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Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks

A Mindlin-Timoshenko model with non constant and non smooth coefficients set in a bounded domain of R d , d ≥ 1 with some internal dissipations is proposed. It corresponds to the coupling between the wave equation and the dynamical elastic system. If the dissipation acts on both equations, we show an exponential decay rate. On the contrary if the dissipation is only active on the elasticity equation, a polynomial decay is shown; a similar result is proved in one dimension if the dissipation is only active on the wave equation.

Introduction

In this paper we consider the internal stabilization of the following Mindlin-Timoshenko (beam/plate) model set in a bounded domain Ω of R d , d ∈ N * , with a Lipschitz boundary Γ (for a simpler model, see Chapter 5 of [START_REF] Lagnese | Boundary stabilization of thin plates[END_REF], Chapters 2 and 4 of [START_REF] Lagnese | Modelling analysis and control of thin plates[END_REF] and [START_REF] Fernández Sare | On the stability of Mindlin-Timoshenko plates[END_REF]) [START_REF] Alabau-Boussouira | Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control[END_REF] Jw tt = div(K(∇w + u)) -aw t , ρu tt = div C (u) -K(∇w + u) -bu t , in Ω × (0, +∞), with the boundary conditions

(2) u = 0, w = 0 on Γ × (0, +∞), and, finally, the initial conditions

(3) u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), w(x, 0) = w 0 (x), w t (x, 0) = w 1 (x), in Ω.

If d = 1 (resp. d = 2) the scalar variable w represents the displacement of the beam (resp. plate) in the vertical direction, while the vectorial variable u = (u i ) d i=1 is the angles of rotation of a filament of the beam (resp. plate).

The coefficients ρ and J are in L ∞ (Ω) and are positive definite in the sense that there exist positive constants ρ 0 and J 0 such that ρ(x) ≥ ρ 0 , J(x) ≥ J 0 for a.e. x ∈ Ω; K belongs to L ∞ (Ω) d×d , is symmetric and positive definite, i.e., there exists a positive constant k 0 such that X K(x)X ≥ k 0 , ∀X ∈ R d , for a.e. x ∈ Ω.

Similarly C = (c ijk ) is a tensor such that (4)

c ijk = c ji k = c k ij ∈ L ∞ (Ω),
all indices running over the integers 1, • • • , d. These quantities are related to the constitutive materials of the beam/plate. As usual for u = (u i ) d i=1 , (u) is the linear strain tensor defined by

(u) = ( ij (u)) d i,j=1
with ij (u) = 1 2 (∂ i u j + ∂ j u i ).

For a d × d matrix = ( ij ) d i,j=1 the product C = ((C ) ij ) d i,j=1 is the d × d matrix given by

(C ) ij = d k, =1 c ijk k .
Finally for a (smooth enough) vector valued function v : Ω → R d , div v is its standard divergence, namely

div v = d j=1 ∂ j v j ,
while for a (smooth enough) matrix-valued function w = (w ij ) : Ω → R d×d , div w is its divergence line by line, i.e., div w = (

d j=1 ∂ j w ij ) d i=1 .
As usual we assume that C is positive definite in the sense that there exists µ 0 > 0 such that (5) C(x) : ≥ µ 0 | | 2 , ∀ ∈ R d×d , for a.e. x ∈ Ω.

Finally the coefficients a and b are also in L ∞ (Ω) (while the case of a matrix valued b can also be considered) and are nonnegative, i.e., a(x) ≥ 0, b(x) ≥ 0 for a.e. x ∈ Ω.

System (1) can be viewed as a coupling between the wave equation in w with the dynamical elastic system in u, the terms -aw t and -bu t are internal feedback laws.

In dimension d = 2 a standard choice is the case of an homogeneous and isotropic plate of thickness h (see [START_REF] Lagnese | Boundary stabilization of thin plates[END_REF][START_REF] Lagnese | Modelling analysis and control of thin plates[END_REF]) for which the above parameters are given by

ρ = ρh 3 12 , J = ρh, K = kEh 2(1 + µ) ,
and

c 1111 = c 2222 = D = Eh 3 12(1 -µ 2 ) , c 1122 = Dµ, c 1212 = 2D(1 -µ),
the other coefficients c ijk are either equal to one of these values using the relation [START_REF] Benchimol | A note on weak stabilizability of contraction semigroups[END_REF] or are equal to zero. Here k is called the shear correction coefficient, K is the shear modulus, D is the modulus of flexural rigidity and as usual E > 0 is the Young modulus, µ ∈ (0, 1/2) is the Poisson ratio and ρ > 0 is the mass density per unit volume. With these choices, system (1) takes the form:

(6)

ρhw tt = K div(∇w + u) -aw t , ρh 3 12 u tt = D( 1-µ 2 ∆u + 1+µ 2 ∇ div u) -K(∇w + u) -bu t ,
in Ω × (0, +∞).

Under the above assumptions, we easily prove that the system (1)-( 3) is well-posed using standard semigroup theory.

The main aim of this paper is to extend to the d-dimensional situation some earlier stabilization results obtained for constant coefficients in dimension 1 (case of a beam) and in dimension 2 only for system [START_REF] Costabel | Singularities of Maxwell interface problems[END_REF]. To our best knowledge the only existing result in dimension > 1 is for system (6) in dimension 2. For results in one dimension, let us quote the following references: Exponential decay rate obtained in [START_REF] Raposo | Exponential stability for the Timoshenko system with two weak dampings[END_REF] with two interior damping terms, exponential or polynomial decay rates with one interior damping term in [START_REF] Soufyane | Stabilisation de la poutre de Timoshenko[END_REF][START_REF] Muñoz Rivera | Global stability for damped Timoshenko systems[END_REF][START_REF] Soufyane | Uniform stabilization for the Timoshenko beam by a locally distributed damping[END_REF][START_REF] Alabau-Boussouira | Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control[END_REF][START_REF] Muñoz Rivera | Timoshenko systems with indefinite damping[END_REF][START_REF] Wehbe | Stabilization of the uniform Timoshenko beam by one locally distributed feedback[END_REF]. Let us also mention that an alternative approach is to use dissipation on the boundary, we refer to [START_REF] Kim | Boundary control of the Timoshenko beam[END_REF][START_REF] Xu | Exponential decay rate for a Timoshenko beam with boundary damping[END_REF][START_REF] Messaoudi | On the internal and boundary stabilization of Timoshenko beams[END_REF][START_REF] Soufyane | General decay of solutions of a nonlinear Timoshenko system with a boundary control of memory type[END_REF] for one-dimensional results. As mentioned in [START_REF] Fernández Sare | On the stability of Mindlin-Timoshenko plates[END_REF], in dimension greather than 2, the coupling is weaker than in dimension 1 and therefore stability results are quite chalenging.

Since in the d-dimensional situation and for discontinuous coefficients, the wave speeds are never equal (see below), we prove the polynomial stability of ( 1)-( 3) if only one feedback is used, i.e., if b is positive definite (a could be zero or non negative). The converse case b = 0 and a positive definite is also treated in dimension 1, the multi-dimensional case remains an open (and difficult) problem. Finally if a and b are positive definite we prove the exponential decay rate.

Quite recently the case of feedbacks with delays get an increasing interest, we refer to [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks[END_REF][START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF] for the wave equation and to [START_REF] Said-Houari | A stability result of a Timoshenko system with a delay term in the internal feedback[END_REF] for the Timoshenko system (in one dimension). We then finish this paper by showing that the addition of delayed feedback terms lead to similar decay rates when the additional terms are small enough.

The paper is organized as follows: In section 2 we show that our problem is well-posed by using semi-group theory. The strong stability of the system is analyzed in section 3 by using Benchimol's result. Sections 4 and 5 are devoted to the exponential or polynomial decay of the energy under appropriate sufficient conditions on the damping terms. Finally in section 6 we look at the situation when some delay terms are added.

Let us finish this introduction with some notation used in the remainder of the paper: The L 2 (Ω)-inner product (resp. norm) will be denoted by (•, •) (resp.

• ). The usual norm and semi-norm of H s (Ω) (s ≥ 0) are denoted by • s,Ω and | • | s,Ω , respectively. For s = 0 we drop the index s.

Well-posedness of the system

We consider the Hilbert space

H = H 1 0 (Ω) d × L 2 (Ω) d × H 1 0 (Ω) × L 2 (Ω),
equipped with the inner product

U, U * H = Ω C (u) : (ū * ) + ρv • v * + Jy ȳ * + K(∇w + u) • (∇ w * + ū * ) dx with U = (u, v, w, y) , U * = (u * , v * , w * , y * ) ∈ H.
It is indeed an inner product on H using Korn's and Poincaré's inequalities. By a standard reduction order method, (1)-( 3) can be rewritten as the first order evolution equation [START_REF] Fernández Sare | On the stability of Mindlin-Timoshenko plates[END_REF] U = AU, U (0) = U 0 = (u 0 , u 1 , w 0 , w 1 ) , where U is the vector U = (u, u t , w, w t ) and the operator A : D(A) → H is defined by

A     u v w y     :=       v ρ-1 div C (u) -K(∇w + u) -bv y J -1 div(K(∇w + u)) -ay       with domain D(A) := (u, v, w, y) ∈ H; v ∈ H 1 0 (Ω) d , y ∈ H 1 0 (Ω), div C (u) ∈ L 2 (Ω) d , div(K(∇w + u)) ∈ L 2 (Ω) .
We now prove that the operator A is the infinitesimal generator of a C 0 -semigroup of contractions over H. For that purpose we need the two following lemmas.

Lemma 2.1

The operator A is dissipative and satisfies, for all U = (u, v, w, y) ∈ D(A), [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF] AU, U H = -Ω (a|y| 2 + b|v| 2 )dx ≤ 0.

Proof. Take U = (u, v, w, y) ∈ D(A). Then, by the definition of A we may write

AU, U H = Ω C (v) : (ū) + (div C (u) -K(∇w + u) -bv) • v +(div(K(∇w + u)) -ay)ȳ + K(∇y + v) • (∇ w + ū) dx.
By a generalized Green formula (see formula (I.2.18) in [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF]), we have

Ω div C (u) • v dx = - Ω C (u) : (v) dx,
as well as

Ω div(K(∇w + u))ȳ dx = - Ω K(∇w + u) • ∇ȳ dx.
Using these two identities in the previous one directly leads to the conclusion.

Lemma 2.2 For all non negative real number λ, λId -A is surjective.

Proof. Fix a non negative real number λ and let F = (f, g, h, j) ∈ H. We look for U = (u, v, w, y) ∈ D(A) solution of λU -AU = F, or equivalently ( 9)

           λu -v = f ∈ H 1 0 (Ω) d , λv -ρ-1 div C (u) -K(∇w + u) -bv = g ∈ L 2 (Ω) d , λw -y = h ∈ H 1 0 (Ω), λy -J -1 div(K(∇w + u)) -ay = j ∈ L 2 (Ω).
Eliminating v and y in these last equations and taking into account the Dirichlet boundary conditions, we are first looking for u ∈ H 1 0 (Ω) d and w ∈ H 1 0 (Ω) solutions of ( 10)

   λ 2 u -ρ-1 div C (u) -K(∇w + u) -bλu = g λ ∈ L 2 (Ω) d , λ 2 w -J -1 div(K(∇w + u)) -aλw = j λ ∈ L 2 (Ω),
where

g λ = g + λ(1 + b)f, j λ = j + λ(1 + a)h.
Multiplying the first identity by a test function ū * and the second identity by a test function w * , integrating in space and using formal integration by parts, we obtain the weak formulation Since the sesquilinear form a λ is continuous and coercive on H 1 0 (Ω) d × H 1 0 (Ω) (for λ = 0 this a consequence of Korn's and Poincaré's inequality) and since the right-hand side of (11) defines a continuous linear form on this Hilbert space, by Lax-Milgram's lemma problem [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] 

(11) a λ ((u, w), (u * , w * )) = Ω (ρg λ • ū * + Jj λ w * ) dx ∀(u * , w * ) ∈ H 1 0 (Ω) d × H 1 0 (Ω),
has a unique solution (u, w) ∈ H 1 0 (Ω) d × H 1 0 (Ω).
This solution is a solution of (10) by taking test functions in the form (u * , 0) with u * ∈ D(Ω) d and (0, w * ) with w * ∈ D(Ω). This leads to the conclusion by seting v = λu -f and y = λw -h.

Semigroup theory yields that problem (1)-( 3) is well-posed in H:

Theorem 2.3
The operator A is the infinitesimal generator of a C 0 -semigroup of contractions over H, and thus for an initial datum U 0 ∈ H, there exists a unique solution

U ∈ C([0, +∞), H) to problem (7). Moreover, if U 0 ∈ D(A), then U ∈ C([0, +∞), D(A)) ∩ C 1 ([0, +∞), H).
Proof. Theorem I.4.6 of [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], Lemmas 2.1 and 2.2 imply that the domain of A is dense in H. It then suffices to apply Lumer-Philips's Theorem (see Theorem I.4.3 of [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]).

Strong stability

It is proved in [START_REF] Muñoz Rivera | Global stability for damped Timoshenko systems[END_REF] in dimension 1 that the system (1)-(3) (and different boundary conditions) is not exponentially stable if a = 0 and if the speeds of propagation of the first equation and of the second one are different. Since in the two-dimensional situation, the first equation has two speeds of propagation, we cannot expect to obtain an exponential stability, see [START_REF] Fernández Sare | On the stability of Mindlin-Timoshenko plates[END_REF]. Nevertheless we may hope a strong stability or even better a polynomial stability. For the simpler model ( 6) with a = 0 (in dimension 2), this was proved in [START_REF] Fernández Sare | On the stability of Mindlin-Timoshenko plates[END_REF]. In this section, we concentrate on strong stability results, stronger results are postponed to the next sections.

For that purpose we define the energy of ( 1)-( 3) by ( 12)

E(t) = 1 2 Ω C (u) : (ū) + K|∇w + u)| 2 + ρ |u t | 2 + J |w t | 2 dx,
which corresponds to the norm of (u, u t , w, w t ) in H (up to the factor 1/2).

Proposition 3.1 The solution (u, w) of ( 1)-( 3) with initial datum in D(A) satisfies

E (t) = - Ω (a |w t | 2 + b |u t | 2 )dx ≤ 0.
Therefore the energy is non increasing.

Proof. It suffices to derive the energy [START_REF] Kim | Boundary control of the Timoshenko beam[END_REF] for regular solutions and to use systems ( 1)-( 3). The calculations are analogous to those of the proof of the dissipativeness of A in Lemma 2.1, and then, are left to the reader.

To get strong stability results, we make use of the following result due to Benchimol [START_REF] Benchimol | A note on weak stabilizability of contraction semigroups[END_REF]:

Theorem 3.2
Let L be a maximal dissipative linear operator in a complex Hilbert space H. Assume that L has a compact resolvent and that L has no eigenvalues on the imaginary axis. Then e tL is strongly stable, i.e., e tL x → 0 in H as t → ∞, ∀x ∈ H.

In view of this theorem we now need to characterize the spectrum of A on the imaginary axis. This is the aim of the next Lemmas. Then A has no eigenvalues on the imaginary axis.

Proof. Since in Lemma 2.2 we have already shown that 0 belongs to the resolvent set of A, we only need to look at the eventual non zero eigenvalue λ ∈ C \ {0} of A. For that purpose let U = (u, v, w, y) ∈ D(A) be a non trivial solution of AU = λU, or equivalently (see ( 9)) ( 13)

       λu -v = 0, λv -ρ-1 (div C (u) -K(∇w + u) -bv) = 0, λw -y = 0, λy -J -1 (div(K(∇w + u)) -ay) = 0.
From the proof of Lemma 2.2, (u, w) ∈ H 1 0 (Ω) d × H 1 0 (Ω) is the unique solution of (see [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF])

a λ ((u, w), (u * , w * )) = 0 ∀(u * , w * ) ∈ H 1 0 (Ω) d × H 1 0 (Ω).
In particular (u, v) satisfies [START_REF] Lagnese | Boundary stabilization of thin plates[END_REF] a 0 ((u, w), (u, w)) + λα(u, w) + λ 2 β(u, w) = 0,

where α(u, w) = Ω (a|w| 2 + b|u| 2 ) dx, β(u, w) = Ω (J|w| 2 + ρ|u| 2 ) dx.
Since (u, w) is different from zero (otherwise U is zero), we can normalize it by taking β(u, w) = 1.

In that case

α(u, w) ≥ γ min{ 1 sup x∈Ω ρ(x) , 1 sup x∈Ω J(x) } > 0.
With this normalization, ( 14) reduces to (15) a 0 ((u, w), (u, w)) + λα(u, w) + λ 2 = 0.

The unique solutions of this quadratic equation in λ are then given by

λ ± = -α(u, w) ± α(u, w) 2 -4a 0 ((u, w), (u, w)) 2 .
We first notice that a 0 ((u, w), (u, w)) > 0 and therefore we distinguish two cases: 1. α(u, w) 2 -4a 0 ((u, w), (u, w)) < 0. In that case λ ± are complex with

λ ± = - α(u, w) 2 ,
which is negative.

2. α(u, w) 2 -4a 0 ((u, w), (u, w)) ≥ 0. In that case λ ± are real but negative because in this situation α(u, w) 2 -4a 0 ((u, w), (u, w)) < α(u, w).

In both cases, we have shown that the real part of any eigenvalue of A is negative. We now want to treat the more interesting cases a = 0 or b = 0. We start with the first case.

Lemma 3.4 Assume that b is positive definite. Then A has no eigenvalues on the imaginary axis.

Proof. As before let U = (u, v, w, y) ∈ D(A) be a non trivial solution of ( 13) with λ ∈ C \ {0}.

Assume that α(u, w) = 0, then u = 0 and by the first identity of ( 13), v = 0. Using the second identity of ( 13), we see that ∇w = 0 and consequently w = 0 (due to the Dirichlet boundary conditions on w). This is a contradiction and therefore α(u, w) is always positive. Hence we can use the arguments of the previous Lemma to conclude that λ < 0.

Lemma 3.5 Assume that b = 0, that a is positive definite and that all nonzero eigenvectors u ∈ H 1 0 (Ω) d with eigenvalue µ 2 (µ 2 > 0) of the elasticity system, i.e., solution of (16)

-div C (u) + Ku = µ 2 ρu, does not satisfy div(Ku) = 0.

Then A has no eigenvalues on the imaginary axis.

Proof. Again let U = (u, v, w, y) ∈ D(A) be a non trivial solution of ( 13) with λ ∈ C \ {0}.

Assume that α(u, w) = 0, then w = 0 and by the third identity of ( 13), y = 0. Using the last identity of ( 13), we see that div(Ku) = 0. Since the second identity means that u is solution of

-div C (u) + Ku = -λ 2 ρu,
we deduce that λ = iµ for some real number µ. By our assumption we deduce that u = 0, which is a contradiction. Therefore α(u, w) is always positive and we conclude as before.

Remark 3.6 In Lemma 3.5, the assumption on the elasticity system always holds in dimension one, since in that case, div(Ku) = 0 implies that u = 0. The situation is more complicated in higher dimension but can be checked on some particular cases. Indeed for the simpler system [START_REF] Costabel | Singularities of Maxwell interface problems[END_REF] in the square (0, π) 2 (d = 2), a solution of ( 16) which is divergence free would be an eigenvector of the (vectorial) Laplace operator with Dirichlet boundary conditions. Hence it should be of the form

m1,m2∈N * :m 2 1 +m 2 2 =n 2 1 +n 2 2 a (m1,m2) sin(m 1 x 1 ) sin(m 2 x 2 ),
with a (m1,m2) ∈ C 2 , for some n 1 , n 2 ∈ N * . It is easy to check that the divergence free property implies that all a (m1,m2) are zero and therefore this assumption holds for system (6) in a square.

Remark 3.7 The above Lemmas do not give any information about the distance from the eigenvalues to the imaginary axis. In one dimension with different boundary conditions this distance is zero if the speed of propagation are different as suggested by [START_REF] Muñoz Rivera | Global stability for damped Timoshenko systems[END_REF]. A similar phenomenon occurs for the simpler model ( 6) with different boundary conditions, we refer to [START_REF] Fernández Sare | On the stability of Mindlin-Timoshenko plates[END_REF].

The above lemmas characterize the spectrum of A on the imaginary axis. Hence using Benchimol's theorem we deduce the next stability result.

Corollary 3.8 Assume that D(A) is compactly embedded into H and that the assumptions of Lemma 3.3 or Lemma 3.4 or Lemma 3.5 are satisfied. Then system (1)-( 3) is strongly stable.

The assumption that D(A) is compactly embedded into H is very weak and holds in the following particular cases: 1. Assume that the coefficients are smooth (

C 2 ( Ω) is sufficient). If the boundary of Ω is C 1,1 , or if Ω is convex, then (17) D(A) = H 1 0 (Ω) d × (H 1 0 (Ω) ∩ H 2 (Ω) d × H 1 0 (Ω) × H 1 0 (Ω) ∩ H 2 (Ω)
and is consequently compactly embedded into H. Indeed in that case, for (u, v, w, y)

∈ D(A), the conditions div C (u) ∈ L 2 (Ω) d , div(K(∇w + u)) ∈ L 2 (Ω), are equivalent to div C (u) ∈ L 2 (Ω) d , div(K∇w) ∈ L 2 (Ω),
and by standard elliptic regularity results we deduce that u ∈ H 2 (Ω) d and w ∈ H 2 (Ω).

2. Assume that the coefficients are smooth. If Ω is a polygonal domain of the plane (d = 2), then ( 18)

D(A) = H 1 0 (Ω) 2 × (H 1 0 (Ω) 2 ∩ H s (Ω) 2 ) × H 1 0 (Ω) × (H 1 0 (Ω) ∩ H s (Ω)),
for some s ∈ (1, 2) and is consequently compactly embedded into H. As before for (u, v, w, y) ∈ D(A), the conditions

div C (u) ∈ L 2 (Ω) 2 , div(K(∇w + u)) ∈ L 2 (Ω), are equivalent to div C (u) ∈ L 2 (Ω) 2 , div(K∇w) ∈ L 2 (Ω),
and by regularity results from [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF][START_REF] Grisvard | Singularities in boundary value problems[END_REF] we deduce that u ∈ H 1+ (Ω) 2 and w ∈ H 1+ (Ω) for some > 0. 3. Let Ω be again a polygonal domain of the plane and assume that the coefficients are piecewise smooth, in the sense that Ω is partitioned into a finite number of polygonal subdomains Ω i such that the coefficients are smooth on each Ωi . Suppose further that K = kId with k piecewise smooth (and positive definite). Then the embedding [START_REF] Muñoz Rivera | Timoshenko systems with indefinite damping[END_REF] still holds for some s ∈ (1, 2). For the elastic part we use similar arguments, namely we still have

div C (u) ∈ L 2 (Ω) 2 ,
and by applying Theorem 4.2 of [START_REF] Nicaise | General interface problems I[END_REF], we deduce that u ∈ H 1+ (Ω) 2 for some > 0. The situation is a little bit more delicate for the diffusion part, because our assumptions do not guarantee that div(Ku) belongs to L 2 (Ω). Hence we introduce the auxiliary unknown

v = ∇w + u, that satisfies div(kv) ∈ L 2 (Ω), rot v ∈ L 2 (Ω), v • t = 0 on Γ.
Hence by Theorem 3.5 of [START_REF] Costabel | Singularities of Maxwell interface problems[END_REF] and Theorem 4.2 of [START_REF] Nicaise | General interface problems I[END_REF], we obtain the regularity

v ∈ H (Ω) 2
for some > 0. From its definition, we deduce that

∇w ∈ H (Ω) 2
for some > 0.

Exponential stability

In this section we want to prove the exponential decay of the energy of solutions of ( 1)-( 3) when a and b are positive definite. For that purpose we use the following result (see [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF] or [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF]):

Lemma 4.1 A C 0 semigroup e tL of contractions on a Hilbert space H is exponentially stable, i.e., satisfies

||e tL U 0 || ≤ C e -ωt ||U 0 || H , ∀U 0 ∈ H, ∀t ≥ 0,
for some positive constants C and ω if

(19) ρ(L) ⊃ iβ β ∈ R ≡ iR, and 
(20) sup β∈R (iβ -L) -1 < ∞,
where ρ(L) denotes the resolvent set of the operator L.

According to this Lemma we need to check the property (20) (recall that [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] was already studied in the previous section). It is shown in the following lemma. Proof. We use a contradiction argument, i.e., we suppose that ( 20) is false. Then there exist a sequence of real numbers β n → +∞ and a sequence of vectors

z n = (u n , v n , w n , y n ) in D(A) with z n H = 1 such that (21) (iβ n -A)z n H → 0 as n → ∞.
By [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF], this directly implies that ( 22)

iβ n u n -v n 1,Ω → 0, (23) 
iβ n w n -y n 1,Ω → 0, (24) 
iβ n ρv n -div C (u n ) + K(∇w n + u n ) + bv n → 0, (25) 
iβ n Jy n -div(K(∇w n + u n )) + ay n → 0.
We first notice that (26)

(iβ n -A)z n , z n H ≤ (iβ n -A)z n H z n H = (iβ n -A)z n H
and, by [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF],

(iβ n -A)z n , z n H = Ω a|y n | 2 + b|v n | 2 dx.
By the assumptions a ≥ γ > 0 and b ≥ γ > 0 a.e. in Ω, we deduce that

(27) v n → 0 in L 2 (Ω) d , y n → 0 in L 2 (Ω).
By ( 22) and ( 23) we directly get (28)

β n u n → 0 in L 2 (Ω) d , β n w n → 0 in L 2 (Ω).
This property and (24) imply that

(iβ n ρv n -div C (u n ) + K(∇w n + u n ) + bv n , u n ) → 0.
By Green's formula this is equivalent to

i(ρv n , β n u n ) + (C (u n ), (u n )) + (Ku n , u n ) + (K∇w n , u n ) + (bv n , u n ) → 0.
By ( 27) and ( 28), the first and last terms tend to zero, while the term

(K∇w n , u n )
tend also to zero thanks to [START_REF] Soufyane | Uniform stabilization for the Timoshenko beam by a locally distributed damping[END_REF] and the fact that ∇w n 1 (due to z n H = 1). We then deduce that

(C (u n ), (u n )) + (Ku n , u n ) → 0,
which, by Korn's inequality, means that (29)

u n → 0 in H 1 0 (Ω) d .
We now use [START_REF] Said-Houari | A stability result of a Timoshenko system with a delay term in the internal feedback[END_REF] and again w n 1 to write

(iβ n Jy n -div(K(∇w n + u n )) + ay n , w n ) → 0
Again using Green's formula this is equivalent to

i(Jy n , β n w n ) + (K∇w n , ∇w n ) + (Ku n , ∇w n ) + (ay n , w n ) → 0.
By the previous properties, the terms (Jy n , β n w n ), (Ku n , ∇w n ) and (ay n , w n ) go to zero and therefore we deduce that (K∇w n , ∇w n ) → 0.

By Poincaré's inequality we obtain (30)

w n → 0 in H 1 0 (Ω).
In conclusion, by ( 27), ( 29) and [START_REF] Xu | Exponential decay rate for a Timoshenko beam with boundary damping[END_REF] we have obtained that

z n H → 0, which contradicts z n H = 1.
Since the two hypotheses of Lemma 4.1 are proved in Lemma 3.3 and Lemma 4.2 we deduce the main result of this section. 3) is exponentially stable.

Polynomial stability

Our main goal is here to prove the polynomial decay of the energy of solutions of (1)-(3) in some particular but quite general situations. For that purpose we use the following result from Theorem 2.4 of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Bátkai | Polynomial stability of operator semigroups[END_REF][START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF] for weaker variants). Lemma 5.1 A C 0 semigroup e tL of contractions on a Hilbert space satisfies

||e tL U 0 || ≤ C t -1 l ||U 0 || D(L) , ∀U 0 ∈ D(L), ∀t > 1,
as well as

||e tL U 0 || ≤ C t -1 ||U 0 || D(L l ) , ∀U 0 ∈ D(L l ), ∀t > 1,
for some constant C > 0 and for some positive integer l if [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] holds and if

(31) lim sup |β|→∞ 1 β l (iβ -L) -1 < ∞.
As [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] was already studied in section 3, it remains to check the property [START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF].

Theorem 5.3 If b is positive definite and that K ∈ C 1 ( Ω) d×d , then there exists C > 0 such that for all U 0 ∈ D(A 6 ), the solution of system (1)-( 3) satisfies the following estimate

(44) E(t) ≤ C t -2 U 0 2 D(A 6 ) , ∀t > 1.
Remark 5. [START_REF] Benchimol | A note on weak stabilizability of contraction semigroups[END_REF] The previous Lemma improves the result from Theorem 4.2 of [START_REF] Fernández Sare | On the stability of Mindlin-Timoshenko plates[END_REF] where the obtained decay rate is t -1 for data in D(A 4 ). Indeed using Proposition 3.1 of [START_REF] Bátkai | Polynomial stability of operator semigroups[END_REF] , the decay (44) is equivalent to

E(t) ≤ C(γ) t -2γ U 0 2 D(A 6γ ) , ∀t > 1, for all γ > 0.

The case b = 0 in one dimension

According to Remark 3.6, the case b = 0 is difficult to treat in dimension higher than one. We conjecture that in that case no polynomial stability holds but we were not able to prove it. In order to give a positive result, we have treated the case d = 1.

Lemma 5.5 Assume that d = 1, b = 0, a is positive definite and K ∈ C 1 ( Ω). Then the resolvent operator of A satisfies condition [START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF] for l ≥ 6.

Proof. We still use a contradiction argument, i.e., we suppose that ( 31) is false for l ≥ 6. Then there exist a sequence of real numbers β n → +∞ and a sequence of vectors z n = (u n , v n , w n , y n ) in D(A) with z n H = 1 satisfying (32) or equivalently (33-(36). As before the assumption a > a 0 > 0 a.e. in Ω yields This property and (36) imply that

β 4 n (iβ n Jy n -div(K(∇w n + u n )) + ay n , w n ) → 0.
By Green's formula this is equivalent to

iβ 5 n (Jy n , w n ) + β 4 n (K∇w n , ∇w n ) + β 4 n ((Ku n ) , w n ) + β 4 n (ay n , w n ) → 0.
By the previous results, all the terms except the second one tend to zero, and therefore we deduce that

β 4 n (K∇w n , ∇w n ) → 0, that implies that (47) β 2 n w n → 0 in H 1 0 (Ω).
Now multiplying (36) by xKu n and integration yields

β 2 n (iβ n Jy n -div(K(∇w n + u n )) + ay n , xKu n ) → 0.
By Green's formula we obtain equivalently

iβ 3 n (Jy n , xKu n ) + β 2 n (Kw n , (xKu n ) ) -β 2 n ((Ku n ) , xKu n ) + (ay n , xKu n ) → 0.
Again all the terms except the third one tend to zero, and therefore we deduce that

β 2 n ((Ku n ) , xKu n ) → 0. But Green's formula leads to ((Ku n ) , xKu n ) = -(Ku n , (xKu n ) ) = -(Ku n , Ku n ) -(Ku n , (Ku n ) ), which shows that ((Ku n ) , xKu n ) = - 1 2 (Ku n , Ku n ).
From these properties, we have obtained that (48)

β n u n → 0 in L 2 (Ω).
Hence multiplying (35) by u n and integrating we have

(iβ n ρv n -(Cu n ) + K(w n + u n ), u n ) → 0, or equivalently iβ n (ρv n , u n ) + (Cu n , u n ) + (Ku n , u n ) + (Kw n , u n ) → 0.
The first and last terms tending to zero, we deduce that

(Cu n , u n ) + (Ku n , u n ) → 0,
which yields (49) u n → 0 in H 1 0 (Ω). Finally using (33) we have

(iβ n u n -v n , v n ) → 0,
and with the help of (48) we deduce that (50)

v n → 0 in L 2 (Ω).
The properties (45), (47), ( 49) and (50) furnish the contradiction.

Remark 5.6 The above arguments fail in dimension d ≥ 2 since in that case

(div(Ku n ), Ku n • x) = - 1 2 (Ku n , Ku n ).
In fact in dimension d ≥ 2, (47) is still valid and therefore one can show that

β 2 n div(Ku n ) → 0 in H -1 ( 
Ω). Unfortunately this property does not give any information on the convergence of u n to 0 in L 2 (Ω) d .

As before, the two hypotheses of Lemma 5.1 being proved in Lemma 3.5 and Lemma 5.5 we deduce the following result. 

+ 1 0 Ω ξ 1 (x)z 1 (ρ, x) • z * 1 (ρ, x) + ξ 2 (x)z 2 (ρ, x)z * 2 (ρ, x) dx with U = (u, v, w, y, z 1 , z 2 ) , U * = (u * , v * , w * , y * , z * 1 , z * 2 ) ∈ H, for some positive definite function ξ 1 , ξ 2 ∈ L ∞ (Ω) fixed below.
Indeed by introducing the vectorial unknown U = (u, u t , w, w t , z 1 , z 2 ) we see that problem (55)-( 58) is equivalent to

(59) U = A 1 U, U (0) = U 0 = (u 0 , u 1 , w 0 , w 1 , f 0 (•, -τ •), f 1 (•, -τ •)) ,
where the operator A 1 : D(A 1 ) → H 1 is defined by

A 1         u v w y z 1 z 2         :=           v ρ-1 div C (u) -K(∇w + u) -bv -b 0 z 1 (1, •) y J -1 div(K(∇w + u)) -ay -a 0 z 2 (1, •) -τ -1 ∂ ρ z 1 -τ -1 ∂ ρ z 2          
with domain D(A 1 ) := (u, v, w, y, z 1 , z 2 ) ∈ H 1 ; v ∈ H 1 0 (Ω) d , y ∈ H 1 0 (Ω), div C (u) ∈ L 2 (Ω) d , div(K(∇w + u)) ∈ L 2 (Ω), z 1 (0, x) = v(x), z 2 (0, x) = y(x), ∀x ∈ Ω .

Hence using the arguments from section 2.2 of [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] we can prove the next results. Note that the dissipativeness of A 1 comes from the identity

A 1 U, U H1 = Ω ( ξ 2 2τ -a)|y| 2 -a 0 z 2 (1, •)ȳ - ξ 2 2τ |z 2 (1, •)| 2 dx (62) + Ω ( ξ 1 2τ -b)|v| 2 -a 0 z 1 (1, •)v - ξ 1 2τ |z 1 (1, •)| 2 dx.
Hence by Young's inequality we get

A 1 U, U H1 ≤ Ω ( ξ 2 2τ -a + a 0 2 )|y| 2 + ( a 0 2 - ξ 2 2τ )z 2 (1, •) 2 dx (63) + Ω ( ξ 1 2τ -b + b 0 2 )|v| 2 + ( b 0 2 - ξ 1 2τ )z 1 (1, •) 2 dx.
With the choice (61), we see that this last right-hand side is non positive.

Stability results

For the sake of shortness we here only treat the case b positive definite.

Here the energy of our system is defined by which corresponds to the norm of (u, u t , w, w t , z 1 , z 2 ) in H 1 (up to the factor 1/2). By the estimate (63) and the choice (61), we readily check that E (t) ≤ 0, ∀t > 0.

E(t) = 1 2 Ω C ( 
To prove polynomial decay, we again make use of Lemma 5.1. Hence we first look at eventual eigenvalues of A 1 on the imaginary axis. Lemma 6.2 Assume that b is positive definite, that (60) holds and that b -b 0 is also positive definite, i.e. there exists β > 0 such that β < b -b 0 a. e. in Ω.

Then A 1 has no eigenvalues on the imaginary axis.

Proof. Let λ = ıζ with ζ ∈ R and U = (u, v, w, y, z 1 , z 2 ) ∈ D(A 1 ) be a non trivial solution of

A 1 U = ıζU.
Then we get equivalently (64)

               ıζu -v = 0, ıζv -ρ-1 (div C (u) -K(∇w + u) -bv -b 0 z 1 (1, •)) = 0, ıζw -y = 0, iζy -J -1 (div(K(∇w + u)) -ay -a 0 z 2 (1, •)) = 0, iζz 1 + τ -1 ∂ ρ z 1 = 0, iζz 2 + τ -1 ∂ ρ z 2 = 0.
Then these last two equations and the conditions z 1 (0, •) = v, z 2 (0, •) = y lead to z 1 = ve -ıζτ ρ , z 2 = ye -ıζτ ρ .

  where a λ ((u, w), (u * , w * )) = Ω C (u) : (ū * )+K(∇w+u)•(∇ w * +ū * )+(b+ ρλ)λu•ū * +(a+Jλ)λw w * dx.

Lemma 3 . 3

 33 Assume that a and b are positive definite, i.e., there exists γ > 0 such that a(x) ≥ γ, b(x) ≥ γ, for a.e. x ∈ Ω.

Lemma 4 . 2

 42 Assume that a and b are positive definite. Then the resolvent operator of A satisfies condition[START_REF] Nicaise | General interface problems I[END_REF].

Theorem 4 . 3

 43 If a and b are positive definite, the system (1)-(

  0 in L 2 (Ω).

Theorem 5 . 7

 57 If d = 1, b = 0, a is positive definite and K ∈ C 1 ( Ω), then there exists C > 0 such that for all U 0 ∈ D(A 6 ), the solution of system (1)-(3) satisfies the estimate (44).

C

  (u) : (ū * ) + ρv • v * + Jy ȳ * + K(∇w + u) • (∇ w * + ū * ) dx

Theorem 6. 1

 1 If (60) a 0 ≤ a, b 0 ≤ b a. e. in Ω,then by choosing(61) ξ 1 = τ b, ξ 2 = τ a, the operator A 1 is maximal dissipative in H 1 . Therefore A 1 generates a C 0 -semigroup of contractions over H 1 .

  u) : (ū) + K|∇w + u)| 2 + ρ |u t | 2 + J |w t | (x)|u t (x, t -ρτ )| 2 + ξ 2 (x)|w t (x, t -ρτ )| 2 dx,

		2 dx
	1	
	+	ξ 1
	0	Ω

The case b positive definite

This is the commonly used assumption made in the literature. In our general situation, the next lemma show that [START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF] holds with L = A and l ≥ 6. Lemma 5.2 Assume that b is positive definite and that K ∈ C 1 ( Ω) d×d . Then the resolvent operator of A satisfies condition [START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF] for l ≥ 6.

Proof. As before we use a contradiction argument, i.e., we suppose that [START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF] is false for l ≥ 6. Then there exist a sequence of real numbers β n → +∞ and a sequence of vectors z n = (u n , v n , w n , y n ) in D(A) with z n H = 1 such that (32)

By [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF], this directly implies that (33)

By [START_REF] Soufyane | Stabilisation de la poutre de Timoshenko[END_REF] and by [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF], we get

By the assumption b ≥ b 0 > 0 a.e. in Ω, we deduce that (37)

By (33) we directly get

Then by taking j = l/2 and by (37) we obtain (38)

This property and (35) imply that (since 3l/2 + 1 ≥ 4)

By Green's formula this is equivalent to

By (37) and (38), the first and last terms tend to zero, while the term (K∇w n , β 4 n u n ) tend also to zero thanks to (38) and the fact that ∇w n 1 (due to z n H = 1). We then deduce that 

where m is the multiplier m(x) = K -1 (x)x. Again by Green's formula this is equivalent to

1 and using (37), ( 38) and (39), we deduce that (40)

Hence (40) is equivalent to (41)

This property and (34) directly yield (42) y n 2 → 0.

We now use (36) and again w n 1 to write

Again using Green's formula this is equivalent to

By the previous properties, the terms (Jy n , β n w n ), (Ku n , ∇w n ) and (ay n , w n ) go to zero and therefore we deduce that

By Poincaré's inequality we obtain (43)

In conclusion, by (37), (39), ( 43) and (42) we obtain

Since the two hypotheses of Lemma 5.1 are proved in Lemma 3.4 and Lemma 5.2 we deduce the main result of this paper.

Addition of delay feedback terms

We finish this paper by looking at the same problem as before but with additional feedback terms with delay. Namely given a delay τ > 0 we consider the problem (51)

with the boundary conditions

and, finally, the initial conditions

The hypotheses on the coefficients are the same as before and for the moment a 0 and b 0 are also in L ∞ (Ω) and non negative.

Existence results

The existence of a solution of this new system (51)-( 54) is by now standard and is proved by introducing the new unknowns (see [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks[END_REF][START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF]):

Hence formally problem (51) is equivalent to

with the boundary conditions (52) and initial conditions (53) as well as

This last problem is well-posed in If ζ = 0, we directly get that a 0 ((u, w), (u, w)) = 0 which is impossible. On the other hand if ζ = 0, then by taking the imaginary part of the above identity we find that

By our assumption (60) this implies that

As b -b 0 is positive definite, we deduce that u = 0. Hence v = z 1 = 0 and coming back to the second identity of (64) we obtain K∇w = 0.

Hence w = 0. This leads to a contradiction and to the conclusion. Lemma 6.3 Under the assumptions of Lemma 6.2, the resolvent operator of A 1 satisfies condition [START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF] for l ≥ 6.

Proof. We again use a contradiction argument, i.e., we suppose that ( 31) is false for l ≥ 6. Then there exist a sequence of real numbers β n → +∞ and a sequence of vectors

By [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF], this directly implies that (66)

By ( 26), (63), the choice (61) and the hypothesis β < b -b 0 a. e. in Ω, we get

Hence we deduce that (72)

As before by ( 66) and (72) we directly get (38). This property and (68) imply that

By Green's formula this is equivalent to

By ( 72) and (38), the first and last terms tend to zero, while the term

tend also to zero thanks to (38) and the fact that ∇w n 1 (due to z n H = 1). We then deduce that β 4 n (C (u n ), (u n )) + β 4 n (Ku n , u n ) → 0, which, by Korn's inequality, implies (39). Now using (68) and the fact that w n 1 we may write

where again m is the multiplier m(x) = K -1 (x)x. Again by Green's formula this is equivalent to

Since w n 1,Ω 1, β n w n 1 and using (72), ( 38) and (39), we deduce that (40) holds. By a direct application of Green's formula we deduce that (41) is still valid.

The property (41) and (67) directly yield (42). We now use (69) and again w n 1 to write

Again using Green's formula this is equivalent to

By the previous properties, the terms (Jy n , β n w n ), (Ku n , ∇w n ) and (ay n + a 0 z 2,n (1, •), w n ) go to zero and therefore we deduce that (K∇w n , ∇w n ) → 0.

By Poincaré's inequality we obtain (43). It remains to estimate the L 2 norm of z 1,n and z 2,n . Let us make all the details for z 1,n . Denote

Then by (70) we see that (73) h n (0,1)×Ω → 0.

But an explicit resolution of the above differential equation yields

e -ıβnτ (ρ-r) h n (r, x) dr.

As z n = (u n , v n , w n , y n , z 1,n , z 2,n ) belongs to D(A 1 ), we have This identity implies that z 1,n (0,1)×Ω ≤ v n + τ h n (0,1)×Ω .

By (72) and (73), we deduce that (74) z 1,n (0,1)×Ω → 0.

In the same manner using (71) and (42), we prove that (75) z 2,n (0,1)×Ω → 0.

In conclusion, by (72), (39), (43), (42), ( 74) and (75) we obtain z n H1 → 0, which contradicts z n H = 1. By Lemmas 5.1, 6.2 and 6.3 we deduce the next result.

Theorem 6.4 Under the assumptions of Lemma 6.2, there exists C > 0 such that for all U 0 ∈ D(A 6 1 ), the solution of system (51)-(54) satisfies the following estimate

1 ) , ∀t > 1.