construction of a concave T+(·)
with the convex one obtained in Example 4.1 in order to get a reversed S-shaped distortion. In fact,
condition (i) in Assumption 4.6 will not be fulfilled, as we have

T ′
+(p) =











c exp
{

−b
[

N−1
(

p+1
2

)]2
}

if 0 ≤ p ≤ p̂,

c exp
{

a
[

N−1
(

p+1
2

)]2
}

if p̂ < p ≤ 1.
(5.17)

for some a, b > 0, p̂ ∈ (0, 1) and a normalizing constant c > 0 such that T+(1) = 1. Using (4.28), we

find (F ν)−1

T ′

+
(p̂+) < (F ν)−1

T ′

+
(p̂−), in contrast with the aforementioned condition (i).

6 The goal reaching models and their solutions

A completely different perspective about the target of a financial investor is given by the so-called
goal reaching model. Briefly, the trader we consider has the objective of maximizing the probability of
her terminal wealth greater than a specific threshold. For a detailed treatment of this model, we refer
the reader to [4], where the author solved the problem for a deterministic investment opportunity set
using stochastic control theory and HJB equations. However, we will follow the approach developed
in [5], which generalizes the solution scheme to a stochastic investment opportunity set. As our agents
are supposed to know just the martingale measure Q instead of the historical probability P, we will
see that some simplifications are in order.
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6.1 The non informed agent’s problem

We straightforwardly adapt the goal reaching model to the case when the state price density is
unknown. For simplicity, we fix a constant threshold b > 0 and we assume x0 ≥ 0 to be the initial
endowment of our agent. Denoting with X the terminal wealth, the problem becomes

Maximize VGR(X) := Q {X ≥ b}
subject to EQ[X] = x0, X ≥ 0, X is FT -measurable.

(GR-N)

Now, let X∗
GR the optimal solution to Problem (GR-N); it is clear that we should also assume x0 < b

to avoid a trivial problem. Moreover, our N-agent has no convenience in choosing with positive
Q-probability {X > b} or {0 < X < b}, as this will consume her initial budget without raising the
objective function. Furthermore, using Chebichev’s inequality, we see that Q {X ≥ b} ≤ x0/b. Hence,
the optimal solution will be of the form X∗

GR = bIA, with some proper choice of the set A ∈ FT

which satisfies the budget constraint. Substantially, we have proved the following result.

Proposition 6.1. For Problem (GR-N), we have:

- if x0 = 0, then X∗
GR = 0 Q a.s. and VGR(X∗

GR) = 0;

- if 0 < x0 < b, then X∗
GR = bIA for every A ∈ FT such that Q(A) = x0/b and VGR(X∗

GR) =
x0/b;

- if x0 ≥ b, then X∗
GR = x0 Q a.s. and VGR(X∗

GR) = 1.

6.2 The insider’s problem

Passing to the analogous model for an insider, all we have to do is to frame the problem using the
privileged weak information (Y, ν) and the updated probability measure Qν . Thus, we have

Maximize V ν
GR(X) := Qν {X ≥ b}

subject to Eν
[

1
ξ(Y )X

]

= x0, X ≥ 0, X is FT -measurable,
(GR-I)

with optimal solution Xν∗
GR and corresponding optimal value VGR(x0, ν). We immediately see that

Problem (GR-I) is nothing but Problem (9) in [5], where P is replaced by Qν and the state price
density ρ is replaced by 1

ξ(Y ) ; not only, we observe the law-invariant nature of the objective function

as it happened for the CPT agents’ problems. Now, it remains to adapt the main result for the goal
reaching problem in [5], namely Theorem 1, to get the solution.

Proposition 6.2. For Problem (GR-I), we have:

- if x0 = 0, then Xν∗
GR = 0 Qν a.s. and VGR(x0, ν) = 0;

- if 0 < x0 < b, then Xν∗
GR = bνI 1

ξ(Y )≤cν
, where cν = (F Q)−1

(

x0

b

)

> 0 and VGR(x0, ν) = F ν(cν).

- if x0 ≥ b, then Xν∗
GR = x0 Qν a.s. and VGR(x0, ν) = 1.

Comparison results between the non-informed investor and an insider are quite evident. Firstly,
the presence of the insider’s gain in non trivial cases can be assessed simply using Lemma 5.1, which
gives

VGR(x0, ν) = F ν(cν) ≥ F Q(cν) = x0

b = VGR(X∗).

Finally, we can easily compare the optimal terminal wealths if N-agent chooses A =
{

1
ξ(Y ) ≤ cν

}

.

In such a case, we see that X∗
GR = Xν∗

GR but they lead to different optimal values as the evaluation
criteria for the two investors are different.
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7 The Yaari’s model and its solution

The last model we are going to analyze is the one proposed by Yaari in [16]. Loosely speaking, it
exhibits an important connection point with the CPT model as a probability distortion w(·) is applied;
however, in that model gains are not distinct from losses, so what is important for the trader is the
level of terminal wealth X. Moreover, the value function is simply the identity, hence no distortion in
payments is allowed. We now frame and solve the problems relative to a non informed investor and
an insider respectively; in particular, we adopt the approach developed in [5]. At last, we will provide
an example where the insider’s gain is explicitly computed. From now on, the following hypothesis
on the distortion w(·) will be in force.

Assumption 7.1 (see [5], Assumption 6). w(·) : [0, 1] → [0, 1] is continuous and strictly increasing
with w(0) = 0, w(1) = 1. Furthermore, w(·) is continuously differentiable on (0, 1).

7.1 The non informed agent’s problem

For our N-agent, we adapt the solution scheme proposed in [5], Section 3.2. Assuming an initial
endowment x0 > 0, a standard formulation of this model would be

Maximize VY (X) :=
∫ +∞
0

w (Q {X > x})
subject to EQ[X] = x0, X ≥ 0, X is FT -measurable.

(YA-N)

Once again, we note that the objective function is law-invariant, in the sense that if X is a feasible
solution to (YA-N) with distribution function FX(·), then for every Z ∼ U(0, 1) w.r.t. Q we have
VY (X) = VY

(

(FX)−1(Z)
)

(see e.g. Lemma A.1). Moreover, the structure of the objective function
may be a source of ill-posedness, similarly to what happened for the CPT model. A straightforward
adaptation of the proof in [5], Theorem 2, shows the next result.

Proposition 7.1. Under Assumption 7.1, Problem (YA-N) is ill-posed if lim infz↓0 w′(z) = +∞, and
well-posed if lim supz↓0 w′(z) < +∞.

In particular, w(z) = zγ leads to well-posedness if γ > 1, whereas γ < 1 implies ill-posedness.
We also recall that in Yaari’s model, a convex distortion is equivalent to risk aversion. Not only,
using Jensen’s inequality we see that if w(·) is convex, then Problem (YA-N) has the trivial solution
X∗

Y = x0 Q a.s. with VY (X∗
Y ) = x0 (we will use this fact in Example 7.1). Therefore, there remains

some other interesting shapes of w(·) to analyze. Following [5], we impose this technical condition.

Assumption 7.2 (see [5], Assumption 7). M(z) := w′(1−z) is continuous on (0, 1), and there exists
z0 ∈ (0, 1) such that M(·) is strictly increasing on (0, z0) and strictly decreasing on (z0, 1).

In other words, the previous assumption describes an S-shaped distortion function; hence, our
N-agent underestimate the probabilities of small terminal wealths, whereas she overestimates those
of high levels of X; substantially, she is overconfident. Using exactly the same argument as in the
proofs of Proposition 1 and Theorem 3 in [5], we state the main result of this section.

Proposition 7.2. Suppose Assumption 7.2 holds. Define

z(λ) := inf {z ∈ (0, z0] : M(z) = λ} , (7.1)

h(λ) := w (1 − z(λ)) − λ (1 − z(λ)) , (7.2)

and let λ∗ be the unique positive root of h(·). Then, for every Z ∼ U(0, 1) w.r.t. Q, we have
X∗

Y = b∗Iz(λ∗)<Z≤1, where b∗ = x0

1−z(λ∗) is determined by the budget constraint. Moreover, VY (X∗
Y ) =

b∗w (1 − z(λ∗)).

7.2 The insider’s problem

For a weakly informed trader who follows the tenets of Yaari’s dual theory of choice, the optimization
problem can be naturally framed as

Maximize V ν
Y (X) :=

∫ +∞
0

w (Qν {X > x})

subject to Eν
[

1
ξ(Y )X

]

= x0, X ≥ 0, X is FT -measurable.
(YA-I)
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We will call Xν∗
Y its optimal solution, with optimal value VY (x0, ν). Once again, we recover the

same structure as in [5], Problem (11) and we replace ρ with 1
ξ(Y ) and P with Qν . Before giving the

solution, we impose the technical hypothesis

Assumption 7.3 (see [5], Assumption 7). Mν(z) := w′(1−z)
(F ν)−1(1−z) is continuous on (0, 1), and there

exists z0 ∈ (0, 1) such that M(·) is strictly increasing on (0, z0) and strictly decreasing on (z0, 1).

The solution to Problem (YA-I) is completely given by the next result.

Proposition 7.3. Suppose Assumption 7.3 holds. Define

zν(λν) := inf {z ∈ (0, z0] : Mν(z) = λν} , (7.3)

hν(λ) :=

∫ 1

zν(λ

[

w′(1 − z) − λ(F ν)−1(1 − z)
]

dz. (7.4)

Let λν∗ be the unique positive root of hν(·). Then, Xν∗
Y = bνI 1

ξ(Y )≤cν
, where cν is the unique root of

ϕν(c) := xw (F ν(x)) − w′ (F ν(x))

∫ x

0

s dF ν(s) (7.5)

over
(

(F ν)−1(1 − z0),
1

ξ(Y )

)

and bν is implicitly defined by the budget constraint Eν
[

1
ξ(Y )X

ν∗
Y

]

= x0.

Moreover, VY (x0, ν) = λν∗x0.

Proof. use the same arguments as in [5], Proposition 1 and Theorem 3.

Before giving an explicit example, we show that I-agent always gets a higher optimal value w.r.t.
N-agent. In fact, Problems (YA-N) and (YA-I) share the same feasible set; therefore, the non-
informed agent can choose Z = F Q( 1

ξ(Y ) ) and the insider can select the corresponding X∗
Y as her

terminal wealth. Hence, using Lemma 5.1, we can compute

V ν
Y (X∗

Y ) =

∫ +∞

0

w

(

Qν

{

b∗I
z(λ∗)<F Q(

1
ξ(Y ) )

> x

})

dx

=

∫ b∗

0

w
(

F ν
(

(F Q)−1(1 − z(λ∗))
))

dx

≥
∫ b∗

0

w (1 − z(λ∗)) dx

= VY (X∗
Y ),

which obviously implies VY (x0, ν) ≥ VY (X∗). This time too the comparison between the optimal
terminal wealths is not very sensible, as it strongly depends on the choice of Z.

Example 7.1 (Evaluation of the insider’s gain in Yaari’s model). In the single risky asset setting
as in Example 3.2, we assume that the weak information of I-agent is given by Y = FW (W Q

T ) and

ν(dx) = [(2 − 2a)x + a]dx, a ∈ (0, 1), where FW (·) is the cdf of the random variable W Q
T .

Note that Y ∼ U(0, 1) w.r.t. Q and the economic intuition behind this example is that the insider
has a weak knowledge about the terminal price, as the distortion applied by FW (·) is irrelevant due
to its strict monotonicity. Furthermore, the parameter a is an index of the goodness of the extra
information; in particular, (Y, ν) becomes more valuable as a → 0+. On the contrary, if a → 1− we
recover the minimal information case. Intuitively, lowering a says that it is more probable to observe
higher prices. At this point, we can immediately compute

1

ξ(Y )
=

1

(2 − 2a)FW (W Q
T ) + a

,
1

ξ(Y )
=

1

2 − a
,

1

ξ(Y )
=

1

a
. (7.6)

Now, we assume a risk averse investor endowed with probability distortion w(z) = zγ , γ > 1; as
noticed in Section 7.1, for such a convex w(·) we already know that X∗

Y = x0 Q a.s. and VY (X∗
Y ) =
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x0. Next, we check the validity of Assumption 7.3; using equation (7.6) together with the uniform
distribution of Y , we find

M(z) = γ(1 − z)γ−1
√

4z(a − 1) + (a − 2)2, z0 =
a2(1 − γ) + 2(1 − a)

2(1 − a)(2γ − 1)
. (7.7)

Then, we look for a root of ϕν(·) as defined in Proposition 7.3. It turns out that an admissible cν is
only obtained under an additional condition over the parameters γ and a. More precisely, we have

cν =
2γ − 1

2 − a
if γ <

a2 − 2a + 2

a2
. (7.8)

The final step is to find the optimal solution Xν∗
Y together with its optimal value. Using the budget

constraint we have

Xν∗
Y = bν∗IW Q

T ≥(FW )−1( aγ−1
(a−1)(2γ−1) )

(7.9)

VY (x0, ν) = x0
γγ(γ − 1)γ−1(2 − a)2γ−1

(1 − a)γ−1(2γ − 1)2γ−1
. (7.10)

where bν∗ = x0
(1−a)(2γ−1)
(2−a)(γ−1) . We remark that our insider will obtain bν∗ if the terminal prices are

higher than a certain threshold which is decreasing in both a and γ as economic intuition suggests.
Not only, bν∗ too is decreasing in both parameters and the Q-probability of obtaining bν∗ is nothing

but (γ−1)(2−a)
(2γ−1)(1−a) , increasing in both γ and a. Finally, we note that VY (x0, ν) ≥ x0 obviously holds;

however, there is no clear dependence of VY (x0, ν) in the parameters.

8 Conclusions

In this paper, we framed and solved portfolio optimization problems for a wide variety of investor
types. Namely, expected utility, cumulative prospect theory, goal reaching and Yaari’s dual theory
maximizers were analyzed, either if they only had the martingale measure as their information set,
either if they possessed a privileged weak information. We remark that the results we obtained are
new to the literature, to the best of our knowledge. In particular, we have seen that for an insider,
all we had to do was to correctly write down her problem and then exploit already known results
([8] in the CPT case, [5] in the goal reaching and Yaari-type cases). Moreover, the optimal terminal
payoff was determined in an almost surely fashion. On the contrary, for the non informed investor,
the problem needed to be completely solved due to the fact that in our case the state price density is
degenerate. It turns out that the law-invariant nature of the performance criteria and the knowledge
of the martingale measure lead to a family of optimal solutions. Hence, we lost the almost sure
characterization but we recovered uniqueness in distribution. Notably, the information level does not
affect the structure of the optimal terminal wealths; hence they can be compared together with the
corresponding optimal values. In particular, for a non expected utility trader we recovered a terminal
payoff which resembled a gamble on the final price level, and that payoff can even be negative in the
CPT case.

Other new features contained in this paper concern an explicit evaluation of the optimal terminal
wealth of a CPT and a Yaari-type insider. In particular, we proposed two new classes of probability
distortions, a convex and a concave one and a new example of weak information which turns out to
be economically meaningful (see Examples 4.1, 5.1 and 7.1). Nonetheless, we generally proved the
existence of the insider’s gain in every preference paradigm; notably, the CPT case results the most
involved one. We were also able to provide easy-to-read expressions for such an insider’s gain (see
Examples 5.1 and 7.1). Finally, we recall that ill-posedness of our problems was an important issue
especially in the CPT case. In some involved examples, we also performed graphical analysis which
helped us to understand how well-posedness can be retained when some parameters of the model are
changed. The partial and the strong information setting are left to future research.
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A A Choquet maximization problem

Our aim is to solve a general utility maximization problem which includes a Choquet capacity:

Maximize V1(X) =
∫ +∞
0

T (P{u(X) > y}) dy

subject to EP[X] = a, X ≥ 0,
(A.1)

where a ≥ 0, T : [0, 1] → [0, 1] is a strictly increasing, differentiable function with T (0) = 0, T (1) = 1,
and u(·) is a strictly concave, strictly increasing, twice differentiable function with u(0) = 0, u′(0) =
+∞, u′(+∞) = 0. Note that the only difference with the Choquet maximization problem solved in
[8], Appendix C, is the absence of the atom-less weighting function ξ in the constraint; unfortunately,
this amount to the impossibility to use their results and the need to prove a variant of them.
We will denote with X∗ the optimal solution to Problem (A.1). The case a = 0 is trivial, as it implies
X∗ = 0 with optimal value V1(X

∗) = 0; therefore assume a > 0. First of all we have the following
result, which states the law-invariance of the problem.

Lemma A.1. Suppose Problem (A.1) admits a feasible solution X whose distribution function is
G(·); then for every random variable Z ∼ U(0, 1) w.r.t. P we have V1(X) = V1

(

G−1(Z)
)

.

Proof. As is easily hinted by the structure of Problem (A.1), the only relevant feature of the optimal
solution is its distribution. Formally, for any such Z we can compute

EP[G−1(Z)] =

∫ +∞

0

P{G−1(Z) > y}dy =

∫ +∞

0

P{X > y}dy = EP[X] = a,

thus the random variable G−1(Z) is feasible and we have

V1(X) =

∫ +∞

0

T (P{u(X) > y}) dy =

∫ +∞

0

T (P{X > u−1(y)}) dy

=

∫ +∞

0

T (1 − P{X ≤ u−1(y)}) dy =

∫ +∞

0

T (1 − G(u−1(y))) dy

=

∫ +∞

0

T (P{Z > G(u−1(y))}) dy =

∫ +∞

0

T (P{u(G−1(Z)) > y)}) dy

= V1(G
−1(Z))

as claimed.

We note immediately the difference between our Lemma A.1 and Lemma C.1 in [8]: we do not
have an almost sure result; however we proved that for any such Z the previous equivalence holds,
thus it is clearly true even for an optimal X∗: in this way we can choose Z as we prefer. This is
a general feature of our results, i.e. replacing the almost sureness with a weaker condition on the
distribution functions which gives us an additional degree of freedom. From now on, we follow [8]
just adding some slight modifications; let’s introduce the problem

Maximize v1(G) :=
∫ +∞
0

T (P{u(G−1(Z)) > y}) dy

subject to

{

EP[G−1(Z)] = a,

G is the distribution function of a non negative random variable,

(A.2)

which changes the domain of our problem from a random variable set to a function set; specifically,
the function G(·) must be non-decreasing, càdlàg and satisfy G(0−) = 0, G(+∞) = 1. From Lemma
A.1 we deduce the equivalence between the two previous Problems (A.1) and (A.2).

Proposition A.1. If G∗ is optimal for Problem (A.2), then for any Z ∼ U(0, 1) w.r.t. P the random
variable X∗ := (G∗)−1(Z) is optimal for Problem (A.1). Conversely, if X∗ is optimal for (A.1), then
its distribution function G∗ is optimal for (A.2).

Performing the same calculations as in [8] and setting

Γ :=
{

g : [0, 1) → R+, g is non-decreasing, left continuous, with g(0) = 0
}

,
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we can rewrite Problem (A.2) into

Maximize v1(g) := E[u(g(Z))T ′(1 − Z)]

subject to EP[g(Z)] = a, g ∈ Γ.
(A.3)

But thanks to the assumptions on T (·) and u(·) we now have a concave optimization problem in g(·)
and we can use Lagrange method. Thus, for a given λ ∈ R, we can solve

Maximize vλ
1 (g) := E[u(g(Z))T ′(1 − Z) − λg(Z)]

subject to g ∈ Γ,
(A.4)

and then determine λ via the original constraint. As noticed in [8], if we ignore the constraint and
apply standard maximization techniques we find g(z) = (u′)−1(λ/T ′(1 − z)). Moreover, if T ′(z) is
non-increasing in z ∈ (0, 1], then g(z) is non-decreasing in z ∈ [0, 1) and therefore it solves Problem
(A.4). However, if T ′(z) is not non-increasing then we are not able to find an explicit solution11. We
remark that if T (z) is twice continuously differentiable, then T ′(z) non-increasing amounts to require
a concave T (·); in particular T (·) = id satisfies this condition.

Denote Ru(x) := −xu′′(x)
u′(x) , x > 0, the index of Relative Risk Aversion (RRA for short) of the

function u(·). We have

Proposition A.2. Assume that T ′(z) is non-increasing in z ∈ (0, 1] and lim infx→+∞ Ru(x) > 0.
Then for any Z ∼ U(0, 1) w.r.t. P, the following claims are equivalent:

(i) Problem (A.3) is well-posed for any a > 0.

(ii) Problem (A.3) admits a unique optimal solution for any a > 0.

(iii) EP
[

u
(

(u′)−1( 1
T ′(1−Z) )

)

T ′(1 − Z)
]

< +∞.

(vi) EP
[

u
(

(u′)−1( λ
T ′(1−Z) )

)

T ′(1 − Z)
]

< +∞ ∀ λ > 0.

Furthermore, when one of the above (i)-(iv) holds, the optimal solution to Problem (A.3) is

g∗(x) ≡ (G∗)−1(x) = (u′)−1

(

λ

T ′(1 − x)

)

, x ∈ [0, 1),

where λ > 0 is the one satisfying EP[(G∗)−1(1 − Z)] = a.

Proof. As in the proof of Proposition C.2 in [8], we can define a new probability measure P̃ such that
dP̃ = T ′(1 − Z) dP and a random variable ζ := 1

T ′(1−Z) which is positive P-a.s.. We can now rewrite

Problem (A.3) as follows.

Maximize v1(g) := EP̃[u(g(Z))]

subject to EP̃[ζg(Z)] = a, g ∈ Γ.

By [7], Theorem 5.4, we get the result.

We remark that the claim (ii) (as it appears in Proposition C.2 of [8]) is still valid because the
optimal solution g∗(·) to Problem (A.3) determines the inverse of a distribution function whereas the
optimal solution X∗ to Problem (A.1) is not unique P-a.s. as it depends on the choice of Z; however,
X∗ is unique in law. Moreover we could also replace 1 − Z with Z in every explicit expression
containing an expected value, since Z ∼ U(0, 1) too. Now we can state the main result of this
section.

Theorem A.1. Assume that T ′(z) is non-increasing in z ∈ (0, 1] and lim infx→+∞ Ru(x) > 0; for

any fixed Z ∼ U(0, 1) w.r.t. P define X(λ) := (u′)−1
(

λ
T ′(1−Z)

)

for λ > 0. If V1(X(1)) < +∞,

then X(λ) is an optimal solution of Problem (A.1), where λ is the one satisfying EP[X(λ)] = a. If
V1(X(1)) = +∞, then Problem (A.1) is ill-posed.

11If one restricts the domain over the step functions g ∈ Γ, then solving (A.4) is equivalent to solve a non-linear
programming problem in Rn, which once again does not have an easy explicit solution.
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We the obvious adaptations of the proofs, we can also state a necessary condition of optimality
as in [8].

Lemma A.2. If g(·) is optimal for Problem (A.4), then either g ≡ 0 or g(x) > 0 ∀ x > 0.

Theorem A.2. If X∗ is an optimal solution for Problem (A.1) with some a > 0, then
P{X∗ = 0} = 0.

Note that these last results do not depend on the choice of Z; they will be useful in order to state
monotonicity properties of the value function of a CPT non-informed agent.

B A Choquet minimization problem

In this section we solve a general utility minimization problem including a Choquet capacity:

Minimize V2(X) :=
∫ +∞
0

T (P{u(X) > y}) dy

subject to EP[X] = a, X ≥ 0,
(B.1)

where a, T (·) satisfy the same hypothesis of those employed in Problem (A.1) and u(·) is strictly
increasing, concave and u(0) = 0. Once again the only difference with the Choquet minimization
problem solved in [8], Appendix D, is the absence of the atom-less weighting function ξ.
We will denote as usual with X∗ the optimal solution to Problem (B.1). Note that there is always
a feasible solution, namely X = a P-a.s.; hence the optimal value of Problem (B.1) is a finite non-
negative number. Proceeding as in Appendix A we can show the following law-invariance lemma.

Lemma B.1. Suppose Problem (B.1) admits a feasible solution X whose distribution function is
G(·); then for every random variable Z ∼ U(0, 1) w.r.t. P we have V1(X) = V1

(

G−1(Z)
)

.

Thus, we can look for a solution to the following problem.

Minimize v2(g) := E[u(g(Z))T ′(1 − Z)]

subject to EP[g(Z)] = a, g ∈ Γ,
(B.2)

where g(·) represents the inverse of a distribution function G(·), i.e. g(·) = G−1(·). As already
pointed out in [8], Problem (B.2) is a difficult one in that we have to minimize a concave objective
function in a function space. Again we can seek among corner point solutions and by straightforward
modifications of the proof of Proposition D.2 in [8], we can prove the next result.

Proposition B.1. Assume that u(·) is strictly concave at 0. Then the optimal solution for Problem
(B.2), if it exists, must be in the form g(t) = a

1−bI(b,1)(t), t ∈ [0, 1).

Obviously by left continuity of g(·) we can extend the optimal g(·) over [0, 1] by setting g(1) := a
1−b .

Moreover such a g(·) is uniformly bounded in t ∈ [0, 1], so it follows by the preceding lemma that an
X∗ optimal for Problem (B.1) is uniformly bounded from above. Thanks to the previous proposition,
we can reduce our problem to find an optimal real number b ∈ [0, 1); therefore we introduce the
following

Minimize v2(b) := E[u(g(Z))T ′(1 − Z)]

subject to g(·) = a
1−bI(b,1](·), 0 ≤ b < 1.

(B.3)

Adapting the proofs of Proposition D.3 and Theorem D.1 in [8], we can state

Proposition B.2. Problems (B.2) and (B.3) have the same infimum values.

Theorem B.1. Problems (B.1) and (B.3) have the same infimum values. If, in addition, u(·) is
strictly concave at 0, then Problem (B.1) admits an optimal solution if and only if the following
problem

min
0≤b<1

u

(

a

1 − b

)

T (1 − b)

admits an optimal solution b∗, in which case the optimal solution to Problem (B.1) is of the form
X∗ = a

1−b∗ I(b∗,1](Z) for any choice of Z ∼ U(0, 1) w.r.t. P.
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C The solution of a CPT non-informed agent’s problem

We will now proceed to completely solve Problem (CPT-N); the scheme of the solution is nothing
but the one already showed in [8]. Some results will be just restated without proofs as they need only
slight and straightforward adaptations. As already noted, the constraint EQ[X] = x0 will impose the
main changes. Recall Problem (CPT-N):

Maximize V (X) = V+(X+) − V−(X−)

subject to EQ[X] = x0, X is FT -measurable and Q a.s. lower bounded,

where

V+(X+) :=

∫ +∞

0

T+(Q{u+(X+) > y}) dy, V−(X−) :=

∫ +∞

0

T−(Q{u−(X−) > y}) dy.

As noticed in [8], Proposition 3.1, to avoid systematic ill-posedness we will impose

Assumption C.1. V+(X) < +∞ for any nonnegative, FT -measurable random variable X satisfying
EQ[X] < +∞.

We now split Problem (CPT-N) into its positive and negative part, also defining their respective
optimal values v+(A, x+) and v−(A, x+) as usual; after that we merge them back:

• Positive Part Problem: given the pair (A, x+), with A ∈ FT and x+ ≥ x+
0 ,

Maximize V+(X) =
∫ +∞
0

T+(Q{u+(X) > y}) dy

subject to EQ[X] = x+, X ≥ 0 Q a.s., X = 0 Q a.s. on AC .
(C.1)

• Negative Part Problem: given the pair (A, x+), with A ∈ FT and x+ ≥ x+
0 ,

Minimize V−(X) =
∫ +∞
0

T−(Q{u−(X) > y}) dy

subject to

{

EQ[X] = x+ − x0, X ≥ 0 Q a.s., X = 0 Q a.s. on A,
X is upper bounded Q a.s..

(C.2)

• Merged Problem:

Maximize v+(A, x+) − v−(A, x+)

subject to

{

A ∈ FT , x+ ≥ x+
0 ,

x+ = 0 if Q(A) = 0, x+ = x0 if Q(A) = 1.

(C.3)

With only a few and simple adaptations, we can prove the following two results.

Proposition C.1 ([8], Proposition 5.1). Problem (CPT-N) is ill-posed if and only if Problem (C.3)
is ill-posed.

Proposition C.2 ([8], Proposition 5.2). Given X∗, define A∗ := {ω : X∗ ≥ 0} and x∗
+ := EQ[(X∗)+].

Then X∗ is optimal for Problem (CPT-N) if and only if (A∗, x∗
+) are optimal for Problem (C.3) and

(X∗)+ and (X∗)− are respectively optimal for Problems (C.1) and (C.2) with parameters (A∗, x∗
+).

Therefore, the original Problem (CPT-N) for N-agent is again equivalent to the set of Problems
(C.1)-(C.3). The next step is the crucial one, as it completely changes the structure of the solution
of our problem. From now on, we will not be able to recover the almost sure characterization results
obtained in [8]; on the other hand, we can avoid every technical detail related to the comonotonicity
and anti-comonotonicity of the random variables employed in the solution (see [8], Appendix B, where
a series of so-called quantile problems is solved).

The fact is that the density ρ permitted a huge simplification of the overall procedure, making it
possible to look for a solution where the set A was of the form {ρ ≤ c} for some real number c ∈ [ρ, ρ].
Now we can find a quite similar result adapting the proof of Theorem 5.1 in [8]; this will substantially
reduce the complexity of Problem (C.3).
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Theorem C.1. For any feasible (A, x+) of Problem (C.3) such that Q(A) = p and for every (Ω,F )
random variable Z ∼ U(0, 1) w.r.t. Q, we have

v+(A, x+) − v−(A, x+) ≥ v+(A, x+) − v−(A, x+), (C.4)

where A := {Z ≤ p}.

Proof. Fix such a random variable Z. The cases x+ = x+
0 and p = 0 or p = 1 are trivial, so we

assume that x+ > x+
0 and p ∈ (0, 1). Define B := AC and A := {Z ≤ p} and set

A1 = A ∩ {Z ≤ p}, A2 = A ∩ {Z > p},
B1 = B ∩ {Z ≤ p}, B2 = B ∩ {Z > p}.

Note that Q(A1 ∪ A2) = Q(A1 ∪ B1) = p, so that Q(A2) = Q(B1). If Q(A2) = 0 then the result
is trivial, so suppose Q(A2) > 0. Choose a feasible solution X1 for Problem (C.1) with parameters
(A, x+); we will prove that V+(X1) ≤ v+(A, x+) (the proof for a feasible solution X2 for Problem
(C.2) is analogous). To this end, define f1(t) := Q{X1 ≤ t|A2}, g1(t) := Q{Z ≤ t|B1}, t ∈ [0, 1],
Z1 := g1(Z) and Y1 := f−1

1 (Z1). Note that Z has no atom w.r.t. Q, which in turn implies that
it has no atom w.r.t. Q(·|B1). Moreover one can show that Z1 ∼ U(0, 1) w.r.t. Q(·|B1), implying
Q{Y1 ≤ t|B1} = Q{Z1 ≤ f1(t)|B1} = f1(t). To see this note that

g1(t) =
Q{AC ∩ (Z ≤ t) ∩ (Z ≤ p)}

Q{AC ∩ (Z ≤ p)} =
Q{AC ∩ (Z ≤ t ∧ p)}

Q{AC ∩ (Z ≤ p)} ,

so we can compute

Q{Z1 ≤ t|B1} =
Q{AC ∩ (Z1 ≤ t) ∩ (Z ≤ p)}

Q{AC ∩ (Z ≤ p)} =
Q{AC ∩ (Z ≤ g−1

1 (t) ∧ p)}
Q{AC ∩ (Z ≤ p)} = g1

(

g−1
1 (t)

)

= t.

Consequently, EQ[X1IA2 ] = Q(A2)E
Q[X1|A2] = EQ[Y1IB1 ]. Now set X1 := X1IA1 + Y1IB1 . Then

EQ[X1] = EQ[X1], so X1 is feasible for Problem (C.1) with parameters (A, x+). Finally it is obviously
seen that Q{X1 > t} = Q{X1 > t}, therefore by the definition of V+(·) it follows that V+(X1) ≥
V+(X1). Combining this with the similar result for the Negative Part Problem we get the desired
inequality (C.4).

The meaning of Theorem C.1 is that a non-informed agent only cares about the probability of
events, no matter what structure they have or what economic phenomenon they represent. As it
will appear clear in what follows, for such an agent investing in a risky asset is not so different with
respect to tossing a coin or betting on horses!12

We can now proceed similarly to Jin and Zhou, using v+(p, x+) and v−(p, x+) to denote v+({ω :
Z ≤ p}, x+) and v−({ω : Z ≤ p}, x+) respectively; note that we can choose Z as we prefer, and the
previous definition is in some sense independent of Z thanks to the above Theorem. Accordingly, we
replace Problem (C.3) by the easier constrained optimization problem in R2:

Maximize v+(p, x+) − v−(p, x+)

subject to

{

p ∈ [0, 1], x+ ≥ x+
0 ,

x+ = 0 if p = 1, x+ = x0 if p = 0.

(C.5)

Using Theorem C.1 we obtain the general structure of the solution to Problem (CPT-N), which is
indeed similar to the one find in [8]. However, on one hand it must reflect the freedom in choosing
Z and on the other hand the fact that once a particular Z is chosen, then the optimal solution of
Problem (CPT-N) is allowed to depend only on Z, in order to avoid possible correlation effects. In
what follows we will consider such a Z fixed and denote with X∗ the optimal solution depending on
Z.

12Recall that also in the original framework in [8], the optimal policy for an investor was to behave like a gambler,
but she would choose a terminal gain accompanied with a high price of the underlying stock, opposite to a final loss if
the terminal price would have fallen below a certain threshold.
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Theorem C.2. Given X∗ and Z, define p∗ := Q{X∗ ≥ 0}, x∗
+ := EQ[(X∗)+]. Then X∗ is op-

timal for Problem (CPT-N) if and only if (p∗, x∗
+) is optimal for Problem (C.5) and (X∗)+IZ≤p∗

and (X∗)−IZ>p∗ are respectively optimal for Problems (C.1) and (C.2) with parameters ({ω : Z ≤
p∗}, x∗

+).

The next step consists in solving the positive and the negative part Problems (C.1) and (C.2)
using the results obtained in Appendix A and B respectively. In order to obtain a more explicit
result, we impose the following conditions.

Assumption C.2. T ′
+(z) is non-increasing for z ∈ (0, 1], lim infx→+∞ −xu′′

+(x)

u′

+(x) > 0 and for any

Z ∼ U(0, 1) w.r.t. Q we have EQ
[

u+

(

(u′
+)−1( 1

T ′(Z) )
)

T ′(Z)
]

< +∞.

At this point we can perform the same procedure used in [8], Section 6.1; thanks to the freedom in
choosing Z we will show that a canonical choice linked to Z will give us more tractable expressions.

Theorem C.3. Let Assumption C.2 hold. For any Z ∼ U(0, 1) w.r.t. Q and for a given p ∈ [0, 1],
set A := {ω : Z ≤ p}; let x+ ≥ x+

0 be given. Then:

(i) if x+ = 0, then the optimal solution of Problem (C.1) is X∗ = 0 and v+(p, x+) = 0;

(ii) if x+ > 0, p = 0 then there is no feasible solution to Problem (C.1) and v+(p, x+) = −∞;

(iii) if x+ > 0, p ∈ (0, 1] then the optimal solution to (C.1) is X∗(λ) = (u′
+)−1

(

λ
T ′

+(Z)

)

IZ≤p with the

optimal value v+(p, x+) = EQ
[

u+

(

(u′
+)−1

(

λ
T ′

+(Z)

))

T ′
+(Z)IZ≤p

]

, where λ > 0 is the unique

real number satisfying EQ[X∗(λ)] = x+.

Proof. Cases (i) and (ii) are trivial; to prove (iii) we follow an argument similar to that in the

proof of Theorem 6.1 in Jin and Zhou (2007). Define TA(x) := T+(xQ(A))
T+(Q(A)) = T+(xp)

T+(p) , x ∈ [0, 1] and

the conditional probability measure QA := Q(·|A). Now consider Problem (C.1) in the conditional
probability space (Ω ∩ A,F ∩ A, QA), i.e.

Maximize V+(Y ) = T+(p)
∫ +∞
0

TA(QA{u+(Y ) > y}) dy

subject to EQA [Y ] = x+

p , Y ≥ 0.
(C.6)

We can apply Theorem A.1 to Problem (C.6) choosing any random variable Z̃ ∼ U(0, 1) w.r.t. QA;
note that every required assumption for Theorem A.1 is still fulfilled. At this point, in order to
simplify calculations as much as possible, we see that once Z is chosen there is a canonical choice of
Z̃: Z̃ = 1 − g(Z), where g(z) := Q{Z ≤ t|A}. In fact we can show that if Z ∼ U(0, 1) w.r.t. Q, then
Z̃ has the same distribution w.r.t. QA. To see this, note that

QA{Z̃ ≤ t} =
Q{Z̃ ≤ t, A}

p
=

Q{1 − g(Z) ≤ t, Z ≤ p}
p

=
Q{Z ≥ g−1(1 − t), Z ≤ p}

p
,

but we can explicitly compute

g(t) =
Q{Z ≤ t ∧ p}

p
=

t ∧ p

p
,

therefore we obtain QA{Z̃ ≤ t} = t, t ∈ (0, 1). Using such a choice of Z̃ we can find that an optimal

solution to Problem (C.1) is X∗ = (u′
+)−1

(

λT+(p)
pT ′

+(pg(Z))

)

IZ≤p, where λ is uniquely determined by the

constraint. We now observe that on the set {Z ≤ p} we have g(Z) = Z/p; finally we set λ := λT+(p)
p

to find our results.

Comparing this result with the analogous in [8], we see that the link between the two solutions
is substantially made by the replacement of the set {ρ ≤ c} with {Z ≤ p}; in particular c = ρ
corresponds to p = 0 and c = ρ corresponds to p = 1. Thanks to freedom in choosing Z, once again
we see that a non-informed agent is only interested in probabilities, not in events.

With a simple adaptation of the proof of [8], Proposition 6.2, we can also state the strict mono-
tonicity of the optimal value v+(·, x+) w.r.t. p.
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Proposition C.3. If x+ > 0 and Z ∼ U(0, 1) w.r.t. Q, then Problem (C.1) admits an optimal
solution with parameters ({Z ≤ p}, x+) only if v+(p, x+) > v+(p, x+) for any p > p.

We now proceed to solve the negative part Problem (C.2). We follow again the arguments applied
in [8], Section 7, combining them with our results in Appendix B.

Theorem C.4. Assume that u−(·) is strictly concave at 0. For any Z ∼ U(0, 1) w.r.t. Q and for a
given p ∈ [0, 1] set A := {ω : Z ≤ p}. Let x+ ≥ x+

0 be given. Then:

(i) if p = 1, x+ = x0 then the optimal solution of Problem (C.2) is X∗ = 0 and v−(p, x+) = 0;

(ii) if p = 1, x+ 6= x0 then there is no feasible solution to Problem (C.2) and v−(p, x+) = +∞;

(iii) if p ∈ [0, 1) then v−(p, x+) = inf0≤b<1 u−
(

x+−x0

(1−p)(1−b)

)

T− ((1 − p)(1 − b)) . Moreover, Problem

(C.2) with parameters (A, x+) admits an optimal solution X∗ if and only if the minimization
problem

min
0≤b<1

u−

(

x+ − x0

(1 − p)(1 − b)

)

T− ((1 − p)(1 − b)) (C.7)

admits an optimal solution b∗, in which case X∗ = x+−x0

(1−p)(1−b∗)IZ>(1−p)b∗+p .

Proof. Cases (i) and (ii) are trivial; to prove (iii) we define TAC (x) := T−(xQ(AC)
T−(Q(AC))

= T−(x(1−p))
T−(1−p) ,

x ∈ [0, 1] and the conditional probability measure QAC := Q(·|AC). Let’s consider Problem (C.2) in
the conditional probability space (Ω ∩ AC ,F ∩ AC , QAC ):

Minimize V−(Y ) = T−(1 − p)
∫ +∞
0

TAC (QAC{u−(Y ) > y}) dy

subject to EQAC [Y ] = x+−x0

1−p , Y ≥ 0, Y QAC a.s. bounded.
(C.8)

Now we apply Theorem B.1 to Problem (C.8), choosing any random variable Z̃ ∼ U(0, 1) w.r.t. QAC .
Once again, when Z is chosen there is a canonical choice of Z̃: Z̃ = g(Z), where g(z) := Q{Z ≤ t|AC}.
Indeed, if Z ∼ U(0, 1) w.r.t. Q then Z̃ has the same distribution w.r.t. QAC . To see this, observe
that

QAC{Z̃ ≤ t} =
Q{Z̃ ≤ t, AC}

1 − p
=

Q{g(Z) ≤ t, Z > p}
1 − p

=
Q{Z ≤ g−1(t), Z > p}

1 − p
,

but we can compute

g(t) =
Q{Z ≤ t, Z > p}

1 − p
=

t − p

1 − p
∧ 0,

therefore we obtain QAC{Z̃ ≤ t} = t, t ∈ (0, 1). Using such a choice of Z̃ and recalling that an
optimal solution to Problem (C.8) is automatically bounded (if it exists), we can find that an optimal
solution to Problem (C.2) is

X∗ = x+−x0

(1−p)(1−b∗)IZ>pIg(Z)∈(b∗,1] = x+−x0

(1−p)(1−b∗)IZ>g−1(b∗) = x+−x0

(1−p)(1−b∗)IZ>(1−p)b∗+p,

thanks to the fact that on the set {Z > p} we have g(Z) > 0 and g−1(t) = [(1 − p)t + p] ∨ 1.

At last we have to merge these results to obtain the overall solution to Problem (CPT-N). As in
[8] we take an intermediate step using the following problem

Maximize v+(p, x+) − u−
(

x+−x0

1−p

)

T−(1 − p)

subject to

{

p ∈ [0, 1], x+ ≥ x+
0 ,

x+ = 0 if p = 1, x+ = x0 if p = 0,

(C.9)

where we set u−
(

x+−x0

1−p

)

T−(1− p) := 0 if p = 1 and x+ = x0. By simply adapting the proofs in [8],

Lemma 8.1 and Proposition 8.1, we claim:

Lemma C.1. For any feasible pair (p, x+) for Problem (C.5), u−
(

x+−x0

1−p

)

T−(1 − p) ≥ v−(p, x+).
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Proposition C.4. Problems (C.5) and (C.9) have the same supremum values.

Finally we state the main result of this section:

Theorem C.5. Assume that u−(·) is strictly concave at 0. We have the following results:

(i) if X∗ is optimal for Problem (CPT-N), then p∗ := Q{X∗ ≥ 0}, x∗
+ := EQ[(X∗)+] are optimal

for Problem (C.9);

(ii) if (p∗, x∗
+) is optimal for Problem (C.9) and X∗

+ is optimal for Problem (C.1) with parameters

({Z ≤ p∗}, x∗
+), where Z ∼ U(0, 1) w.r.t. Q, then X∗ := (X∗)+IZ≤p∗ − x∗

+−x0

1−p∗
IZ>p∗ is optimal

for Problem (CPT-N).

To conclude, if Assumption C.2 is in force, then for any Z ∼ U(0, 1) w.r.t. Q we have

X∗ = (u′
+)−1

(

λ

T ′
+(Z)

)

IZ≤p∗ − x∗
+ − x0

1 − p∗
IZ>p∗ ,

V (X∗) = EQ

[

u+

(

(u′
+)−1

(

λ

T ′
+(Z)

))

T ′
+(Z)IZ≤p∗

]

− u−

(

x∗
+ − x0

1 − p∗

)

T−(1 − p∗),

where (p∗, x∗
+) are optimal for Problem (C.9) and λ satisfies EQ

[

(u′
+)−1

(

λ
T ′

+(Z)

)

IZ≤p∗

]

= x∗
+. We

finally note that all this construction can be considered as an adaptation of the model set up in [8]
if we had started with prices following a geometric or an arithmetic Brownian motion, as is often
supposed in the finance literature.

References

[1] F. Baudoin. Conditioned stochastic differential equations: theory, examples and application to
finance. Stochastic Processes and their Applications, 100:109-145, 2002.

[2] F. Baudoin and L. Nguyen-Ngoc. The financial value of a weak information on a financial market.
Finance and Stochastics, 8:415-435, 2004.

[3] G. Bosi and M.E. Zuanon. On the representability of coherent risk measures as Choquet inte-
grals’. International Mathematical Forum, 5(37):1813-1817, 2010.

[4] S. Browne. Reaching Goals by a Deadline: Digital Options and Continuous-Time Active Portfolio
Management. Advances in Applied Probability, 31(2):551-577,1999.

[5] X.D. He and X.Y. Zhou. Portfolio choice under cumulative prospect theory: An analyti-
cal treatment. To appear in Management Science, available at http://people.maths.ox.ac.uk/
zhouxy/article.htm.

[6] X.D. He and X.Y. Zhou. Portfolio Choice via Quantiles. To appear in Mathematical Finance,
available at http://people.maths.ox.ac.uk/zhouxy/article.htm.

[7] H. Jin, Z.Q. Xu and X.Y. Zhou. A convex stochastic optimization problem arising from portfolio
selection. Mathematical Finance, 18(1):171-183, 2008.

[8] H. Jin and X.Y. Zhou. Behavioral portfolio selection in continuous time. Mathematical Finance,
18:385-426, 2008.

[9] H. Jin and X.Y. Zhou. Erratum to “Behavioral Portfolio Selection in Continuous Time”. Mathe-
matical Finance, 20(3):521-525, 2010.

[10] H. Jin and X.Y. Zhou. Greed, Leverage and Potential Losses: A Prospect Theory Perspective. To
appear in Mathematical Finance, available at http://people.maths.ox.ac.uk/zhouxy/article.htm.

[11] H. Jin, S. Zhang and X.Y. Zhou, Behavioral Portfolio Selection with Loss Control. To appear in
Acta Mathematica Sinica, available at http://people.maths.ox.ac.uk/zhouxy/article.htm.

34



[12] D. Kahneman and A. Tversky. Prospect theory: an analysis of decision under risk. Econometrica,
47(2):263-291, 1979.

[13] I. Karatzas and I. Pikovsky. Anticipative Portfolio Optimization. Advances in Applied Probability,
28(4):1095-1122, 1996.

[14] I. Karatzas and S.E. Shreve. Methods of Mathematical Finance. New York: Springer-Verlag.

[15] A. Tversky and D. Kahneman. Advances in prospect theory: Cumulative representation of un-
certainty. Journal of Risk and Uncertainty, 5:297-323, 1992.

[16] M. E. Yaari. The Dual Theory of Choice under Risk. Econometrica, 55(1):95-115,1987.

35


