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L. Campi† and M. Del Vigna‡

November 24, 2011

Abstract
In this paper, we study the optimal portfolio selection problem for weakly informed traders

in the sense of Baudoin [1]. Apart from expected utility maximizers, we consider investors with
other preference paradigms. In particular, we consider agents following cumulative prospect
theory as developed by Tversky and Kahneman [12] as well as Yaari’s dual theory of choice [13].
We solve the corresponding optimization problems, in both non-informed and informed case, i.e.
when the agent has an additional weak information. Finally, comparison results among investors
with different preferences and information sets are given, together with explicit examples. In
particular, the insider’s gain, i.e. the difference between the optimal values of an informed and a
non informed investor, is explicitly computed.

Keywords: weak information, insider trading, behavioral finance, loss aversion, probability
distorsion, minimal probability measure, Yaari’s dual theory of choice.
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1 Introduction
In a paper by Baudoin [1] the notions of weak information and weakly informed agent are introduced,
where the latter is an agent having an additional information about the law (under the objective
probability measure) of a functional of the price process. In contrast to the well-known strong
information approach (initiated in [10]), we follow Baudoin’s approach and assume that there is an
extra-informed investor acting in the market, who knows the law (under the historical probability P)
of a functional Y related to the asset prices. In this approach the historical probability P is assumed
to be unknown to every agent, whereas everyone knows the equivalent martingale measure Q, which
is assumed to be unique, i.e. the market is complete (see Assumption 2.1). Therefore, knowing the
P-law of Y translates to an informational advantage. The assumption that nobody in the market
observe the prices under P is justified by the reasonable fact that the model for the prices can be
calibrated on observed data under Q, while all the agents ignore the effective drifts in the price
dynamics (see Remark 1 in [2]).

In [1], the author studies a portfolio optimization problem for a non-informed agent and an insider
respectively. He is then able to characterize the optimal terminal wealth and the corresponding
optimal value. Moreover, he finds an explicit formula for a particular choice of the utility function.
It is important to note that only Expected Utility maximizers (EU or classical, henceforth) are
considered in [1]. A natural question is : What happens if one considers different preference paradigms
than EU’s? More specifically, we think of an investor whose goal is not necessarily to maximize the
expected utility from terminal wealth. In the utility maximization literature, the EU case developed
by Von Neumann and Morgenstern in the early 30’s is the most treated thanks to its relative simplicity
and the possibility of using a dual theory allowing to solve a wide range of problems. However, it
is empirically observed that real world people systematically violate the hypotheses standing behind
EU (this lead to a number of so-called paradoxes and puzzles).

In this paper, we consider two alternative models.
∗This research benefited from the support of the “Chair Les Particuliers Face aux Risques”, Fondation du Risque

(Groupama-ENSAE-Dauphine) as well as from the GIP-ANR “Croyances” project of the Europlace Institute of Finance.
We thank two anonymous referees for many valuable remarks helping us to improve considerably the quality of the
paper.
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- Cumulative Prospect Theory (CPT thereafter): this paradigm is fully described in [12] and it
is a further development of the original Prospect Theory by Kahneman and Tversky (see [9]).
Briefly, according to CPT an economic agent evaluates her payoff with respect to a reference
level B: if the payoff is greater than B, then it is considered as a gain. On the other side, a payoff
lower than B becomes a loss for a CPT agent, and a loss hurts more than an equivalent gain
(loss aversion). This type of investor does not use a utility function. More precisely, she has two
value functions, a concave one for the gains and a convex one for the losses. Hence, the overall
form of her “utility” function is so-called S-shaped and she is risk-averse w.r.t. gains while risk-
lover w.r.t. losses. Finally, laboratory evidence shows that people tend to overweight relatively
large gains and losses of small probabilities. This feature is captured via two reversed S-shaped
functions (one for the gains and one for the losses) describing probability distortions. Loosely
speaking, the shape of such a weighting function looks like a reversed S, i.e. it is monotone
increasing, greater than the identity for small probabilities and lower than the identity for
probabilities near 1. A general mathematical treatment in continuous time for CPT can be
found in [6], where it is necessary to use Choquet capacities instead of classical expectations
and to split the objective function into two parts, one for the gains and one for losses.

- Yaari’s Dual Theory of Choice: in 1987, Yaari proposed in [13] a different set of axioms than
Von Neumann and Morgenstern’s. The result was a dual representation of the expected util-
ity criterion, where in the preference value functional the distortion applies to decumulative
probabilities instead of payoffs (recall that a utility function u(·) can be viewed as a distortion
on payoffs). A mathematical formulation of Yaari’s model in continuous time can be found
in [4], where w(·) is used as a probability distortion function. In [13] it has been shown that
the risk-aversion is characterized by a convex w(·), i.e. by an overweighting of relatively small
payoffs and underweighting of relatively large payoffs, whereas the opposite case of a risk-loving
agent is described by a concave w(·).

For any of the previous two paradigms, we will solve the optimization problem for a non-informed
investor and for an insider. We stress that, in this paper, agents will always be small traders, in the
sense that their investment choices do not affect the asset prices. Our study is strongly motivated
by the contributions in [4] and [6]. We will use the same mathematical framework and keep their
notation to get a more transparent comparison with their results.

An important issue in this family of non-classical problem is well-posedness. Indeed, it is shown
in [6] that ill-posed problems, i.e. having infinite optimal value, can quite easily arise if one does not
make the right assumptions on the value functions and/or the probability distortions. We will give
sufficient conditions for well-posedness during our analysis.

At last, we recall that the existing literature lacks of explicit examples and explicit computations
of the optimal value for both CPT and Yaari’s models. This is why we focus on examples which, to
the best of our knowledge, are new.

The paper is organized as follows. In Section 2, we recall the weak information setting as developed
in [1] and in Section 2.1 we consider the maximization problems of an EU agent, whose results are
already proved in [1]. Then, Section 3 deals with the problem in the CPT case and Section 4 is
devoted to comparison results between differently informed CPT agents. Section 5 concerns a Yaari-
type investor and Section 6 concludes. Some proofs are presented in the Appendix.

2 The weak information approach
Let (Ω,F ,F,Q) be an atomless probability space, where F := {Ft}0≤t≤T is a completed and right-
continuous filtration with F0 being the trivial σ-algebra and T > 0 a constant time horizon.

We consider a continuous-time market model with one riskless asset whose price is S0 ≡ 1 and
m traded risky assets, whose evolution is described by the process S(t) = (S1(t), . . . , Sm(t)). Notice
that we do not specify any particular dynamics for our price processes. The main assumption we
make is the following.

Assumption 2.1. The price process (S1(t), . . . , Sm(t)) is a continuous and adapted square integrable
martingale on (Ω,F,Q). Moreover, Q is the unique probability measure under which S(t) is a local
martingale, i.e. the market is complete.
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We consider two types of agents acting in this market, a non informed agent (or N-agent) and
an informed agent (I-agent). An N-agent relies on Q as well as on the observable past and present
prices when taking her investment decisions. On the other hand, an I-agent has also some privileged
information concerning the law of a functional Y of the stock prices. Specifically, I-agent knows the
distribution of Y under the so-called “historical” measure P governing market prices.

From now on, we assume that Y is a scalar random variable (everything shown below can be
easily generalized to a vector valued random variable or to more general functionals Y taking values
in a Polish space P). We will denote by QY the law of Y under Q and by ν the effective law of Y
known by I-agent. Therefore we have

QY (B) = Q{Y ∈ B}, ∀B ∈ B(R).

Assumption 2.2. ν is equivalent to QY , the (real) density is ξ := dν
dQY and ξ(Y ) is Q-a.s. bounded.

The privileged information (Y, ν) can be naturally associated to a new measure called by Baudoin
the minimal probability.

Definition 2.1. The probability measure Qν defined on (Ω,FT ) by:

Qν(A) :=

∫
R
Q(A|Y = y) ν( dy), A ∈ FT (2.1)

is called the minimal probability associated to the weak information (Y, ν).

The expression minimal probability used by Baudoin is justified in [1, Proposition 6], showing
that Qν fulfills some class of minimization problems. Moreover, observe that Qν does not depend on
the choice of the utility function in a standard portfolio selection model, thus in a behavioral setting
this amounts to say that the minimal probability is unaffected by the probability distortions and the
value functions (see Remark 3.3 later in this paper).

We now turn to utility maximization problems for non-informed and informed investors under the
weak information approach.

2.1 The classical agents’ models and their solutions
In a classical portfolio selection model, i.e. when N-agent’s objective is to maximize her expected
utility from terminal wealth, all the results have already been derived in [1]. For reader’s convenience,
we recall here the solution of this problem assuming that the considered investor is endowed with a
positive initial wealth x0 and with a utility function satisfying the following standard assumption.

Assumption 2.3. The utility function U : (0,+∞) → R is strictly increasing, strictly concave and
twice continuously differentiable and satisfies the Inada conditions U ′(+∞) = 0, U ′(0+) = +∞.

Before formulating the optimization problems, we need to define a suitable class of portfolio
processes. We are going to use a slight modification of the definition of tame portfolios given in [6],
which is well adapted to solve the optimal investment problems of both EU and CPT agents, in the
informed as well as in the non-informed case. Let’s denote by Πi(t) the number of shares of the i-th
risky asset held by our trader at time t.

Definition 2.2. An admissible portfolio is a couple (x0,Π(·)), where x0 is an initial wealth and Π(·)
is a F-predictable process, (S(t))-integrable and such that the corresponding wealth process

x(t) := x0 +

∫ t

0

Π(u) dS(u), 0 ≤ t ≤ T, (2.2)

is a (F,Q)-martingale. Moreover, we say that an admissible portfolio Π(·) is Q-tame if the corre-
sponding wealth x(·) is Q-a.s. bounded from below, where the bound may depend on Π(·).

Remark 2.1. Notice that the terminal wealth x(T ) ≡ X of any tame portfolio (x0,Π(·)) is a FT -
measurable random variable, Q-a.s. bounded from below and such that EQ[X] = x0. Conversely,
thanks to Assumption 2.1 a standard completeness argument can be applied, so that any bounded
from below contingent claim X with EQ[X] = x0 can be replicated by a Q-tame portfolio Π(·) with
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the initial wealth x0.1 Hence, in the formulation of the optimization problems of both EU and
CPT agents, we can replace the (dynamic) constraints on strategies Π(·) with (static) constraints on
contingent claims X as in [6]. This is usual in the martingale approach.

Let us recall what are the optimal strategies for non-informed and informed agents.

• For a N-agent, the most natural way to evaluate her own utility from terminal wealth X is to
choose the martingale measure Q when computing the expectation (in fact she does not know
the historical measure P, so she can not use it! See [2]). Therefore, the EU non informed agent’s
problem is

Maximize EQ[U(X)]

subject to EQ[X] = x0, X is FT -measurable and Q-a.s. bounded from below.
(EU-N)

The solution to Problem (EU-N) is the trivial null portfolio, Π ≡ 0, thanks to a simple appli-
cation of Jensen’s inequality and the concavity assumption on U(·).
In the CPT case things will be different even for non-informed “risk-neutral” agents, i.e. agents
evaluating their gains/losses under the risk-neutral measure Q.

• According to Baudoin and Nguyen-Ngoc [1, 2] in a classical portfolio optimization problem for
an informed agent who has the weak information (Y, ν) and a utility function U(·) satisfying
Assumption 2.3, we can define the financial value of the weak information (Y, ν) for an insider
with initial endowment x0 > 0 as follows (X will denote any terminal payoff which can be
attained using admissible strategies):

u(x0, ν) := inf
µ∈Eν

sup
Π admissible

Eµ[U(X)], (2.3)

where Eν is the set of probability measures on FT which are equivalent to Q and such that the
law of Y under those measures is ν. Using convex duality and the martingale dual approach
in complete markets, one has the following result easily adapted from [2, Theorem 1]: Assume
that the expectations below are finite. Then for each initial endowment x0 > 0,

u(x0, ν) = sup
Π admissible

Eν [U(X)] = Eν
[
U
(

(U ′)
−1
(

Λ(x0)
ξ(Y )

))]
, (2.4)

where Λ(x0) is defined by
Eν
[

1
ξ(Y ) (U ′)

−1
(

Λ(x0)
ξ(Y )

)]
= x0.

Moreover, under Qν the optimal terminal wealth is given by

X∗ = (U ′)
−1
(

Λ(x0)
ξ(Y )

)
. (2.5)

Remark 2.2. Note that if the insider has no additional information, i.e. ν = QY , then we have
ξ(Y ) = 1 Q-a.s.. Therefore, we deduce u(x0, ν) = U(x0) and X = x0 Q-a.s., which is nothing but
the N-agent’s solution. Finally, as a corollary one can even show that u(x0, ν) ≥ U(x0) where the
equality holds for ν = QY .

Turning back to the portfolio optimization problem of a weakly informed classical insider, we see
that it can be equivalently defined as

Maximize Eν [U(X)]

subject to Eν
[

1
ξ(Y )X

]
= x0 > 0, X is FT -measurable and Qν-a.s. bounded from below,

(EU-I)
thanks to the first equality in equation (2.4).

We also remark that the constraint in Problem (EU-I) is a direct consequence of the relation
dQν = dν

dQY (Y ) (see [1, Remark 4]). Indeed, we can write 1/ξ as a density of QY w.r.t. ν and 1/ξ(Y )

is Q-a.s. bounded. Now it immediately follows x0 = EQ[X] = Eν [(1/ξ(Y ))X], as it appears in (EU-I).
1See for example [11], Definition 6.1 and Theorem 6.6 or [6], Proposition 2.1. We also remark that in [6], absolute

value portfolio strategies were used instead of our “number of shares” strategies.
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Example 2.1 ([1], Proposition 67). Let WQ be a (Ω,F,Q)-Brownian motion and consider a market
with only one risky asset whose price dynamics is

dS(t) = σS(t)dWQ(t), t ∈ [0, T ], S(0) = s0 > 0,

for some constant σ > 0, or equivalently

S(t) = s0 exp

(
σWQ

t −
σ2

2
t

)
.

Hence, by a change of variable, a weak information on the final price S(T ) is equivalent to a weak
information on the Gaussian random variable WQ

T . Suppose I-agent has the privileged information
(WQ

T , ν), where

ν(dx) =
1√
2πs

exp

(
− (x−m)2

2s2

)
dx

is Gaussian with mean m ∈ R and variance s2 ≤ T , with 0 < s ≤
√
T (in what follows, we will write

ν ∼ N (m, s2)). Note that Assumption 2.2 is fulfilled and we can also explicitly compute

ξ(Y ) = ξ(WQ
T ) =

√
T

s
exp

(
−

(WQ
T −m)2

2s2
+

(WQ
T )2

2T

)
. (2.6)

Therefore, if we set δ = s2−T
T , then for a power utility function U(x) = xα, α ∈ (0, 1), one can

compute

u(x0, ν) = xα0
1√

1 + δ

(
1− α
1

1+δ − α

) 1−α
2

exp

(
αm2

2[T (1− α)− αδT ]

)
.

Specifically, if m = 0 and s2 = T (i.e. δ = 0) then we recover the no additional information case,
as ν = QY . If m 6= 0 and s2 = T then I-agent has some additional information regarding the drift
but not the variance of the Brownian motion; in this case we have u(x0, ν) = xα0 exp

(
αm2

2[T (1−α)]

)
and

the bigger m, the more valuable the information. Viceversa, if m = 0 and s2 < T then we obtain

u(x0, ν) = xα0
1√
1+δ

(
1−α
1

1+δ−α

) 1−α
2

, which tends to infinity as δ ↓ −1 or, equivalently, as s ↓ 0. Thus a
more precise knowledge on the final price leads to a higher value of the weak information, as naturally
expected. This example will be studied in full details in the CPT case as well.

3 The CPT agents’ models and their solutions
In this section we will give the solution of portfolio selection problems of CPT non-informed and
informed agents. We will keep as much as possible the setting and the notation used by Jin and
Zhou [6] to describe the preferences and the objective function of a CPT investor. We point out that
our results are linked to those in [6]. However, they need a complete proof as we are working in a
slight different setting. Loosely speaking, in [6] the investor knows the “historical” probability P and
she performs a standard change of measure based on a pricing kernel (or state price density) ρ, thus
obtaining martingale processes for the prices under an equivalent probability. After that, a complete
solution based on ρ is derived under some technical assumptions.

In the present framework we start from the very beginning with martingale prices. Therefore, no
change of measure is needed and ρ ≡ 1 a.s., i.e. it is totally concentrated. As a consequence, we will
see that the structure of the solution for a N-agent will be law dependent, in the sense that only the
distribution of a random variable will affect her optimal value.

Now, we briefly recall the cornerstones of the CPT preferences behind the formulation above and
its assumptions. In CPT, the trader’s goal is to select the portfolio that will produce a terminal
wealth X maximizing her “utility”. Such a “utility” (also called prospect value, in Kahneman and
Tversky’s terminology) will come up from the algebraic sum of some expected distorted values of gains
and losses w.r.t. a reference wealth that we set once for all at the value 0. Mathematically speaking,
we will make the following assumptions, corresponding to Assumptions 2.3 and 2.4 in [6]. If the
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random variable X represents a final wealth at time T and our CPT agent uses µ as a reference
measure, then she will assign to X the prospect value V (X), which is defined by

V (X) := V+(X+)− V−(X−) (3.1)

with its components V+(·) and V−(·) given by

V+(Y ) :=

∫ +∞

0

T+(µ{u+(Y ) > y}) dy, V−(Y ) :=

∫ +∞

0

T−(µ{u−(Y ) > y}) dy (3.2)

for any random variable Y ≥ 0 µ-a.s.. Here, X+ and X− denote the positive and the negative part
of X respectively. The functions u+(·), u−(·) and T+(·), T−(·) appearing above are assumed to satisfy
the following conditions.

Assumption 3.1. u+(·) and u−(·) : R+ 7→ R+, are strictly increasing, concave, with u+(0) =
u−(0) = 0. Moreover, u+(·) is strictly concave and twice differentiable, satisfying the Inada conditions
u′+(0+) = +∞ and u′+(+∞) = 0.

Assumption 3.2. T+(·) and T−(·) : [0, 1] 7→ [0, 1], are differentiable and strictly increasing, with
T+(0) = T−(0) = 0 and T+(1) = T−(1) = 1.

Our CPT agent will look for a terminal wealth X, which is FT -measurable and a.s. bounded from
below w.r.t. her reference probability. However, her initial endowment can be any amount x0 ∈ R
and not necessarily non-negative. In this paper, the reference measure µ will alternatively be the risk
neutral measure Q for the non-informed investor and the minimal probability measure Qν for the
informed one.

3.1 The non informed agent’s problem
We now consider a non-informed agent who evaluates her total utility distinguishing gains from
losses w.r.t. to the reference level 0. For the moment, probability distortions are not allowed, i.e.
T±(·) = id(·). Such an investor represents an intermediate case between a classical agent and a
behavioral agent à la Kahneman and Tversky.
Within this framework, it seems reasonable to define the problem of a non informed agent as

Maximize V (X) = EQ[u+(X+)]− EQ[u−(X−)]

subject to EQ[X] = x0, X is FT -measurable and Q-a.s. bounded from below.
(3.3)

Unfortunately there are bad news about Problem (3.3) because under Assumptions 3.1 and 3.2 it can
easily be ill-posed. Before giving a more precise statement (and its proof), we note that an investor
with the previous objective function would better choose a fixed reward x+ whenever X is positive,
thanks to Jensen’s inequality and the concavity of u+(·). Otherwise, conditioned to X ≤ 0, she
will try to minimize the expected loss. The following ill-posedness result depends substantially on a
comparison between the magnitude of the utility from large gains and that of disutility from large
losses.

Proposition 3.1. Assume limx→+∞ u+(x) = +∞ and limx→+∞
u+(x)
u−(x) ∈ (1,+∞], where the previous

limit exists. Then Problem (3.3) is ill-posed.

Proof. Consider the sequence of admissible terminal wealths (Xn), where

Xn =

{
n(x+

0 + 1) with Q-probability 1/2,
2x0 − n(x+

0 + 1) with Q-probability 1/2,

for n sufficiently large. Then we have

V (Xn) =
1

2

[
u+

(
n(x+

0 + 1)
)
− u−

(
n(x+

0 + 1)− 2x0

)]
→ +∞,

as n→ +∞, thanks to our assumptions limx→+∞ u+(x) = +∞ and limx→+∞
u+(x)
u−(x) ∈ (1,+∞].
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There are different ways out of this drawback. Obviously, we could choose suitable value functions
u±(·), e.g. imposing limx→+∞ u+(x) < +∞. We could alternatively introduce probability distortions,
especially on the loss part as explained in [6]. Finally, we could impose a loss control, i.e. a lower
bound L on the maximal loss which can be suffered by the investor (for more details on the subject,
see [8]). One could also use a combination of the previous modifications.

Let us consider the case where the probability distortions satisfy Assumption 3.2. Thus the
problem for a CPT N-agent will be

Maximize V (X) = V+(X+)− V−(X−)

subject to EQ[X] = x0, X is FT -measurable and Q-a.s. bounded from below,
(CPT-N)

where we set

V+(X+) :=

∫ +∞

0

T+(Q{u+(X+) > y}) dy, V−(X−) :=

∫ +∞

0

T−(Q{u−(X−) > y}) dy.

The main difference between our Problem (CPT-N) and the optimization problem in [6] concerns the
constraint on the expected value of the terminal wealth X. More specifically, in [6], equation (2.6),
the budget constraint was EP[ρX] = x0, where the law of the state price density ρ was assumed to be
atom-less w.r.t. P. Now, we do not have that atom-less density as we are already working under the
martingale measure Q. We also recall that the assumption on ρ being atom-less w.r.t. P was imposed
in [6] just to avoid technical difficulties. In our case, the absence of a weighting random variable (this
was actually the role played by ρ) will change the structure of the solution to Problem (CPT-N) as
well as its economical interpretation.
For reader’s convenience, we will report below only the main results, while the proofs are postponed
in the Appendix.

For any fixed random variable Z uniformly distributed over (0, 1) w.r.t. Q (i.e. Z ∼ U(0, 1), for
short) and given a pair (p, x+) with p ∈ [0, 1] and x+ ≥ x+

0 , define v+(p, x+) as the optimal value of
the following problem:

Maximize V+(X) =
∫ +∞

0
T+(Q{u+(X) > y}) dy

subject to EQ[X] = x+, X ≥ 0 on {Z ≤ p}, X = 0 on {Z > p}.
(3.4)

Next, we set up the optimization problem

Maximize v+(p, x+)− u−
(
x+−x0

1−p

)
T−(1− p)

subject to

{
p ∈ [0, 1], x+ ≥ x+

0 ,

x+ = 0 if p = 1, x+ = x0 if p = 0,

(3.5)

where we conventionally define u−
(
x+−x0

1−p

)
T−(1− p) := 0 if p = 1 and x+ = x0. Finally, we denote

by X∗ the optimal solution to Problem (CPT-N) and we make the following hypothesis.

Assumption 3.3. T ′+(z) is non-increasing for z ∈ (0, 1], lim infx→+∞−
xu′′+(x)

u′+(x) > 0 and for any

Z ∼ U(0, 1) w.r.t. Q we have EQ
[
u+

(
(u′+)−1( 1

T ′(Z) )
)
T ′(Z)

]
< +∞.

Under Assumption 3.3, for any Z ∼ U(0, 1) w.r.t. Q we have

X∗ = (u′+)−1
(

λ
T ′+(Z)

)
IZ≤p∗ −

x∗+−x0

1−p∗ IZ>p∗ , (3.6)

V (X∗) = EQ
[
u+

(
(u′+)−1

(
λ

T ′+(Z)

))
T ′+(Z)IZ≤p∗

]
− u−

(
x∗+−x0

1−p∗

)
T−(1− p∗), (3.7)

where the pair (p∗, x∗+) is optimal for Problem (3.5) and the Lagrange multiplier λ satisfies

EQ
[
(u′+)−1

(
λ

T ′+(Z)

)
IZ≤p∗

]
= x∗+. (3.8)
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Remark 3.1. Firstly, our result shows that a CPT non-informed investor is interested in probabilities
(and not in events). This is a by-product of the law-invariance property of the CPT preferences and
the fact that she observes the evolution of the price process under the martingale measure Q. These
facts are eventually reflected by the indifference in the choice of Z. For instance, in a Brownian
motion driven market as in Example 2.1, the agent can choose Z = FW (WQ

T ), where FW (·) is the
distribution function of WQ

T . In this way she will obtain a gain when the price of the risky stock is
lower than a certain threshold. However, she could also choose Z = 1 − FW (WQ

T ), representing the
opposite situation.

Secondly, we highlight that the explicit solution given by (3.6) is available only when T ′+(·) is
non-increasing over (0, 1]. Combining this observation with Assumption 3.2, a necessary condition to
get (3.6) is T+(·) to be concave. Notice that a reversed S-shaped T+(·) does not fulfill this condition.

Before going further, we consider the case of power utilities. In [6], the authors were able to find a
much more explicit solution assuming generic probability weighting functions T±(·) and u+(x) = xα,
u−(x) = k−x

α with α ∈ (0, 1), k− ≥ 1.2 We now adapt their reasoning and we choose the special
distortion on gains T+(p) = pγ , γ ∈ (0, 1], as suggested by the previous Remark 3.1. Intuitively, this
concave function should reflect an overweighting of relatively large gains w.r.t. smaller payoffs. With
straightforward computations, for α < γ we find

ϕN (p) := EQ
[
T ′+(Z)1/(1−α)IZ≤p

]
= γ1/(1−α)

(
1− α
γ − α

)
p
γ−α
1−α , p ∈ [0, 1], (3.9)

kN (p) :=
k−T−(1− p)

(1− p)αϕN (p)1−α =
k−
γ

(
γ − α
1− α

)1−α
T−(1− p)

(1− p)αpγ−α
, p ∈ (0, 1], (3.10)

and following the same lines as in [6], Theorem 9.1, we have

Proposition 3.2. In the CRRA case with x0 ≥ 0 and T+(p) = pγ , γ ∈ (0, 1]:

(i) if 0 < α < γ ≤ 1 and infp∈(0,1] kN (p) ≥ 1, then Problem (CPT-N) is well-posed and

X∗ = x0

(
γ − α
1− α

)
Z
γ−1
1−α , Z ∼ U(0, 1); (3.11)

V (X∗) = xα0 γ

(
1− α
γ − α

)1−α

. (3.12)

(ii) if α ≥ γ or infp∈(0,1] kN (p) < 1, then Problem (CPT-N) is ill-posed.

It is clear by the parameters’ condition in (i) that the curvature of the value function on gains
must be greater than that of the distortion T+(·) if we hope to find a financially meaningful solution.
Moreover, the well-posedness of this model strongly depends on the shape of T−(·). We also note
that the optimal value V (X∗) is decreasing in γ, whereas it does not exhibit a clear dependence in
α. As a particular case, we have the following corollary.

Corollary 3.1. With the same assumptions of Proposition 3.2 and T−(p) = pδ, δ ∈ (0, 1):

(i) if 0 < δ ≤ α < γ < 1 and k− ≥ f(α, γ, δ), where

f(α, γ, δ) := γ
(1− α)1−α

(γ − α)1−γ
(α− δ)α−δ

(γ − δ)γ−δ
, (3.13)

then Problem (CPT-N) is well-posed;

(ii) if 0 < δ ≤ α < γ = 1, then Problem (CPT-N) is well-posed;

(iii) if δ > α then Problem (CPT-N) is ill-posed.
2We recall that the parameter k− is usually called the loss aversion coefficient, as in this framework it reflects the

idea that “losses loom larger than gains”. In what follows, we will refer to this case as to CRRA, due to the Constant
Relative Risk Aversion coefficient exhibited by the value functions.
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Figure 1: a comparison between the well-posedness threshold and the level of k−.

Proof. Using (3.10) and the special form of T−(·), it is immediate to compute the infimum of kN (p)
over (0, 1] via first order conditions. Now, case (iii) follows if we let p tend to 1. In the other cases,
we have that the infimum is reached for p̂ = γ−α

γ−δ ≤ 1. Hence, we find kN (p̂) = f(α, γ, δ) with the
subsequent well-posedness condition k− ≥ f(α, γ, δ). If γ = 1, equation (3.13) reduces to

f(α, 1, δ) =
(1− α)1−α(α− δ)α−δ

(1− δ)1−δ ≤ 1.

To see this, note that we have 1− δ, 1−α, α− δ ∈ (0, 1). Moreover, the function g(x) := xx ≡ ex ln x

is well defined for x ∈ (0, 1). To prove the previous relation, we only have to show that for every
0 < y < x < 1 we have

y ln y + (x− y) ln(x− y)− x lnx ≤ 0.

But this is true because

sup
0<y<x<1

y ln y + (x− y) ln(x− y)− x lnx = 0,

as it is easily seen using standard minimization techniques.

Remark 3.2. We stress that the ad hoc choice of concave T±(·) corresponds to an investor who
underweights relatively small gains and losses and overweights relatively large gains and losses.3
Lengthy but not difficult computations show that f(·, ·, ·) is decreasing in γ and increasing in δ,
confirming the economic intuition. In fact, the lower the overestimation of gains is, the higher the
loss aversion coefficient has to be in order to compensate its effect and for the problem to reach
well-posedness. However, the dependence on α is not monotonic.

For a better understanding of the previous corollary, in Figure 1 we provide a plot representing
a 3D surface of the well-posedness threshold f(· · · ) in case (i), where we arbitrarily fix γ = 0.9 and
we take α ∈ [0.7, 0.9) and δ ∈ (0, 0.7]. An horizontal plane at the level f = 1 is drawn to facilitate
the distinction between a surely well-posed case, i.e. when the surface stands below the plane, or
a probable ill-posed case, i.e. when the loss-aversion coefficient has to be sufficiently high to ensure
condition (3.13). More generally, we can also note that for the reversed S-shaped T−(·) used in [12],
namely T−(p) = pδ

(pδ+(1−p)δ)1/δ with δ ∈ (0.28, 1), we have

kN (p) = const× (1− p)δ−αpα−γ

[(1− p)δ + pδ]1/δ
.

In this case, if δ ≥ α or δ < α < γ we have a systematic ill-posedness because limp→1− kN (p) = 0.

3This is no longer true if we assume T+(·) = id(·), as our trader will not weight gains while she would exhibit some
distortion on the loss side.
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3.2 The insider’s problem
In this section we will solve the portfolio optimization problem for an informed agent with CPT
preferences. We keep Assumption 3.1 on the value functions u±(·) and Assumption 3.2 on the
probability distortions T±(·). Furthermore, thanks to the equivalence between Q and Qν stated in
Assumption 2.2, the CPT I-agent can still rely on the admissible portfolios described in Definition
2.2. We remark that the dynamics of the wealth process x(·) under Q remains the same as in equation
(2.2), whereas it drastically changes under Qν .4

We now define the value of the weak information for the I-agent analogously to (EU-I). The
optimization problem for a CPT insider with the weak information (Y, ν) and the initial endowment
x0 ∈ R is

Maximize V ν(X) := V ν+(X+)− V ν−(X−)

subject to Eν
[

1
ξ(Y )X

]
= x0, X is FT -measurable and Qν a.s. bounded from below,

(CPT-I)

where

V ν+(X+) :=

∫ +∞

0

T+(Qν
{
u+(X+) > y

}
) dy, V ν−(X−) :=

∫ +∞

0

T−(Qν
{
u−(X−) > y

}
) dy. (3.14)

Here X represents the terminal payoff obtained via the initial wealth x0 and the dynamics (2.2). The
optimal value of problem (CPT-I) will be denoted V (x0, ν).

Remark 3.3. Notice that the maximization problem (CPT-I) is formulated under the minimal
probability Qν . To see why this makes sense, we recall that the historical probability P is unknown
to I-agent and thus can not be used. Moreover, using the martingale measure Q (as in N-agent’s
optimization problem) doesn’t make sense since it does not exploit the information advantage of
I-agent, hence it must be replaced by a different measure reflecting the extra knowledge. Thus, the
insider chooses a probability belonging to the set Eν and it seems natural for her to select a measure
which is not influenced by u±(·) and T±(·). As a matter of fact, a CPT trader is able to correctly
assess probabilities of events. Therefore, those functions shouldn’t affect probabilities because they
are used in the CPT paradigm only to describe risk attitudes.

Another reason behind the choice of Qν relies on the fact that it reflects a Bayesian updating,
in the sense that it involves the conditional probabilities Q(·|Y = y). Moreover, the properties
of the minimal probability in [1, Remark 4], especially properties 1. and 3., make it desirable to
use Qν in Problem (CPT-I).5 Furthermore, dropping the distinction between losses and gains and
probability distortions as well, we recover Problem (EU-I). On the other hand, in the extreme case of
no additional information ν = QY we have V ν±(X) = V±(X) thanks to minimal probability’s property
3 in [1, Remark 4], so we turn back to Problem (CPT-N).

To conclude this remark, we observe that we could define the financial value of the weak informa-
tion (Y, ν) analogously to Baudoin [1] as

inf
µ∈Eν

sup
Π admissible

V µ+ (X+)− V µ− (X−),

where V µ± (·) are defined similarly as in equation (3.14). Unfortunately, due to the complexity of the
preferences of the CPT I-agent, it is not clear whether the previous problem is equivalent to Problem
(CPT-I).

It is important to note that Problem (CPT-I) is nothing but a special case of the problem originally
studied by Jin and Zhou [6] (see their equation (2.7)), where

1. the measure P is replaced by Qν in both the objective function and the constraints;

2. the random variable ρ is replaced by the new random variable 1
ξ(Y ) .

Therefore, we have to check that all the assumptions imposed in [6] on ρ are now fulfilled by 1
ξ(Y ) and

then we will be able to use all the results found in [6] with the obvious modifications, i.e. substitute
for 1

ξ(Y ) and Qν in every explicit expression. First of all, to avoid undue technicalities, the assumption
of ρ having no atoms w.r.t. P ([6], Assumption 2.2) is now translated to the following

4For more details, see [1] where the theory of Conditioned Stochastic Differential Equations (CSDEs) is developed.
5In [2], the authors confirm that Qν has been built with the purpose of keeping the independence property. Then,

it seems reasonable for us to keep such a feature in the evaluation function of a CPT agent.
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Assumption 3.4. The random variable 1
ξ(Y ) has no atoms under Qν , i.e.

Qν
{

1
ξ(Y ) = a

}
= 0 ∀ a ≥ 0.

Other technical conditions on ξ(Y ) are straightforward to check; in fact we have 1
ξ(Y ) ∈ (0,+∞)

Qν-a.s. thanks to our Assumption 2.2. Moreover, Eν [ 1
ξ(Y ) ] = 1 follows directly from the definition of

ξ.

Remark 3.4. It is worth noticing that

Qν
{

1
ξ(Y ) = a

}
= EQ

[
ξ(Y )I{ 1

ξ(Y )
=a}

]
= 1

aQ
{
ξ(Y ) = 1

a

}
,

so that the Qν-law of 1/ξ(Y ) is atomless if and only if the Q-law of ξ(Y ) is. The latter condition is
satisfied in many common situations (see our examples at the end of this section).

We now adapt the analysis made in [6] with the necessary modifications for a CPT informed
investor. In what follows, we will need a new set of variables for I-agent, that will be equipped with
the superscript ν , to distinguish them from the same variables for N-agents. We define

1
ξ(Y ) ≡ esssupQν

1
ξ(Y ) := sup{a ∈ R : Qν{ 1

ξ(Y ) > a} > 0},

1
ξ(Y ) ≡ essinfQν 1

ξ(Y ) := inf{a ∈ R : Qν{ 1
ξ(Y ) < a} > 0}.

Once again well-posedness is an important issue as in the case of N-agent’s problem. With some
slight adjustments to Theorems 3.1 and 3.2 in [6] we have:

Proposition 3.3. Problem (CPT-I) is ill-posed if there exists a nonnegative FT -measurable random
variable X such that Eν

[
1

ξ(Y )X
]
< +∞ and V ν+(X) = +∞.

Proposition 3.4. If u+(+∞) = +∞, 1
ξ(Y ) = +∞, and T−(·) = id(·), then Problem (CPT-I) is

ill-posed.

Thus, to avoid systematic ill-posedness, we will impose:

Assumption 3.5 (see [6], Assumption 3.1). V ν+(X) < +∞ for any nonnegative, FT -measurable

random variable X satisfying Eν
[

1
ξ(Y )X

]
< +∞.

Remark 3.5. Note that we do not have yet a comparison result between the optimal value of a CPT
I-agent, V (x0, ν), and the optimal value for a CPT N-agent’s problem, so for the moment we can
not conclude that an insider always gets more than a non informed agent in this behavioral context,
neither we can say that ill-posedness for N-agent implies ill-posedness for I-agent.

We recall the main steps to get to the solution to Problem (CPT-I) (for more details see [6]).
First, for a given pair (A, x+), with A ∈ FT and x+ ≥ x+

0 , define the problem

Maximize V ν+(X) =
∫ +∞

0
T+(Qν{u+(X) > y}) dy

subject to Eν [ 1
ξ(Y )X] = x+, X ≥ 0 Qν-a.s., X = 0 Qν-a.s. on AC .

(3.15)

Note that Assumption 3.5 implies that V ν+(X) is a finite nonnegative number for any feasible X. We
now define vν+(A, x+), the optimal value of problem (3.15), in this way:

- if Qν(A) > 0 then the feasible region of (3.15) is non-empty and vν+(A, x+) is defined as the
supremum of (3.15);

- if Qν(A) = 0 and x+ = 0, then the only feasible solution for (3.15) is X = 0 Qν-a.s., so
vν+(A, x+) := 0;

- if Qν(A) = 0 and x+ > 0, then (3.15) has an empty feasible region, therefore vν+(A, x+) := −∞.
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For any c ≥ 0, set vν+(c, x+) := vν+({ω ∈ Ω : 1
ξ(Y (ω)) ≤ c}, x+); moreover, define F ν(·) and FQ(·) the

distribution functions of 1
ξ(Y ) w.r.t. Qν and Q respectively. Following the guidelines of [6], equation

(4.4), we set up the “simpler” problem

Maximize vν+(c, x+)− u−
(
x+−x0

1−FQ(c)

)
T−(1− F ν(c))

subject to


1

ξ(Y ) ≤ c ≤
1

ξ(Y ) , x+ ≥ x+
0 ,

x+ = 0 if c = 1
ξ(Y ) , x+ = x0 if c = 1

ξ(Y ) ,

(3.16)

where we use the convention

u−

(
x+−x0

1−FQ(c)

)
T−(1− F ν(c)) := 0 if c = 1

ξ(Y ) and x+ = x0. (3.17)

We are now ready to state the results for a CPT agent who has the weak information (Y, ν):

Proposition 3.5. Assume that u−(·) is strictly concave at 0. We have the following conclusions:

(i) If Xν∗ is optimal for Problem (CPT-I), then

cν∗ := (F ν)−1 (Qν{Xν∗ ≥ 0}) , xν∗+ := Eν
[

1
ξ(Y ) (Xν∗)+

]
are optimal for Problem (3.16). Moreover, {ω : Xν∗ ≥ 0} and {ω : 1

ξ(Y ) ≤ c
ν∗} are identical up

to a Qν-null probability set, and

(Xν∗)− =
xν∗+ − x0

1− FQ(cν∗)
I 1
ξ(Y )

>cν∗ Qν-a.s..

(ii) If (cν∗, xν∗+ ) is optimal for Problem (3.16) and Xν∗
+ is optimal for Problem (3.15) with parameters

({ 1
ξ(Y ) ≤ c

ν∗}, xν∗+ ), then

Xν∗ := Xν∗
+ I 1

ξ(Y )
≤cν∗ −

xν∗+ − x0

1− FQ(cν∗)
I 1
ξ(Y )

>cν∗

is optimal for Problem (CPT-I).

Therefore, in order to solve Problem (CPT-I) we can exploit the following algorithm:

Step 1 Solve Problem (3.15) with given parameters ({ 1
ξ(Y ) ≤ c}, x+), where 1

ξ(Y ) ≤ c ≤ 1
ξ(Y ) and

x+ ≥ x+
0 , in order to obtain vν+(c, x+) and the optimal solution Xν∗

+ (c, x+).

Step 2 Solve Problem (3.16) to get (cν∗, xν∗+ ).

Step 3 (i) If (cν∗, xν∗+ ) = ( 1
ξ(Y ) , x0), then Xν∗

+ ( 1
ξ(Y ) , x0) solves Problem (CPT-I).

(ii) Else Xν∗
+ (cν∗, xν∗+ )I 1

ξ(Y )
≤cν∗ −

xν∗+ −x0

1−FQ(cν∗)
I 1
ξ(Y )

>cν∗ solves Problem (CPT-I).

To get an explicit solution we now have to impose conditions similar to that in Assumption 3.3. In
particular, we set

Assumption 3.6. (i) (F ν)−1(z)
T ′+(z) is non-decreasing in z ∈ (0, 1];

(ii) lim infx→+∞
−xu′′+(x)

u′+(x) > 0;

(iii) Eν
[
u+

(
(u′+)−1

(
1

ξ(Y )T ′+(F ν( 1
ξ(Y )

))

))
T ′+(F ν( 1

ξ(Y ) ))

]
< +∞.
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Briefly, condition (i) is related to the fact that the distortion on gains should not be too extreme.6
Then, hypothesis (ii) on the RRA coefficient on gains is the same as for N-agent (recall that the
value functions, as well as the probability distortions, are assumed to be the same for the two types
of agent in order to facilitate a comparative analysis).
Under Assumption 3.6, both vν+(c, x+) and the corresponding optimal solution Xν∗

+ to Problem (3.15)
can be expressed more explicitly, together with the optimal solution Xν∗ of (CPT-I):

vν+(c, x+) = Eν
[
u+

(
(u′+)−1

(
λν(c, x+)

ξ(Y )T ′+(F ν( 1
ξ(Y ) ))

))
T ′+(F ν( 1

ξ(Y ) ))I 1
ξ(Y )
≤c

]
, (3.18)

Xν∗
+ = (u′+)−1

(
λν(c, x+)

ξ(Y )T ′+(F ν( 1
ξ(Y ) ))

)
I 1
ξ(Y )
≤c, (3.19)

Xν∗ = (u′+)−1

(
λν(cν∗, xν∗+ )

ξ(Y )T ′+(F ν( 1
ξ(Y ) ))

)
I 1
ξ(Y )
≤cν∗ −

xν∗+ − x0

1− FQ(cν∗)
I 1
ξ(Y )

>cν∗ , (3.20)

where λν(c, x+) satisfies Eν
[
(u′+)−1

(
λν(c,x+)

ξ(Y )T ′+(F ν( 1
ξ(Y )

))

)
1

ξ(Y )I 1
ξ(Y )
≤c

]
= x+.

Remark 3.6. Before going further, let us explore in details what are the implications of the optimal
policy adopted by a weakly informed CPT investor. As Jin and Zhou noticed in [6], Footnote 7, a
non-informed agent selects a final payoff which looks like a gamble on a good state of the world7.
In fact, in their framework a trader obtains a final wealth greater than her reference point if and
only if the event {ρ ≤ c∗} happens. In a market with one risky asset, constant coefficients and null
interest rate, this amounts to say that the final price of the stock, namely S(T ), must be greater than
a certain threshold depending on c∗. This can be easily shown by noting that

S(T ) = s0 exp
((
b− σ2

2

)
T + σW P

T

)
,

where W P is a (F,P)-Brownian motion over [0, T ]. This in turn implies

{ρ ≤ c∗} =
{

exp
(
− b2

2σ2T − b
σW

P
T

)
≤ c∗

}
=
{
S(T ) ≥ s0 exp

(
b−σ2

2 T − σ2

b ln c∗
)}

.

Obviously one can see that the greater c∗, the higher is the P-probability to reach a final gain. Can
we find a similar explanation for a weakly informed CPT investor? A good state of the world for
I-agent is the event {

1
ξ(Y ) ≤ c

ν∗
}

=
{
ξ(Y ) ≥ 1

cν∗

}
.

Again it is clear that the greater cν∗, the higher is the Qν-probability of a terminal gain. Moreover,
note that the optimal threshold cν∗ varies with the weak information (Y, ν)! (Recall that cν∗ is
obtained in Step 2 of the previous algorithm, where one has to solve Problem (3.16)). It would be
interesting to analyze how much cν∗ or the probability of a terminal (positive) gain Qν{ξ(Y ) ≥ 1/cν∗}
vary depending on ξ(Y ), and this is in general not an easy task. However we are able to provide an
interesting example where this dependence can be estimated (see Example 3.1 below).

Analogously to the non-informed agent case, let’s now assume that the I-agent has CRRA value
functions. We follow again the argument described in [6], Section 9, but now using the following
functions

ϕν(c) := Eν
[(
ξ(Y )T ′+(F ν( 1

ξ(Y ) ))
)1/(1−α)

1
ξ(Y )I 1

ξ(Y )
≤c

]
> 0, 1

ξ(Y ) < c ≤ 1
ξ(Y ) , (3.21)

kν(c) :=
k−T−(1− F ν(c))

ϕν(c)1−α (1− FQ(c))
α > 0, 1

ξ(Y ) < c ≤ 1
ξ(Y ) . (3.22)

Note that the case c = 1
ξ(Y ) is trivial and that once again the sign of the initial wealth x0 is crucial.

6We observe that our Assumption 3.6 is nothing but Assumption 4.1 in [6]. However, in their context condition (i)
concerns the distribution function of the state price density ρ, thus it involves the market parameters. On the contrary,
in our case (i) imposes a link between the distortion T+(·) and F ν(·), therefore it is a condition on I-agent’s weak
information. A similar remark holds for (iii).

7Remember that in the original framework the agent knows the historical measure P but this is by no means helpful,
i.e. it does not give any advantage because P is common knowledge.
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Proposition 3.6. Assume that x0 ≥ 0 and Assumption 3.6 holds.

(i) If infc> 1
ξ(Y )

kν(c) ≥ 1, then Problem (CPT-I) is well-posed and

Xν∗ =
x0

ϕν( 1
ξ(Y ) )

(
ξ(Y )T ′+(F ν( 1

ξ(Y ) ))
)1/(1−α)

, (3.23)

V ν(x0, ν) = xα0ϕ
ν( 1
ξ(Y ) )1−α. (3.24)

(ii) If infc> 1
ξ(Y )

kν(c) < 1, then Problem (CPT-I) is ill-posed.

Note that a null initial wealth corresponds to a null risky investment and a null financial value.
Finally, if x0 < 0 it is sufficient to adapt the results of [6], Theorem 9.2, to the present case.

Example 3.1 (Computation of V (x0, ν) with T+(·) convex ). We provide an example where the
optimal value of a CPT I-agent with weak information (Y, ν) can be explicitly computed. We assume
CRRA value functions with x0 ≥ 0 for the informed agent and a single risky asset market analogous
to that of Example 2.1, with weak information given by Y = WQ

T and ν ∼ N (0, s2) with 0 < s ≤
√
T .

It is easy to compute
1

ξ(Y )
=

s√
T

exp

{
T − s2

2Ts2
(WQ

T )2

}
, (3.25)

which immediately gives 1
ξ(Y ) = s√

T
and 1

ξ(Y ) = +∞. Next, Assumption 3.4 is clearly satisfied,

i.e. 1
ξ(Y ) has no atoms under Qν , as 1

ξ(Y ) does not have atoms under Q and the two measures are
equivalent. Moreover 1

ξ(Y ) ∈ (0,+∞) Qν-a.s. and its Qν-expected value is 1. Thus every technical
condition is fulfilled.
The next step consists in verifying the three conditions in Assumption 3.6. (ii) follows immediately
by the CRRA hypothesis and (iii) will be checked a posteriori once we have performed the necessary
computations. For condition (i), we observe that the law of Y under Qν is exactly ν. Hence, with
some tedious but elementary computations one can check that the distribution function of 1

ξ(Y ) under
Qν is given by

F ν(c) = Qν
{

1
ξ(Y ) ≤ c

}
=


0 if c ≤ s√

T
,

2N
(√

2T

T − s2
ln
(
c
√
T
s

))
− 1 if c > s√

T
,

(3.26)

where N (·) is the distribution function of a standard Gaussian random variable. The left inverse of
F ν(·) is given by

(F ν)−1(z) =
s√
T

exp

(
T − s2

2T

[
N−1

(
z + 1

2

)]2
)
, z ∈ [0, 1). (3.27)

Now, condition (i) requires the ratio (F ν)−1

T ′+
(z) to be non decreasing over (0, 1]. If the distortion

T+(·) is assumed to be twice continuously differentiable, we see that this is indeed the case whenever
the derivative of that ratio is non-negative. Note that a sufficient condition for this to happen is
T ′′+(·) ≤ 0 over [0, 1], as it ensures

d
dz

(F ν)−1

T ′+
(z) =

[
(F ν)−1

]′
T ′+ − (F ν)−1T ′′+
(T ′+)2

(z) ≥ 0, z ∈ (0, 1], (3.28)

thanks to the fact that
[
(F ν)−1

]′
(·), T ′+(·) and (F ν)−1(·) are non-negative functions. By the way,

T ′′+(·) ≤ 0 is only a sufficient condition and not necessary. Therefore, we can try to use a non concave
T+(·) and check the validity of (i).
It turns out that a class of weighting functions that fulfills both Assumption 3.2 and the previous
condition (i) is given by8

T+(p) = 2N
(√

1− 2a N−1

(
p+ 1

2

))
− 1, a ∈

(
0, 1

2

)
. (3.29)

8To define T+(1) we use the convention N (+∞) = 1.
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It is not difficult to check that such distortions are globally convex over (0, 1), thus implying a
prudential criterion when evaluating gains. The lack of concavity restricts our attention to Problem
(CPT-I), as Assumption 3.3 for Problem (CPT-N) is not fulfilled. A closer look at equation (3.29)
shows that those weighting functions are nothing but the primitives of

T ′+(p) =
√

1− 2a exp

(
a

[
N−1

(
p+ 1

2

)]2
)
, a ∈

(
0, 1

2

)
. (3.30)

By using (3.27) and (3.30), rather long calculations show that condition (i) is indeed fulfilled if and
only if a ≤ T−s2

2T < 1
2 (however, we will choose a < T−s2

2T as the equality leads to integrability
problems, so that condition (iii) in Assumption 3.6 might not hold). Forgetting for a while the ill-
posedness issue, we now apply Proposition 3.6. After cumbersome (but not difficult) computations,
we find

Xν∗ = x0

√
T − s2 − 2aT

s
√

1− α
exp

(
−T − s

2 − 2aT

2Ts2(1− α)
(WQ

T )2

)
,

V (x0, ν) = xα0

√
T (1− 2a)

s

(
s
√

1− α√
T − s2 − 2aT

)1−α

.

Performing first order derivatives, it is immediate to see that V (x0, ν) is increasing in T , whereas
it is decreasing in a and in s. This is perfectly coherent with intuition, as the more accurate the
information, the greater should be its value. It is interesting to note that the magnitude of the
parameter a determines the “degree” of convexity of T+(·) and as a→ 0, T+(·) tends to the identity
function. As expected, we obtain lima→0+ V (x0, ν) = u(x0, ν) as in Example 2.1, because CPT and
EU preferences coincide.

According to the last observation in Remark 3.6, we can provide in this example some information
on how the threshold cν∗ varies with the information (Y, ν). A closer look at the shape of the
distribution function F ν(·) in (3.26) shows that if s → 0 (which corresponds to a more and more
accurate information), then the random variable 1/ξ(Y ) tends to be more and more concentrated
around 0, i.e. (3.26) tends to Ic>0. In the other extreme case, as s→

√
T (which corresponds to no

additional information case) 1/ξ(Y ) tends to be more and more concentrated around 1, i.e. (3.26)
tends to Ic>1.

We now come back to the ill-posedness issue. In order to ensure well-posedness, one has to
compute ϕν(c) and specify a particular form for T−(·) and check whether infc> 1

ξ(Y )
kν(c) ≥ 1 as we

did in Corollary 3.1. Nonetheless, we observe that we can also find an estimate of the value V (x0, ν)
in the well-posed case. If infc>0 k

ν(c) ≥ 1, then we know that V (x0, ν) = xα0ϕ
ν(+∞)1−α and we can

compute

ϕν(+∞) = EQ
[
ξ(Y )

1
1−αT ′+

(
F ν
(

1
ξ(Y )

)) 1
1−α
]
≥ inf
p∈[0,1]

T ′+(p) EQ
[
ξ(Y )

1
1−α

]
−→ +∞ (3.31)

as s → 0+ whenever the infimum appearing in (3.31) above is strictly positive. On one hand, this
fact suggests that well-posedness can only be assessed for weak information that are not too accurate,
i.e. when s2 is close to T . On the other hand, the condition on infp∈[0,1] T

′
+(p) > 0 is fulfilled by

our particular choice in (3.30). Moreover, this intuition is implicit in the empirical estimation in [12]
where the suggested distortion T+(p) = pδ

(pδ+(1−p)δ)1/δ automatically satisfies infp∈[0,1] T
′
+(p) > 0 for

sufficiently high δ (approximatively δ > 0.28, whereas in [12] it was estimated δ = 0.69).

Example 3.2 (Reversed S-shaped probability distortion T+(·)). We are aware of the fact that empirical
observations suggest probability weighting not to be globally convex neither globally concave. While
in the previous example an ad hoc construction has been performed in order to obtain explicit (and
sensible!) expressions, we now suggest a particular reversed S-shaped T+(·) which may look like an
observable one. Following the same lines as in [6], Example 6.1, and using the framework in Example
3.1, it is not difficult to exhibit such a distortion. Setting δ = s2−T

T , for a given set of parameters
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a < 0, 0 < b < − 1
δ , c0 >

s√
T

we obtained

T+(p) =



4k
(

s√
T

)a
δa
[
N
(
N−1

(
p+1

2

)
δa
)
− 1

2

]
p ∈ [0, p0),

4k
(

s√
T

)a
δa
[
N
(
N−1

(
p0+1

2

)
δa
)
− 1

2

]
+ 4k̃

(
s√
T

)b
δb
[
N
(
N−1

(
p+1

2

)
δb
)
−N

(
N−1

(
p0+1

2

)
δb
)]

p ∈ (p0, 1),

(3.32)

where δa :=
√

1
δ

(
a+ 1

δ

)
, δb :=

√
1
δ

(
b+ 1

δ

)
, k̃ := kca−b0 , p0 := F ν(c0) and the real number k is

uniquely determined by the terminal condition T+(1) = 1. Note that such a T+(·) is a non decreasing
function over [0, 1] and T ′+(p) → +∞ as p → 0 or p → 1, which is consistent with the empirical
estimates. However, it is important to note that the overall construction depends on the weak
information (Y, ν), thus it seems to be completely unrealistic. This flaw was still present in Example
6.1 of [6], where the ad hoc distortion depends on the market parameters! To conclude, we note that
the condition infp∈[0,1] T

′
+(p) > 0 which ensured (3.31) is satisfied for the T+(·) that we exhibit in

(3.32). In fact we have

T ′+(p) = T ′+(F ν(x)) =

{
kxa if 0 < x ≤ c0,
k̃xb if x > c0,

which is always greater than or equal to kca0 > 0.

4 Comparison between differently informed CPT agents
Our analysis distinguished four different types of investors, depending on their information (N-agents
versus I-agents) and on their valuation criteria or preferences paradigms (classical EU maximizers
versus CPT investors à la Kahneman and Tversky).

In [2], the authors already compared an EU N-agent with an EU I-agent; the main result is
the fact that the insider always gets more than a non informed agent (see also the estimate in
Example 2.1). Furthermore, the differences between an EU N-agent and a CPT N-agent are easy
to analyze: on one hand, we have seen that the optimal policy for a classical N-agent is to choose a
constant wealth, i.e. X∗ = x0 Q a.s., leading to the optimal value U(x0), whereas the CPT N-agent’s
strategy is characterized by her substantial indifference between events with the same probability.
This phenomenon produces structurally different optimal final wealths, as the behavioral agent can
even exploit a leverage effect by choosing a negative final wealth with positive probability. Moreover,
this kind of investor can obviously select (p∗, x∗+) = (1, x0), thus obtaining V (X∗) = u+(x0). However
this strategy is not necessarily the best one, as she has to face Problem (3.5).

The comparison between EU and CPT agents sharing the same extra information is interesting
only from a qualitative point of view. This is because decision criteria are extremely far from each
other. For an additional insight, we refer the interested reader to [4] and [6] where the optimal
strategies as well as the optimal values of the problems are compared. Here, we only notice that
one can have u(x0, ν) < +∞ and V (x0, ν) = +∞ even if the two insiders share a common extra
information (Y, ν). To see this, assume the same market setting as in Example 3.1. Now, for any
fixed initial endowment x0 > 0, Example 2.1 shows that for every s > 0 we have u(x0, ν) < +∞,
whereas it tends to infinity only when s ↓ 0. However, if we assume T−(·) = id(·), then for every
s > 0 Proposition 3.4 implies ill-posedness for the I-agent, i.e. V (x0, ν) = +∞.

From now on, we compare the solutions and the optimal values of the problems faced by a CPT
N-agent and a weakly informed CPT I-agent. We assume that they share the same initial endowment
x0 ∈ R, the same utility functions u±(·) and the same probability weightings T±(·). We suppose
that Assumption 3.3 and 3.6 are in force and I-agent has a weak information given by (Y, ν). In
asymmetric information models (see e.g. [10]), a fundamental issue consists in proving that an
insider always “gets” more than a non-informed trader and the difference between the optimal values
of these two investors is usually called insider’s gain. Now, we are going to prove that this fact still
holds in such a behavioral setting. In other words, we show the inequality V (x0, ν) ≥ V (X∗), whose
intuitive meaning is that any additional information is an advantage for the investor, even if she is a
behavioral one.
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Before stating the main result, we need the following preliminary lemma which compares F ν(·)
and FQ(·), the distribution functions of the random variable 1/ξ(Y ) w.r.t. Qν and Q respectively.

Lemma 4.1. The following inequality holds:

F ν(c) ≥ FQ(c), ∀ c ∈
[

1
ξ(Y ) ,

1
ξ(Y )

]
. (4.1)

Moreover, if c ∈
(

1
ξ(Y ) ,

1
ξ(Y )

)
and ξ 6≡ 1 then (4.1) holds strictly.

Proof. If c ≥ 1, then it is sufficient to use the estimation

F ν(c) = 1− EQ
[
ξ(Y )I 1

ξ(Y )
>c

]
= FQ(c) + EQ

[
(1− ξ(Y ))I 1

ξ(Y )
>c

]
≥ FQ(c) +

(
1− 1

c

)
(1− FQ(c))

≥ FQ(c).

Otherwise, if c < 1 we observe that the function f(c) := EQ
[
(1− ξ(Y )) I 1

ξ(Y )
>c

]
is increasing in(

1
ξ(Y ) , 1

)
and limc↓ 1

ξ(Y )
f(c) = 0. Finally, the strict inequality is a consequence of Assumption 2.2,

i.e. the equivalence of ν and QY .

We are now ready to prove the existence of the insider’s gain. Note that it suffices to find
a particular feasible solution to Problem (CPT-I) whose prospect value for the informed trader is
greater than or equal to V (X∗). A quick look at Problems (CPT-N) and (CPT-I) shows that they
share the same feasible set. Hence, we could even choose X∗ as the insider’s terminal wealth. This
random variable will not be the optimal solution to Problem (CPT-I). However, we will be able to
prove that V ν(X∗) ≥ V (X∗) and this will in turn imply V (x0, ν) ≥ V (X∗).

Theorem 4.1. Let Assumption 2.2 hold. Then

V (x0, ν) ≥ V (X∗).

Moreover, if ξ 6≡ 1, V (X∗) < +∞ and the optimal solution (p∗, x∗+) to Problem (3.5) is such that
p∗ ∈ (0, 1), then the inequality is strict.

Proof. First of all, we recall that a behavioral N-agent endowed with a concave T−(·) is indifferent in
choosing (3.6) as optimal solution for any given Z ∼ U(0, 1) w.r.t. Q. Now we distinguish between
two cases, namely when the optimal value for N-agent is finite or not. In the first case, the non-
informed trader can select Z̃ = FQ

(
1

ξ(Y )

)
. Using (3.6), (3.7) and setting c∗ := (FQ)−1(p∗), we

find

X∗ = (u′+)−1
(
λ(c∗,x∗+)

T ′+(Z)

)
I 1
ξ(Y )≤c

∗ −
x∗+ − x0

1− FQ(c∗)
I 1
ξ(Y )<c

∗ , (4.2)

V (X∗) = V+(X∗+)− u−
(

x∗+ − x0

1− FQ(c∗)

)
T−(1− FQ(c∗)), (4.3)

where (p∗, x∗+) are optimal for Problem (3.5) and λ(c∗, x∗+) is determined by the budget constraint.
On the other hand, if the informed investor chooses X∗ as her terminal wealth, then she obtains the
prospect value

V ν(X∗) = V ν(X∗+)− u−
(

x∗+ − x0

1− FQ(c∗)

)
T−(1− F ν(c∗)). (4.4)

Now, using Lemma 4.1, it is immediate to see that the negative part of the prospect value for N-agent
is greater (in absolute value) than that of I-agent. Moreover, using the fact that u+

(
(u′+)−1

)
(·) is

strictly decreasing, we can explicitly write

=

∫ +∞

0

T+

(
Q
({

T ′+

(
FQ( 1

ξ(Y ) )
)
>

λ(c∗,x∗+)

u′+(u−1
+ (y))

}
∩
{

1
ξ(Y ) ≤ c

∗
}))

dy. (4.5)
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Now it suffices to note that T ′+(·) is monotone decreasing, whereas FQ(·) is monotone increasing;
furthermore, V ν+(X∗+) can be written analogously to V+(X∗+) just by replacing Q with Qν . There-
fore, applying again Lemma 4.1 we have V ν+(X∗+) ≥ V+(X∗+), which in turn implies the desired
inequality. In the ill-posed case for N-agent, note that we can find a sequence of feasible solutions
to Problem (3.5), namely {(pn, xn+)}n∈N, where pn = (FQ)−1(cn) for some cn ∈

[
1

ξ(Y ) ,
1

ξ(Y )

]
, for

every n ∈ N. This sequence will in turn induce a sequence of feasible terminal wealths {Xν,n}n∈N.
Now, using the previous argument, it is easily seen that if I-agent chooses that sequence of terminal
wealths, then her optimal value will diverge to +∞ too. Finally, the strict version is a consequence
of (4.1) holding strictly.

We remark that in general the optimal pair (c∗, x∗+) for N-agent will be different than (cν∗, xν∗+ ).
Moreover, we have seen that ill-posedness for (CPT-N) implies ill-posedness for (CPT-I). A natural
question arising from this observation is whether it is possible to find an example where (CPT-N)
is well-posed and (CPT-I) is ill-posed. The answer is positive and we are going to exploit some
results previously obtained in a single risky asset market driven by an (Ω,F,Q)-Brownian motion
(see Example 3.1 for the notation).

Proposition 4.1. Assume CRRA preferences with x0 ≥ 0, T+(p) = p and T−(p) = pδ, 0 < δ < α <
1. If the weak information of CPT I-agent is given by Y = WQ

T and ν ∼ N (0, s2) with 0 < s ≤
√
T ,

then for sufficiently small s Problem (CPT-I) is ill-posed.

Proof. To start, recall that with these assumptions on the agents’ preferences, Corollary 3.1 ensures
well-posedness for Problem (CPT-N). Then, ill-posedness for Problem (CPT-I) follows from Propo-
sition 3.6 if we are able to show that

inf
c> 1

ξ(Y )

kν(c) ≡ inf
c> 1

ξ(Y )

k−(1− F ν(c))δ

(1− FQ(c))α
(
EQ
[
ξ(Y )

1
1−α I 1

ξ(Y )
≤c

])1−α < 1. (4.6)

Now, we apply Jensen’s inequality to the convex function f(x) = x
1

1−α , α ∈ (0, 1), and we estimate
the infimum choosing ĉ = (FQ)−1

(
1−α
1−δ

)
. Hence we obtain

inf
c> 1

ξ(Y )

kν(c) ≤ inf
c> 1

ξ(Y )

k−(1− F ν(c))δ

(1− FQ(c))αF ν(c)
≤ k−

(
1− δ
α− δ

)α
(1− F ν(ĉ))δ

F ν(ĉ)
,

where it is important to note that ĉ depends both on the preference parameters and on the weak
information. At this point it is not difficult to compute

FQ(c) ≡ Q
{

1
ξ(Y ) ≤ c

}
=


0 if c ≤ s√

T
,

2N
(√

2s2

T−s2 ln
(
c
√
T
s

))
− 1 if c > s√

T
,

(4.7)

where as usual N (·) is the standard Gaussian distribution function. Next, we find

(FQ)−1(z) =
s√
T

exp

(
T − s2

2s2

[
N−1

(
z + 1

2

)]2
)
, z ∈ [0, 1). (4.8)

Using the explicit expression of F ν(·) in equation (3.26), we can compute

F ν(ĉ) = 2N

(√
T

s
N−1

(
2− α− δ
2(1− δ)

))
− 1.

Now we see that for every choice of k− ≥ 1 and 0 < δ < α < 1, there exists a s̃ > 0 such that for
every s < s̃ the inequality in (4.6) is fulfilled.

Economically speaking, the meaning of the previous proposition is that there can always exist a
particular weak information which ensures well-posedness for N-agent’s problems and ill-posedness
for the informed investor. Obviously, this extra information must be sufficiently accurate (in our case
s < s̃) in order to provide an infinite optimal value for I-agent. We recognize that our estimation
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Figure 2: a graphical analysis for the ill-posedness of the CPT insider’s problem.

for (4.6) is effectively rough. For a more detailed analysis, we note that an explicit expression for
kν(c) can be provided, even if it is quite cumbersome. However, it is not difficult to perform a
graphical analysis whose results are shown in Figure 2. Fixing α = 0.88, δ = 0.7 and T = 1, kν
reduces to a function of k−, s and c; isolating the loss aversion coefficient k−, we can now see whether
k− ≤ supc>s k(c, s) which in turn implies ill-posedness for the CPT insider’s problem. In the left-side
plot, the 3D surface of k(c, s) shows that even for a quite elevated k− we still have ill-posedness. On
the contrary, if s is sufficiently close to 1, then every k− ≥ 1 leads to well-posedness, as the surface
lies below the horizontal plane at level k ≡ 1 and k(·, s) becomes monotonically decreasing. Finally,
for particular values of s, i.e. for specific types of weak information, we have drawn in the right-side
plot the corresponding curves k(c) which confirm what previously stated.

Remark 4.1. It is worth noting that with the same hypotheses as in Proposition 4.1, the analogous
problem for a classical informed trader has a completely different solution. Indeed, Problem (EU-I)
is well-posed for every s > 0 and its optimal value tends to diverge only if s ↓ 0. On the other hand,
if we assume T−(·) = id, then Problem (CPT-I) too becomes ill-posed for every s > 0, thus showing
a substantial lack of robustness.

To conclude this section, we now provide an example where the insider’s gain can be explicitly
computed and whose results have a clear and intuitive economic explanation.

Example 4.1 (Explicit evaluation of the insider’s gain). We use exactly the same setting of Example
3.1 changing only the probability distortion on gains of the informed investors. Precisely, this time
we assume

T+(p) = 2N
(√

1 + 2b N−1

(
p+ 1

2

))
− 1, b > 0. (4.9)

These weighting functions are globally concave over (0, 1) 9 and are the primitives of

T ′+(p) =
√

1 + 2b exp

(
−b
[
N−1

(
p+ 1

2

)]2
)
, b > 0. (4.10)

As we did in Example 3.1, we check condition (i) of Assumption 3.3, as (ii) is clearly true and
(iii) will be controlled ex post. Using equation (3.27) and performing the first order derivative, it is
immediate to see that (F ν)−1

T ′+
(·) is non decreasing over (0, 1] for every b > 0. Hence, we can make our

computations assuming well-posedness for Problem (CPT-I), which implies that of Problem (CPT-N)
as well (thanks to Theorem 4.1). For the non-informed investor, we exploit the results of Proposition
3.2, which give us

X∗ = x0

√
1−α+2b

(1−α)(1+2b)1/(1−α)T
′
+(Z)1/(1−α), (4.11)

V (X∗) = xα0
√

1 + 2b
(√

1−α
1−α+2b

)1−α
. (4.12)

9Thus, we observe an overestimation of relatively large gains and an underestimation of small gains.
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On the other hand, for the CPT insider we apply Proposition 3.6 which yields

Xν∗ = x0
T−s2α+2bT
s2(1−α) exp

{
−T−s

2+2bT
2Ts2(1−α) (WQ

T )2
}
, (4.13)

V (x0, ν) = xα0

√
T (1+2b)

s2

(√
s2(1−α)

T−s2α+2bT

)1−α

. (4.14)

The insider’s gain is thus given by V (x0, ν) − V (X∗). For our purposes, it is more convenient to
compute the ratio

V (x0, ν)

V (X∗)
=

√
T

s

(√
s2(1− α)

T − s2α+ 2bT

)1−α

≥ 1, (4.15)

which is increasing in both b, T and decreasing in s, whereas the dependence on α is not monotone.
Note that this makes perfectly sense since a greater T (or a lower s) improves the accuracy of insider’s
information. Moreover, if s ↑

√
T , the ratio (4.15) decreases to 1. On the other hand, as b ↓ 0 we see

that T+(·) converges uniformly to the identity function and, in case of well-posedness, we recover the
same results of Example 2.1, where the agent was a classical insider. Finally, if α ↑ 1, then (4.15)
tends to

√
T/s, which is equivalent to say that if the trader becomes risk neutral, then the ratio

between the optimal values is nothing but an index of the “goodness” of the extra information.
The comparison between the optimal terminal wealths X∗ and Xν∗ exhibits the already known

flaw of being dependent on the choice of Z; in particular, if Z = FQ
(

1
ξ(Y )

)
then straightforward

computations show that Xν∗ ≥ X∗ if and only if the terminal price of the stock lies in a certain
range, whereas if Z = 1− FQ

(
1

ξ(Y )

)
we obtain the opposite result.

5 The Yaari’s models and their solutions
In this section we are going to look at the model proposed by Yaari in [13]. That model is somewhat
linked to CPT model since a probability distortion w(·) is applied as well. However, in that model
gains are not distinct from losses, so what is important for the trader is the level of terminal wealth
X. Moreover, the value function is simply the identity, hence distortions on payments are not allowed.
We will solve the problems relative to a non informed investor and an insider respectively, following
the approach developed in [4]. At last, we will provide an example where the insider’s gain can be
explicitly computed. From now on, the following assumptions on the distortion w(·) will be in force.

Assumption 5.1 (see [4], Assumption 3.3). w(·) : [0, 1]→ [0, 1] is continuous and strictly increasing
with w(0) = 0, w(1) = 1. Furthermore, w(·) is continuously differentiable on (0, 1).

5.1 The non informed agent’s problem
For our N-agent, we adapt the solution scheme proposed in [4], Section 3.2. Assuming an initial
endowment x0 > 0, a standard formulation of this model would be

Maximize VY (X) :=
∫ +∞

0
w (Q {X > x}) dx

subject to EQ[X] = x0, X ≥ 0, X is FT -measurable.
(YA-N)

Once again, we note that the objective function is law-invariant, in the sense that if X is a feasible
solution to (YA-N) with distribution function FX(·), then for every Z ∼ U(0, 1) w.r.t. Q we have
VY (X) = VY

(
(FX)−1(Z)

)
(see e.g. Lemma A.1). Moreover, the structure of the objective function

may be a source of ill-posedness, similarly to what happened for the CPT model. A straightforward
adaptation of the proof in [4], Theorem 3.4, shows the next result.

Proposition 5.1. Under Assumption 5.1, Problem (YA-N) is ill-posed if lim infz↓0 w
′(z) = +∞, and

well-posed if lim supz↓0 w
′(z) < +∞.

In particular, w(z) = zγ leads to well-posedness if γ > 1, whereas γ < 1 implies ill-posedness.
We also recall that in Yaari’s model, a convex distortion is equivalent to risk aversion. Moreover,
using Jensen’s inequality we see that if w(·) is convex, then Problem (YA-N) has the trivial solution
X∗Y = x0 Q a.s. with VY (X∗Y ) = x0 (we will use this fact in Example 5.1). Therefore, it remains
some other interesting shapes of w(·) to analyze. Following [4], we impose this technical condition.
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Assumption 5.2 (see [4], Assumption 3.5). M(z) := w′(1 − z) is continuous on (0, 1), and there
exists z0 ∈ (0, 1) such that M(·) is strictly increasing on (0, z0) and strictly decreasing on (z0, 1).

In other words, the previous assumption describes an S-shaped distortion function which is useful
for the subsequent mathematical analysis whereas it is not properly suitable in an economic sense from
a descriptive or a normative point of view. In fact, such an S-shaped w(·) implies underweighting
of both relatively large and small payoffs. Using exactly the same argument as in the proofs of
Proposition 3.6 and Theorem 3.7 in [4], we obtain the main result of this section.

Proposition 5.2. Suppose Assumption 5.2 holds. Define

z(λ) := inf {z ∈ (0, z0] : M(z) = λ} , (5.1)
h(λ) := w (1− z(λ))− λ (1− z(λ)) , (5.2)

and let λ∗ be the unique positive root of h(·). Then, for every Z ∼ U(0, 1) w.r.t. Q, we have
X∗Y = b∗Iz(λ∗)<Z≤1, where b∗ = x0

1−z(λ∗) is determined by the budget constraint. Moreover, VY (X∗Y ) =

b∗w (1− z(λ∗)).

5.2 The insider’s problem
For a weakly informed trader who follows the tenets of Yaari’s dual theory of choice, the optimization
problem can be naturally set as follows

Maximize V νY (X) :=
∫ +∞

0
w (Qν {X > x}) dx

subject to Eν
[

1
ξ(Y )X

]
= x0, X ≥ 0, X is FT -measurable.

(YA-I)

We will call Xν∗
Y its optimal solution, with optimal value VY (x0, ν). Once again, we recover the same

structure as in [4], Problem (2.11), and we replace ρ with 1
ξ(Y ) and P with Qν . Before giving the

solution, we impose the technical hypothesis

Assumption 5.3 (see [4], Assumption 5.2). Mν(z) := w′(1−z)
(F ν)−1(1−z) is continuous on (0, 1), and there

exists z0 ∈ (0, 1) such that M(·) is strictly increasing on (0, z0) and strictly decreasing on (z0, 1).

The solution to Problem (YA-I) is completely described in the next proposition.

Proposition 5.3. Suppose Assumption 5.3 holds. Define

zν(λν) := inf {z ∈ (0, z0] : Mν(z) = λν} , (5.3)

hν(λ) :=

∫ 1

zν(λ)

[
w′(1− z)− λ(F ν)−1(1− z)

]
dz. (5.4)

Let λν∗ be the unique positive root of hν(·). Then, Xν∗
Y = bνI 1

ξ(Y )≤c
ν
, where cν is the unique root of

ϕν(c) := xw (F ν(x))− w′ (F ν(x))

∫ x

0

sdF ν(s) (5.5)

over
(

(F ν)−1(1− z0), 1
ξ(Y )

)
and bν is implicitly defined by the budget constraint Eν

[
1

ξ(Y )X
ν∗
Y

]
= x0.

Moreover, VY (x0, ν) = λν∗x0.

Proof. Use the same arguments as in [4], Proposition 3.6 and Theorem 3.7.

Before giving an explicit example, we show that an I-agent always gets a higher optimal value
than an N-agent. In fact, Problems (YA-N) and (YA-I) share the same feasible set; therefore, the
non-informed agent can choose Z = FQ( 1

ξ(Y ) ) and the insider can select the corresponding X∗Y as her
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terminal wealth. Hence, using Lemma 4.1, we can compute

V νY (X∗Y ) =

∫ +∞

0

w

(
Qν
{
b∗I

z(λ∗)<FQ(
1

ξ(Y ) )
> x

})
dx

=

∫ b∗

0

w
(
F ν
(
(FQ)−1(1− z(λ∗))

))
dx

≥
∫ b∗

0

w (1− z(λ∗)) dx

= VY (X∗Y ),

which obviously implies VY (x0, ν) ≥ VY (X∗). This time too the comparison between the optimal
terminal wealths is not very sensible, as it strongly depends on the choice of Z.

Example 5.1 (Evaluation of the insider’s gain in Yaari’s model). Consider the single risky asset
setting as in Example 2.1. We assume that the weak information of I-agent is given by Y = FW (WQ

T )

and ν(dx) = [(2− 2a)x+ a] dx, a ∈ (0, 1), where FW (·) is the cdf of the random variable WQ
T .

Note that Y ∼ U(0, 1) w.r.t. Q and the economic intuition behind this example is that the insider
has a weak knowledge about the terminal price, as the distortion applied by FW (·) is irrelevant due
to its strict monotonicity. Furthermore, the parameter a is an index of the goodness of the extra
information: (Y, ν) becomes in particular more and more valuable as a→ 0+, whereas if a→ 1− we
recover the no additional information case. At this point, we can immediately compute

1

ξ(Y )
=

1

(2− 2a)FW (WQ
T ) + a

,
1

ξ(Y )
=

1

2− a
,

1

ξ(Y )
=

1

a
. (5.6)

Now, we assume a risk averse investor endowed with probability distortion w(z) = zγ , γ > 1. As
noticed in Section 5.1, for such a convex w(·) we already know thatX∗Y = x0 Q a.s. and VY (X∗Y ) = x0.
Next, we check the validity of Assumption 5.3. Using equation (5.6) together with the uniform
distribution of Y , we find

M(z) = γ(1− z)γ−1
√

4z(a− 1) + (a− 2)2, z0 =
a2(1− γ) + 2(1− a)

2(1− a)(2γ − 1)
. (5.7)

Then, we look for a root of ϕν(·) as defined in Proposition 5.3. It turns out that an admissible
cν ∈

(
(F ν)−1(1− z0), 1

ξ(Y )

)
is obtained only under an additional condition over the parameters γ

and a. More precisely, we have

cν =
2γ − 1

2− a
if γ <

1

a
. (5.8)

Observe that whenever γ < 1/a, the quantity z0 in (5.7) belongs to (0, 1). The final step is to find
the optimal solution Xν∗

Y together with its optimal value. Using the budget constraint we have

Xν∗
Y = bν∗IWQ

T≥(FW )−1( aγ−1
(a−1)(2γ−1) )

, (5.9)

VY (x0, ν) = x0
γγ(γ − 1)γ−1(2− a)2γ−1

(1− a)γ−1(2γ − 1)2γ−1
, (5.10)

where bν∗ = x0
(1−a)(2γ−1)
(2−a)(γ−1) . We remark that our insider will obtain bν∗ if the terminal prices are

higher than a certain threshold which is decreasing in both a and γ as economic intuition suggests.
Furthermore, bν∗ is decreasing in both parameters and the Q-probability of obtaining bν∗ is nothing
but (γ−1)(2−a)

(2γ−1)(1−a) , which is increasing in both γ and a. Finally, we note that VY (x0, ν) ≥ x0 obviously
holds. However, there is no clear dependence of VY (x0, ν) in the parameters.

6 Conclusions
In this paper we considered portfolio optimization problems for investors following different preference
paradigms. Classical expected utility, CPT and Yaari’s dual theory maximizers have been studied
under both (weakly) informed and non-informed case. The informed case is easy to handle, since the
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techniques developed by, e.g., [6] in both CPT and Yaari-type cases, can be applied with basically
no changes. On the contrary, for the non informed investor, those results cannot be directly applied.
Nonetheless, the corresponding optimization problems can be solved using similar techniques, leading
to a family of optimal solutions, for which uniqueness in distribution of the solution replaces the
uniqueness almost surely. In particular, a non expected utility trader obtains an optimal terminal
payoff which looks like a gamble on the final price, where this payoff can even be negative in the
CPT case. We proved the intuitive fact that the optimal value of a CPT informed agent is always
bigger than that of a CPT non-informed agent. In other terms, the value of the (weak) information
is always positive. Moreover, in CPT I-agent case, ill-posedness is an even more delicate issue than
in the non-informed case. In some involved examples, we performed some graphical analysis which
helped us to understand well-posedness as a function of model’s parameters.

Another contribution of this paper are explicit computations of the optimal terminal wealths of a
CPT and a Yaari-type insider. In particular, we proposed two new classes of probability distortions, a
convex and a concave one and a new example of weak information which turns out to be economically
meaningful (see Examples 3.1, 4.1 and 5.1).

The partial and the strong information cases are left for future research.

A A Choquet maximization problem
Our aim is to solve a general utility maximization problem which includes a Choquet capacity:

Maximize V1(X) =
∫ +∞

0
T (P{u(X) > y}) dy

subject to EP[X] = a, X ≥ 0,
(A.1)

where a ≥ 0, T : [0, 1]→ [0, 1] is a strictly increasing, differentiable function with T (0) = 0, T (1) = 1,
and u(·) is a strictly concave, strictly increasing, twice differentiable function with u(0) = 0, u′(0) =
+∞, u′(+∞) = 0. Note that the only difference with the Choquet maximization problem solved in
[6], Appendix C, is that their weighting function ξ in the constraint is not atomless, being here a
Dirac mass. This makes impossible to use directly their results.
We will denote by X∗ the optimal solution to Problem (A.1). The case a = 0 is trivial, as it implies
X∗ = 0 with optimal value V1(X∗) = 0; therefore assume a > 0. First of all we have the following
result, which states the law-invariance property of the problem.

Lemma A.1. Suppose that Problem (A.1) admits a feasible solution X whose distribution function
is G(·); then for every random variable Z ∼ U(0, 1) w.r.t. P we have V1(X) = V1

(
G−1(Z)

)
.

Proof. One can easily guess from the structure of Problem (A.1) that the only relevant feature of the
optimal solution is its distribution. Formally, for any such Z we can compute

EP[G−1(Z)] =

∫ +∞

0

P{G−1(Z) > y}dy =

∫ +∞

0

P{X > y} dy = EP[X] = a,

thus the random variable G−1(Z) is feasible and we have

V1(X) =

∫ +∞

0

T (P{u(X) > y}) dy =

∫ +∞

0

T (P{X > u−1(y)}) dy

=

∫ +∞

0

T (1− P{X ≤ u−1(y)}) dy =

∫ +∞

0

T (1−G(u−1(y))) dy

=

∫ +∞

0

T (P{Z > G(u−1(y))}) dy =

∫ +∞

0

T (P{u(G−1(Z)) > y)}) dy

= V1(G−1(Z))

as claimed.

We notice at once the difference between our Lemma A.1 and Lemma C.1 in [6]: we do not have
an almost sure result. However we proved that for any such Z the previous equivalence holds, thus
it is clearly true even for an optimal X∗. Thus we are free to choose any Z uniformly distributed.
This is a general feature of our results, i.e. replacing the almost sureness with a weaker condition on
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the distribution functions which gives us an additional degree of freedom. From now on, we follow
[6] with some slight modifications. Let’s introduce the problem

Maximize v1(G) :=
∫ +∞

0
T (P{u(G−1(Z)) > y}) dy

subject to

{
EP[G−1(Z)] = a,

G is the distribution function of a non negative random variable,

(A.2)

which changes the domain of our problem from a set of random variables to a set of functions. The
functions G(·) appearing in the constraints must be non-decreasing, càdlàg and satisfy G(0−) = 0,
G(+∞) = 1. From Lemma A.1 we deduce the equivalence between the two previous Problems (A.1)
and (A.2).

Proposition A.1. If G∗ is optimal for Problem (A.2), then for any Z ∼ U(0, 1) w.r.t. P the random
variable X∗ := (G∗)−1(Z) is optimal for Problem (A.1). Conversely, if X∗ is optimal for (A.1), then
its distribution function G∗ is optimal for (A.2).

Performing the same calculations as in [6] and setting

Γ :=
{
g : [0, 1)→ R+, g is non-decreasing, left continuous, with g(0) = 0

}
,

we can rewrite Problem (A.2) as

Maximize v1(g) := E[u(g(Z))T ′(1− Z)]

subject to EP[g(Z)] = a, g ∈ Γ.
(A.3)

Thanks to the assumptions on T (·) and u(·) we now have a concave optimization problem in g(·) and
we can use Lagrange method. Thus, for a given λ ∈ R, we can solve

Maximize vλ1 (g) := E[u(g(Z))T ′(1− Z)− λg(Z)]

subject to g ∈ Γ,
(A.4)

and then determine λ via the original constraint. As noticed in [6], if we ignore the constraint and
apply standard maximization techniques we find g(z) = (u′)−1(λ/T ′(1 − z)). Moreover, if T ′(z) is
non-increasing in z ∈ (0, 1], then g(z) is non-decreasing in z ∈ [0, 1) and therefore it solves Problem
(A.4). However, if T ′(z) is not non-increasing then we are not able to find an explicit solution10. We
remark that if T (z) is twice continuously differentiable, then T ′(z) non-increasing amounts to require
a concave T (·). In particular T (·) = id satisfies this condition.

Denote Ru(x) := −xu
′′(x)

u′(x) , x > 0, the index of Relative Risk Aversion (RRA for short) of the
function u(·). We have

Proposition A.2. Assume that T ′(z) is non-increasing in z ∈ (0, 1] and lim infx→+∞Ru(x) > 0.
Then for any Z ∼ U(0, 1) w.r.t. P, the following claims are equivalent:

(i) Problem (A.3) is well-posed for any a > 0.

(ii) Problem (A.3) admits a unique optimal solution for any a > 0.

(iii) EP
[
u
(

(u′)−1( 1
T ′(1−Z) )

)
T ′(1− Z)

]
< +∞.

(vi) EP
[
u
(

(u′)−1( λ
T ′(1−Z) )

)
T ′(1− Z)

]
< +∞ ∀ λ > 0.

Furthermore, when one of the above (i)-(iv) holds, the optimal solution to Problem (A.3) is

g∗(x) ≡ (G∗)−1(x) = (u′)−1

(
λ

T ′(1− x)

)
, x ∈ [0, 1),

where λ > 0 is the one satisfying EP[(G∗)−1(1− Z)] = a.
10If one restricts the domain to the set of step functions g ∈ Γ, then solving (A.4) is equivalent to solving a non-linear

programming problem in Rn, which once again does not have an easy explicit solution.
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Proof. As in the proof of Proposition C.2 in [6], we can define a new probability measure P̃ such that
dP̃ = T ′(1− Z) dP and a random variable ζ := 1

T ′(1−Z) which is positive P-a.s.. We can now rewrite
Problem (A.3) as follows.

Maximize v1(g) := EP̃[u(g(Z))]

subject to EP̃[ζg(Z)] = a, g ∈ Γ.

By [5], Theorem 5.4, we get the result.

We remark that the claim (ii) (as it appears in Proposition C.2 of [6]) still holds true because the
optimal solution g∗(·) to Problem (A.3) determines the inverse of a distribution function whereas the
optimal solution X∗ to Problem (A.1) is not unique P-a.s. as it depends on the choice of Z. However,
X∗ is unique in law. Moreover we could also replace 1 − Z with Z in every explicit expression
containing an expected value, since Z ∼ U(0, 1) as well. Now we can state the main result of this
section.

Theorem A.1. Assume that T ′(z) is non-increasing in z ∈ (0, 1] and lim infx→+∞Ru(x) > 0; for
any fixed Z ∼ U(0, 1) w.r.t. P define X(λ) := (u′)−1

(
λ

T ′(1−Z)

)
for λ > 0. If V1(X(1)) < +∞,

then X(λ) is an optimal solution of Problem (A.1), where λ is the one satisfying EP[X(λ)] = a. If
V1(X(1)) = +∞, then Problem (A.1) is ill-posed.

With the obvious changes in the proofs, we can also state a necessary condition for optimality as
in [6].

Lemma A.2. If g(·) is optimal for Problem (A.4), then either g ≡ 0 or g(x) > 0 ∀ x > 0.

Theorem A.2. If X∗ is an optimal solution for Problem (A.1) with some a > 0, then
P{X∗ = 0} = 0.

Note that these last results do not depend on the choice of Z. They will be useful in order to
state monotonicity properties of the value function of a CPT non-informed agent.

B A Choquet minimization problem
In this section we solve a general utility minimization problem including a Choquet capacity:

Minimize V2(X) :=
∫ +∞

0
T (P{u(X) > y}) dy

subject to EP[X] = a, X ≥ 0,
(B.1)

where a, T (·) satisfy the same hypothesis employed in Problem (A.1) and u(·) is strictly increasing,
concave and u(0) = 0. Once again the only difference with respect to the Choquet minimization
problem solved in [6], Appendix D, is the absence of the atom-less weighting function ξ.
We will denote as usual by X∗ the optimal solution to Problem (B.1). Note that there is always
a feasible solution, namely X = a P-a.s.; hence the optimal value of Problem (B.1) is a finite non-
negative number. Proceeding as in Appendix A we can show the following law-invariance lemma.

Lemma B.1. Suppose Problem (B.1) admits a feasible solution X whose distribution function is
G(·); then for every random variable Z ∼ U(0, 1) w.r.t. P we have V1(X) = V1

(
G−1(Z)

)
.

Thus, we can look for a solution to the following problem:

Minimize v2(g) := E[u(g(Z))T ′(1− Z)]

subject to EP[g(Z)] = a, g ∈ Γ,
(B.2)

where g(·) represents the inverse of a distribution function G(·), i.e. g(·) = G−1(·). As already
pointed out in [6], Problem (B.2) is a difficult one since we have to minimize a concave objective
function in a function space. Again we can seek among corner point solutions and by straightforward
modifications of the proof of Proposition D.2 in [6], we can prove the next result.

Proposition B.1. Assume that u(·) is strictly concave at 0. Then the optimal solution for Problem
(B.2), if it exists, must be in the form g(t) = a

1−bI(b,1)(t), t ∈ [0, 1).
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Obviously by left continuity of g(·) we can extend the optimal g(·) over [0, 1] by setting g(1) := a
1−b .

Moreover, g(·) is uniformly bounded in t ∈ [0, 1], so it follows by the previous lemma that an X∗

optimal for Problem (B.1) is uniformly bounded from above. Thanks to the previous proposition,
we can reduce our problem to finding an optimal real number b ∈ [0, 1). Therefore we introduce the
following minimization problem:

Minimize v2(b) := E[u(g(Z))T ′(1− Z)]

subject to g(·) = a
1−bI(b,1](·), 0 ≤ b < 1.

(B.3)

Adapting the proofs of Proposition D.3 and Theorem D.1 in [6], we can obtain the following result.

Proposition B.2. Problems (B.2) and (B.3) have the same infimum values.

Theorem B.1. Problems (B.1) and (B.3) have the same infimum values. If, in addition, u(·) is
strictly concave at 0, then Problem (B.1) admits an optimal solution if and only if the following
problem

min
0≤b<1

u

(
a

1− b

)
T (1− b)

admits an optimal solution b∗, in which case the optimal solution to Problem (B.1) is of the form
X∗ = a

1−b∗ I(b∗,1](Z) for any choice of Z ∼ U(0, 1) w.r.t. P.

C The solution of a CPT non-informed agent’s problem
We will now proceed to solve Problem (CPT-N). The scheme of the solution is nothing but the one
already showed in [6]. Some results will be just restated without proofs as they need only slight
and straightforward adaptations. As already noted, the main changes are due to the constraint
EQ[X] = x0. Recall Problem (CPT-N):

Maximize V (X) = V+(X+)− V−(X−)

subject to EQ[X] = x0, X is FT -measurable and Q a.s. bounded from below,

where

V+(X+) :=

∫ +∞

0

T+(Q{u+(X+) > y}) dy, V−(X−) :=

∫ +∞

0

T−(Q{u−(X−) > y}) dy.

As noticed in [6], Proposition 3.1, to avoid systematic ill-posedness we will impose

Assumption C.1. V+(X) < +∞ for any nonnegative, FT -measurable random variable X satisfying
EQ[X] < +∞.

We now split Problem (CPT-N) into its positive and negative part, also defining their respective
optimal values v+(A, x+) and v−(A, x+) as usual; after that we merge them back:

• Positive Part Problem: given the pair (A, x+), with A ∈ FT and x+ ≥ x+
0 ,

Maximize V+(X) =
∫ +∞

0
T+(Q{u+(X) > y}) dy

subject to EQ[X] = x+, X ≥ 0 Q a.s., X = 0 Q a.s. on AC .
(C.1)

• Negative Part Problem: given the pair (A, x+), with A ∈ FT and x+ ≥ x+
0 ,

Minimize V−(X) =
∫ +∞

0
T−(Q{u−(X) > y}) dy

subject to
{

EQ[X] = x+ − x0, X ≥ 0 Q a.s., X = 0 Q a.s. on A,
X is upper bounded Q a.s..

(C.2)

• Merged Problem:

Maximize v+(A, x+)− v−(A, x+)

subject to

{
A ∈ FT , x+ ≥ x+

0 ,

x+ = 0 if Q(A) = 0, x+ = x0 if Q(A) = 1.

(C.3)
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With only a few and simple adaptations, we can prove the following two results.

Proposition C.1 ([6], Proposition 5.1). Problem (CPT-N) is ill-posed if and only if Problem (C.3)
is ill-posed.

Proposition C.2 ([6], Proposition 5.2). Given X∗, define A∗ := {ω : X∗ ≥ 0} and x∗+ := EQ[(X∗)+].
Then X∗ is optimal for Problem (CPT-N) if and only if (A∗, x∗+) are optimal for Problem (C.3) and
(X∗)+ and (X∗)− are respectively optimal for Problems (C.1) and (C.2) with parameters (A∗, x∗+).

Therefore, the original Problem (CPT-N) for N-agent is equivalent once more to the set of Prob-
lems (C.1)-(C.3). The next step is the crucial one, as it completely changes the structure of the
solution of our problem. We will not be able to obtain the almost sure characterization results ob-
tained in [6]. On the other hand, we can avoid the technical details related to the comonotonicity and
anti-comonotonicity of the random variables employed in the solution (see [6], Appendix B, where a
series of so-called quantile problems is solved).

The fact is that the density ρ allowed for a huge simplification of the overall procedure, since it
made possible to look for a solution where the set A was of the form {ρ ≤ c} for some real number
c ∈ [ρ, ρ]. Now we can find a quite similar result adapting the proof of Theorem 5.1 in [6]; this will
substantially reduce the complexity of Problem (C.3).

Theorem C.1. For any feasible (A, x+) of Problem (C.3) such that Q(A) = p and for every (Ω,F )
random variable Z ∼ U(0, 1) w.r.t. Q, we have

v+(A, x+)− v−(A, x+) ≥ v+(A, x+)− v−(A, x+), (C.4)

where A := {Z ≤ p}.

Proof. Fix a random variable Z ∼ U(0, 1). The cases x+ = x+
0 and p = 0 or p = 1 are trivial, so we

assume that x+ > x+
0 and p ∈ (0, 1). Define B := AC and A := {Z ≤ p} and set

A1 = A ∩ {Z ≤ p}, A2 = A ∩ {Z > p},
B1 = B ∩ {Z ≤ p}, B2 = B ∩ {Z > p}.

Note that Q(A1 ∪ A2) = Q(A1 ∪ B1) = p, so that Q(A2) = Q(B1). If Q(A2) = 0 then the result
is trivial, so suppose Q(A2) > 0. Choose a feasible solution X1 for Problem (C.1) with parameters
(A, x+); we will prove that V+(X1) ≤ v+(A, x+) (the proof for a feasible solution X2 for Problem
(C.2) is analogous). To this end, define f1(t) := Q{X1 ≤ t|A2}, g1(t) := Q{Z ≤ t|B1}, t ∈ [0, 1],
Z1 := g1(Z) and Y1 := f−1

1 (Z1). Note that Z has no atoms w.r.t. Q, which in turn implies that
it has no atoms w.r.t. Q(·|B1). Moreover one can show that Z1 ∼ U(0, 1) w.r.t. Q(·|B1), implying
Q{Y1 ≤ t|B1} = Q{Z1 ≤ f1(t)|B1} = f1(t). To see this note that

g1(t) =
Q{AC ∩ (Z ≤ t) ∩ (Z ≤ p)}

Q{AC ∩ (Z ≤ p)}
=

Q{AC ∩ (Z ≤ t ∧ p)}
Q{AC ∩ (Z ≤ p)}

,

so we can compute

Q{Z1 ≤ t|B1} =
Q{AC ∩ (Z1 ≤ t) ∩ (Z ≤ p)}

Q{AC ∩ (Z ≤ p)}
=

Q{AC ∩ (Z ≤ g−1
1 (t) ∧ p)}

Q{AC ∩ (Z ≤ p)}
= g1

(
g−1

1 (t)
)

= t.

Consequently, EQ[X1IA2 ] = Q(A2)EQ[X1|A2] = EQ[Y1IB1 ]. Now set X1 := X1IA1 + Y1IB1 . Then
EQ[X1] = EQ[X1], so X1 is feasible for Problem (C.1) with parameters (A, x+). Finally it is obviously
seen that Q{X1 > t} = Q{X1 > t}, therefore by the definition of V+(·) it follows that V+(X1) ≥
V+(X1). Combining this with the similar result for the Negative Part Problem we get the desired
inequality (C.4).

The meaning of Theorem C.1 is that a non-informed agent cares only about the probability of
events, no matter what structure they have or what economic phenomenon they represent. In what
follows, it will be clear that for such an agent investing in a risky asset is not so different than tossing
a coin or betting on horses!11

11Recall that also in the original framework in [6], the optimal policy for an investor was to behave like a gambler,
but she would choose a terminal gain accompanied with a high price of the underlying stock, opposite to a final loss if
the terminal price would have fallen below a certain threshold.
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We can now proceed similarly to Jin and Zhou [6], using v+(p, x+) and v−(p, x+) to denote
v+({ω : Z ≤ p}, x+) and v−({ω : Z ≤ p}, x+) respectively. Note that we can freely choose Z, and the
previous definition is in some sense independent of Z thanks to previous Theorem C.1. Accordingly,
we replace Problem (C.3) by the easier constrained optimization problem in R2:

Maximize v+(p, x+)− v−(p, x+)

subject to

{
p ∈ [0, 1], x+ ≥ x+

0 ,

x+ = 0 if p = 1, x+ = x0 if p = 0.

(C.5)

Using Theorem C.1 we obtain the general structure of the solution to Problem (CPT-N), which is
indeed similar to the in [6]. In what follows we will consider such a Z fixed and denote with X∗ the
optimal solution depending on Z.

Theorem C.2. Given X∗ and Z, define p∗ := Q{X∗ ≥ 0}, x∗+ := EQ[(X∗)+]. Then X∗ is op-
timal for Problem (CPT-N) if and only if (p∗, x∗+) is optimal for Problem (C.5) and (X∗)+IZ≤p∗

and (X∗)−IZ>p∗ are respectively optimal for Problems (C.1) and (C.2) with parameters ({ω : Z ≤
p∗}, x∗+).

The next step consists in solving the positive and the negative part Problems (C.1) and (C.2)
using the results obtained in Appendix A and B respectively. In order to obtain a more explicit
result, we impose the following conditions.

Assumption C.2. T ′+(z) is non-increasing for z ∈ (0, 1], lim infx→+∞−
xu′′+(x)

u′+(x) > 0 and for any

Z ∼ U(0, 1) w.r.t. Q we have EQ
[
u+

(
(u′+)−1( 1

T ′(Z) )
)
T ′(Z)

]
< +∞.

At this point we can perform the same procedure used in [6], Section 6.1, to obtain

Theorem C.3. Let Assumption C.2 hold. For any Z ∼ U(0, 1) w.r.t. Q and for a given p ∈ [0, 1],
set A := {ω : Z ≤ p}; let x+ ≥ x+

0 be given. Then:

(i) if x+ = 0, then the optimal solution of Problem (C.1) is X∗ = 0 and v+(p, x+) = 0;

(ii) if x+ > 0, p = 0 then there is no feasible solution to Problem (C.1) and v+(p, x+) = −∞;

(iii) if x+ > 0, p ∈ (0, 1] then the optimal solution to (C.1) is X∗(λ) = (u′+)−1
(

λ
T ′+(Z)

)
IZ≤p with the

optimal value v+(p, x+) = EQ
[
u+

(
(u′+)−1

(
λ

T ′+(Z)

))
T ′+(Z)IZ≤p

]
, where λ > 0 is the unique

real number satisfying EQ[X∗(λ)] = x+.

Proof. Cases (i) and (ii) are trivial; to prove (iii) we follow an argument similar to that in the
proof of Theorem 6.1 in [6]. Define TA(x) := T+(xQ(A))

T+(Q(A)) = T+(xp)
T+(p) , x ∈ [0, 1] and the conditional

probability measure QA := Q(·|A). Now consider Problem (C.1) in the conditional probability space
(Ω ∩A,F ∩A,QA), i.e.

Maximize V+(Y ) = T+(p)
∫ +∞

0
TA(QA{u+(Y ) > y}) dy

subject to EQA [Y ] = x+

p , Y ≥ 0.
(C.6)

We can apply Theorem A.1 to Problem (C.6) choosing any random variable Z̃ ∼ U(0, 1) w.r.t. QA;
note that every required assumption for Theorem A.1 is still fulfilled. At this point, in order to
simplify calculations as much as possible, we see that once Z is chosen there is a canonical choice of
Z̃: Z̃ = 1− g(Z), where g(z) := Q{Z ≤ t|A}. In fact we can show that if Z ∼ U(0, 1) w.r.t. Q, then
Z̃ has the same distribution w.r.t. QA. To see this, note that

QA{Z̃ ≤ t} =
Q{Z̃ ≤ t, A}

p
=

Q{1− g(Z) ≤ t, Z ≤ p}
p

= t, t ∈ (0, 1),

where we used
g(t) =

Q{Z ≤ t ∧ p}
p

=
t ∧ p
p

.
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Using such a choice of Z̃ we can find that an optimal solution to Problem (C.1) is given by X∗ =

(u′+)−1
(

λT+(p)
pT ′+(pg(Z))

)
IZ≤p, where λ is uniquely determined by the constraint. We now observe that

on the set {Z ≤ p} we have g(Z) = Z/p; finally we set λ := λT+(p)
p to find our results.

Comparing this result to the analogous in [6], we see that the link between the two solutions
is substantially made by the replacement of the set {ρ ≤ c} with {Z ≤ p}. In particular c = ρ
corresponds to p = 0 and c = ρ corresponds to p = 1. Thanks to the free choice of Z, we see once
more that a non-informed agent is only interested in probabilities, not in events.

With a simple modification in the proof of [6], Proposition 6.2, we can also state the strict
monotonicity of the optimal value v+(·, x+) w.r.t. p.

Proposition C.3. If x+ > 0 and Z ∼ U(0, 1) w.r.t. Q, then Problem (C.1) admits an optimal
solution with parameters ({Z ≤ p}, x+) only if v+(p, x+) > v+(p, x+) for any p > p.

We now proceed to solve the negative part Problem (C.2). We follow again the arguments applied
in [6], Section 7, combining them with our results in Appendix B.

Theorem C.4. Assume that u−(·) is strictly concave at 0. For any Z ∼ U(0, 1) w.r.t. Q and for a
given p ∈ [0, 1] set A := {ω : Z ≤ p}. Let x+ ≥ x+

0 be given. Then:

(i) if p = 1, x+ = x0 then the optimal solution of Problem (C.2) is X∗ = 0 and v−(p, x+) = 0;

(ii) if p = 1, x+ 6= x0 then there is no feasible solution to Problem (C.2) and v−(p, x+) = +∞;

(iii) if p ∈ [0, 1) then v−(p, x+) = inf0≤b<1 u−

(
x+−x0

(1−p)(1−b)

)
T− ((1− p)(1− b)) . Moreover, Problem

(C.2) with parameters (A, x+) admits an optimal solution X∗ if and only if the minimization
problem

min
0≤b<1

u−

(
x+ − x0

(1− p)(1− b)

)
T− ((1− p)(1− b)) (C.7)

admits an optimal solution b∗, in which case X∗ = x+−x0

(1−p)(1−b∗)IZ>(1−p)b∗+p .

Proof. Cases (i) and (ii) are trivial; to prove (iii) we define TAC (x) := T−(xQ(AC)
T−(Q(AC))

= T−(x(1−p))
T−(1−p) ,

x ∈ [0, 1] and the conditional probability measure QAC := Q(·|AC). Let’s consider Problem (C.2) in
the conditional probability space (Ω ∩AC ,F ∩AC ,QAC ):

Minimize V−(Y ) = T−(1− p)
∫ +∞

0
TAC (QAC{u−(Y ) > y}) dy

subject to EQAC [Y ] = x+−x0

1−p , Y ≥ 0, Y QAC a.s. bounded.
(C.8)

Now we apply Theorem B.1 to Problem (C.8), choosing any random variable Z̃ ∼ U(0, 1) w.r.t. QAC .
Once again, when Z is chosen there is a canonical choice of Z̃: Z̃ = g(Z), where g(t) := Q{Z ≤ t|AC}.
Indeed, if Z ∼ U(0, 1) w.r.t. Q then Z̃ has the same distribution w.r.t. QAC . To see this, observe
that

QAC{Z̃ ≤ t} =
Q{Z̃ ≤ t, AC}

1− p
=

Q{g(Z) ≤ t, Z > p}
1− p

=
Q{Z ≤ g−1(t), Z > p}

1− p
,

but we can compute

g(t) =
Q{Z ≤ t, Z > p}

1− p
=
t− p
1− p

∧ 0,

therefore we obtain QAC{Z̃ ≤ t} = t, t ∈ (0, 1). Using such a choice of Z̃ and recalling that an
optimal solution to Problem (C.8) is automatically bounded (if it exists), we can find that an optimal
solution to Problem (C.2) is

X∗ = x+−x0

(1−p)(1−b∗)IZ>pIg(Z)∈(b∗,1] = x+−x0

(1−p)(1−b∗)IZ>(1−p)b∗+p,

thanks to the fact that on the set {Z > p} we have g(Z) = Z−p
1−p ≥ b

∗ if and only Z ≥ (1−p)b∗+p.
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At last we have to merge these results to obtain the overall solution to Problem (CPT-N). As in
[6] we take an intermediate step using the following problem

Maximize v+(p, x+)− u−
(
x+−x0

1−p

)
T−(1− p)

subject to

{
p ∈ [0, 1], x+ ≥ x+

0 ,

x+ = 0 if p = 1, x+ = x0 if p = 0,

(C.9)

where we set u−
(
x+−x0

1−p

)
T−(1− p) := 0 if p = 1 and x+ = x0. By simply adapting the proofs in [6],

Lemma 8.1 and Proposition 8.1, we claim:

Lemma C.1. For any feasible pair (p, x+) for Problem (C.5), u−
(
x+−x0

1−p

)
T−(1− p) ≥ v−(p, x+).

Proposition C.4. Problems (C.5) and (C.9) have the same supremum values.

Finally we state the main result of this section:

Theorem C.5. Assume that u−(·) is strictly concave at 0. We have the following results:

(i) if X∗ is optimal for Problem (CPT-N), then p∗ := Q{X∗ ≥ 0}, x∗+ := EQ[(X∗)+] are optimal
for Problem (C.9);

(ii) if (p∗, x∗+) is optimal for Problem (C.9) and X∗+ is optimal for Problem (C.1) with parameters
({Z ≤ p∗}, x∗+), where Z ∼ U(0, 1) w.r.t. Q, then X∗ := (X∗)+IZ≤p∗ −

x∗+−x0

1−p∗ IZ>p∗ is optimal
for Problem (CPT-N).

To conclude, if Assumption C.2 is in force, then for any Z ∼ U(0, 1) w.r.t. Q we have

X∗ = (u′+)−1

(
λ

T ′+(Z)

)
IZ≤p∗ −

x∗+ − x0

1− p∗
IZ>p∗ ,

V (X∗) = EQ
[
u+

(
(u′+)−1

(
λ

T ′+(Z)

))
T ′+(Z)IZ≤p∗

]
− u−

(
x∗+ − x0

1− p∗

)
T−(1− p∗),

where (p∗, x∗+) are optimal for Problem (C.9) and λ satisfies EQ
[
(u′+)−1

(
λ

T ′+(Z)

)
IZ≤p∗

]
= x∗+. We

finally notice that this construction could be considered as an adaptation of the model set up in [6]
if we had started with prices following a geometric or an arithmetic Brownian motion, as it is often
assumed in the finance literature.
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