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LES approach coupled with stochastic forcing of subgrid acceleration in a high Reynolds number channel flow
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In this paper, the high Reynolds number channel flow is simulated by numerical approach at coarse resolution, in which the instantaneous acceleration is decomposed into filtered and subgrid parts, and then both components are modeled. The filtered acceleration is modeled in the framework of the LES approach. The model for the subgrid acceleration is based on two stochastic processes. The first is for its norm, and is based on statistical universalities in fragmentation under scaling symmetry, providing correlation of subgrid forcing across the channel. The second is for its orientation, and is based on the Brownian motion on a unit sphere in order to represent a stochastic relaxation towards full isotropy away from the wall. Two main parameters of the stochastic process include the Reynolds number based on the friction velocity, and the channel half-width. In order to assess the capability of the model proposed, the paper illustrates its application versus recent high Reynolds number DNS, including DNS performed in this paper.

Introduction

Application of large-eddy simulation (LES) in turbulent channel flow becomes too expensive when the Reynolds number is high, and the resolution of strong gradients in the near-wall region is needed. Starting from the earlier study of Moin and Kim [START_REF] Moin | Numerical investigation of turbulent channel flow[END_REF], different modifications of this approach have been proven successful (Meneveau and Katz [START_REF] Meneveau | Scale-invariance and turbulence models for large-eddy simulation[END_REF], Piomelli and Balaras [START_REF] Piomelli | Wall-layer models for large-eddy simulations[END_REF], Sagaut [START_REF] Sagaut | Large Eddy Simulation for Incompressible Flows: An introduction[END_REF], Pantano et al. [START_REF] Pantano | Les approach for high reynolds number wall-bounded flows with application to turbulent channel flow[END_REF], Spalart et al. [START_REF] Spalart | A new version of detached-eddy simulation, resistant to ambiguous grid densities[END_REF]). Among them one is to incorporate direct simulation of subgridscale turbulence into LES techniques on the basis of estimation of the unresolved velocity field. Approaches proposed by Domaradzki and Adams [START_REF] Domaradzki | Direct modelling of subgrid scales of turbulence in large eddy simulations[END_REF] Park and Mahesh [START_REF] Park | A velocity-estimation subgrid model constrained by subgrid scale dissipation[END_REF], and Westbury et al. [START_REF] Westbury | Analysis of a stochastic backscatter model for the large-eddy simulation of wall-bonded flow[END_REF] are focused on simulation of the residual-stress tensor. The model proposed by Schmidt et al. [START_REF] Schmidt | Near-wall LES closure based on one-dimensional turbulence modelling[END_REF] is based on the LES/ODT (One Dimensional Turbulence) coupling [START_REF] Kerstein | One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows[END_REF][START_REF] Kerstein | One-dimensional turbulence: A new approach to high-fidelity subgrid closure of turbulent flow simulations[END_REF] and provides stochastically the unresolved velocity field as the wall is approached. The approach of Kemenov and Menon [START_REF] Kemenov | Explicit small-scale velocity simulation for high-Re turbulent flows. Part II: Non-homogeneous flows[END_REF] is based on the simulation of a turbulent velocity field which is defined by superposition of large-scale and small-scale components. The latter is computed directly on subgrid-scales by a simplified 1D motion equation (in three directions). It is worth noting that the above reported subgrid-scale (SGS) models are invariant to the Reynolds number. Thereby, in these models, the intermittency effects are discarded on subgrid-scales.

In the approach proposed by Sabel'nikov et al. in [START_REF] Sabel'nikov | The coupled LES -sub-grid stochastic acceleration model (LES-SSAM) of a high Reynolds number flows[END_REF], the key element of the SGS model is acceleration in the residual flow. This acceleration has been modeled stochastically in the case of three-dimensional box turbulence, with statistical properties depending on the Reynolds number. The general idea of this approach, referred to as LES-SSAM (stochastic subgrid acceleration model), consists of the following. The total instantaneous acceleration

du i dt = - 1 ρ ∂p ∂x i + ν ∂ 2 u i ∂x k ∂x k ( 1 
)
∂u k ∂x k = 0
is composed of two contributions:

du i dt = du i dt + du i dt (2) 
where dui dt = ∂ui ∂t + u k ∂ui ∂xk The first component is the filtered total acceleration:

du i dt = du i dt + ∂ (u i u k -u i u k ) ∂x k = - 1 ρ ∂p ∂x i + ν ∂ 2 u i ∂x k ∂x k ( 3 
)
∂u k ∂x k = 0
where the overbar denotes the filtering operation, u i denotes the filtered velocity.

The second component represents the total acceleration in the residual field:

du i dt = ∂u i ∂t + ∂ (u k u i -u k u i ) ∂x k = - 1 ρ ∂p ∂x i + ν ∂ 2 u i ∂x k ∂x k ( 4 
)
∂u k ∂x k = 0
If both parts are modeled, their sum gives an approximation to [START_REF] Moin | Numerical investigation of turbulent channel flow[END_REF].

The first assumption is to replace (3) by a classical LES-equation with a simple eddy-viscosity model

du i dt ∆ = du i dt - ∂ ∂x k ν t ∂u i ∂x k + ∂u i ∂x k = - 1 ρ ∂p ∂x i + ∂ ∂x k ν ∂u i ∂x k + ∂u i ∂x k (5) ∂u k ∂x k = 0
where ν t denotes the eddy viscosity and subscript ∆ is the length scale associated with the filter size.

The second assumption is to replace (4) by

du i dt S = - 1 ρ ∂p * ∂x i + â i ( 6 
)
∂u k ∂x k = 0
where p * is the pressure providing the subgrid velocity model-field to be solenoidal, and âi is attributed to the stochastic acceleration of the residual flow.

The third assumption is to replace the sum of ( 5) and ( 6) by the model-equation for a surrogate field, denoted hereafter by the symbolˆ:

dû i dt = - 1 ρ ∂ p ∂x i + ∂ ∂x k (ν + ν t ) ∂ ûi ∂x k + ∂ ûk ∂x i + â i (7) 
In this equation, the new pressure field p is such that

∂ ûk ∂x k = 0 (8) 
Equations ( 7) and ( 8) will be applied here to a high Reynolds number channel flow, with a new subgrid acceleration model for â i .

In high Reynolds number channel flows, the acceleration is a highly intermittent variable. It has been reported by direct numerical simulations (DNS) [START_REF] Lee | Intermittent nature of acceleration in near-wall turbulence[END_REF], that this intermittency is mostly related to quasi-coherent vortical structures in the wall-layer. A fluid particle, trapped in such a vortex, is subjected to an intense centripetal acceleration. It was revealed [START_REF] Lee | Intermittent nature of acceleration in near-wall turbulence[END_REF] that those fluid particles preserve the magnitude of their acceleration longer than its direction. This finding is consistent with the experimental studies [START_REF] Mordant | Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence[END_REF][START_REF] Voth | Lagrangian acceleration measurements at large reynolds numbers[END_REF][START_REF] Voth | Measurements of particle accelerations in fully developed turbulence[END_REF] of a high Reynolds number "free" turbulence. Here, in wall-bounded turbulent flow, the intermittency effects are manifested by deep cross-channel interaction between energy containing eddies of very different length-scales [START_REF] Jiménez | Recent developments on wall-bounded turbulence[END_REF]. Recent DNS studies identified mechanisms, which may be responsible for such turbulent correlations across the channel. In the near-wall region, there are upward ejections of vortical fluid, as a part of vortices-streaks regeneration cycle [START_REF] Kim | On the structure of wall-bonded flows[END_REF][START_REF] Hamilton | Regeneration mechanisms of ner-wall turbulence structures[END_REF][START_REF] Jiménez | The autonomous cycle of near-wall turbulence[END_REF][START_REF] Jiménez | The large-scale dynamics of near-wall turbulence[END_REF][START_REF] Smith | The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer[END_REF][START_REF] Swearingen | The growth and breakdown of streamwise vortices in the presence of a wall[END_REF]. Above the buffer layer, where the Reynolds number dependent flow [START_REF] Marusic | Streamwise turbulence intensity formulation for flat-plate boundary layers[END_REF][START_REF] Hutchins | Evidence of very long meandering features in the logarithmic region of turbulent boundary layers[END_REF] has intermittent streaky structure as well [START_REF] Jiménez | The largest structures in turbulent wall flows[END_REF][START_REF] Del Alamo | Linear energy amplification in turbulent channels[END_REF][START_REF] Jiménez | Turbulent fluctuations above the buffer layer of wall-bounded flows[END_REF], the pressure fluctuations acting on the flow in the buffer zone and in the viscous sublayer, may also generate eruptions of small-scale wall structures towards outer flow [START_REF] Del Alamo | Scaling of the energy spectra of turbulent channels[END_REF][START_REF] Toh | Interaction between a large-scale structure and near-wall structures in channel flow[END_REF][START_REF] Del Alamo | Self-similar vortex clusters in the turbulent logarithmic region[END_REF]. Besides, the unsteady bursting events, when the large outer-flow eddies appear closely to the wall, has been reported in [START_REF] Jiménez | Characterization of near-wall turbulence in terms of equilibrium and "bursting" solutions[END_REF]. Concerning LES of such flow, the significant role of the "under-resolved" momentum transfer across the channel was emphasized in [START_REF] Härtel | Subgrid-scale energy transfert in the near-wall region of turbulent flows[END_REF].

The question raised in this study is as follows. Despite the huge number of very different turbulent structures, produced by different random realizations in the wall-bounded flow, and interacting across the scales, is it possible to match recent DNS statistics by a rather simple model in the framework of LES-SSAM approach. The purpose of this paper is to propose such a model with assessment of its capability by comparison with DNS. The subgrid acceleration model proposed here is based on the following assumptions : (i) there are two independent stochastic processes, one for the norm, and another for the orientation; (ii) both processes are correlated over the channel height; (iii) the stochastic process for the norm of acceleration is given by the statistical universalities of fragmentation under scaling symmetry; (iv) the stochastic process for the orientation relaxes towards isotropy in the channel center-line. Two main parameters of the stochastic process include the Reynolds number based on the friction velocity, and the channel half-width. This paper is organized as follows. The stochastic model for the non-resolved acceleration will first be presented. The models for the norm and the orientation of the non-resolved acceleration will be described. Then, details about the performed numerical simulations will be given. Finally, the comparison between the classical LES, DNS and the LES-SSAM approach will be presented and discussed.

Stochastic model for the non-resolved acceleration

The stochastic behavior of the subgrid acceleration is prescribed to its norm and to its orientation. It is assumed that the orientation of subgrid acceleration is mostly controlled by orientation of vortex sheets and tubes, lying mostly in the streamwisespanwise plane near the wall. These structures become randomly distributed with increasing distance from the wall. As to the subgrid acceleration norm, it is constructed in terms of wall-parameters, following DNS observation [START_REF] Sabel'nikov | The coupled LES -sub-grid stochastic acceleration model (LES-SSAM) of a high Reynolds number flows[END_REF], in which the significance of the solenoidal component of acceleration very near the wall was shown.

In this study, the suggestion is to introduce the stochastic processes for this norm with correlation across the channel. The subgrid forcing â in [START_REF] Domaradzki | Direct modelling of subgrid scales of turbulence in large eddy simulations[END_REF] is therefore given by two independent stochastic processes, one for its norm |a| and another for its orientation e i , i.e. :

â i = |a|e i (9) 
This model will be different from the model proposed in [START_REF] Sabel'nikov | The coupled LES -sub-grid stochastic acceleration model (LES-SSAM) of a high Reynolds number flows[END_REF], where authors introduced a model for the acceleration in homogeneous and isotropic turbulent flow given also by two independent stochastic processes, one for the norm of the acceleration, and another one for its orientation. In [START_REF] Sabel'nikov | The coupled LES -sub-grid stochastic acceleration model (LES-SSAM) of a high Reynolds number flows[END_REF], the model for the acceleration norm has been derived from the lognormal model for the energy dissipation [START_REF] Kolmogorov | A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[END_REF][START_REF] Oboukhov | Some specific features of atmospheric tubulence[END_REF][START_REF] Monin | Statistical Fluid Mechanics: Mechanics of Turbulence[END_REF][START_REF] Pope | The velocity-dissipation probability density function model for turbulent flows[END_REF][START_REF] Lamorgese | A conditionally cubic-Gaussian stochastic Lagrangian model for acceleration in isotropic turbulence[END_REF] (see also recent paper advocating the lognormal model, such as [START_REF] Arneodo | Towards log-normal statistics in high Reynolds number turbulence[END_REF] , and its application in [START_REF] Sabel'nikov | The extended iem mixing model in the framework of the composition pdf approach: applications to diesel spray combustion[END_REF]). Simultaneously its orientation was generated randomly in each time step of order of the Kolmogorov time scale.

Model for the norm of the subgrid acceleration

We represent the norm of the non-resolved acceleration by a typical velocity increment at the wall expressed as ∆ u 2 * ν and multiplied by a frequency f , which is a random variable:

|a| = ∆ u 2 * ν f (10) 
Here u * is the friction velocity. High values of f correspond to strong velocity gradients. Usually the stochastic process evolves with time. In order to introduce the cross-channel correlation in subgrid forcing by a stochastic process for f , we shall replace time by distance from the wall. Thus the random frequency f will evolve stochastically from the wall to the outer flow. To this end, we introduce the non-dimensional evolution parameter τ , which is defined as follows:

τ = -ln h -y h ( 11 
)
where h is the channel half-width, and y is the wall distance. It can be seen from ( 11) that when y = 0 then τ = 0, and when y → h then τ → ∞. Hence f evolves with τ , increasing from zero to infinity, correspondingly to y increasing from zero to the channel half-width. The near-wall region is characterized by strong velocity gradients (high values of f ), which decrease in mean towards the outer flow through a highly intermittent dynamics. We assumed that with increasing distance from the wall (increasing τ ) the frequency f is changing by a random independent multiplier α (0 < α < 1), f → αf . α is governed by distribution q(α), 1 0 q(α)dα = 1. This multiplicative process, often referred to as fragmentation under scaling symmetry, requires knowledge of q(α), which is, in principle, unknown. However if relaxation of f is fast, comparing to advancement from the wall to the outer region, the population balance equation, describing continuous evolution of distribution G(f ; τ ) can be reduced exactly to the Fokker-Planck equation [START_REF] Gorokhovski | Statistical universalities in fragmentation under scaling symmetry with a constant frequency of fragmentation[END_REF]:

∂G(f ; τ ) ∂τ = -ln α ∂ ∂f (f G) + ln 2 α 2 ∂ ∂f f ∂ ∂f (f G) (12) 
Here G(f ; τ ) is the normalized distribution function,

∞ 0 G(f )df = 1.
It should be noted that only the first two logarithmic moments of α, denoting here as ln k α =

1 0 q(α) ln k αdα, k = 1, 2, appear in the evoluton of G(f ; τ ) (equation 12) and ln α / ln 2 α = ln f / (ln f -ln f ) 2 , with ln f = ∞ 0 G(f ) ln f df .
The solution of ( 12) and its properties are described in [START_REF] Gorokhovski | Statistical universalities in fragmentation under scaling symmetry with a constant frequency of fragmentation[END_REF]. It is shown that with increasing time (here with increasing of parameter τ , O < τ < ∞ instead of O < t < ∞), the initial distribution G(f ; τ = 0) goes first to the log-normal distribution:

G(f ; τ ) = 1 F 2π ln 2 α τ exp   - ln f F 2 2 ln 2 α τ    f F 1-ln α ln 2 α ( 13 
)
where F is the initial scale of frequency, which is introduced bellow. It is worth noting that originally, the lognormal distribution has been identified by Kolmogorov [START_REF] Kolmogorov | On the log-normal distribution of particles sizes during break-up process[END_REF] in his discrete model of cascade breakage events. However the Kolmogorov's lognormality was derived in the context of the central limit theorem. The analytical solution [START_REF] Kemenov | Explicit small-scale velocity simulation for high-Re turbulent flows. Part II: Non-homogeneous flows[END_REF] of the population balance equation, obtained without appealing to the central limit theorem, shows that by further increasing of τ , the "log-normal" multiplier in eq. 13 expln f F 2 /2 ln 2 α τ tends to unity, and the long-time limit distribution is determined by the power law with one universal parameter, ln α / ln 2 α . In our paper, instead of using those universal asymptotics, we use [START_REF] Kerstein | One-dimensional turbulence: A new approach to high-fidelity subgrid closure of turbulent flow simulations[END_REF] in order to derive the stochastic equation. In the Itô interpretation, it reads :

df = lnα + ln 2 α /2 f dτ + ln 2 α /2f dW (τ ) ( 1 4 ) 
where dW (τ ) is a Wiener process ( dW (τ ) = 0 and dW (τ ) 2 = 2dτ , here and below the brackets denote the ensemble average). Parameters are chosen in the following form:

lnα = -Re 1/3 + ln 2 α = -lnα (15) 
where

Re + = u * h/ν.
The main properties of the stochastic process ( 14) are: (i) it providing a subgrid forcing that is correlated across the channel height; (ii) as the wall distance increases, it generates evolution of frequency from high to low mean values through two intermediate universal asymptotics: the earlier is log-normal distribution, while the latter is power law, with high probability of zero-frequency and stretched tail of high-frequency. This stretched tail is determined by Re + , and induces rare events of strong subgrid forcing in the outer-flow, thereby mimicking bursting effects.

The starting condition (first grid cell, τ = 0) is given as follows. First, the mean value of the frequency at the wall is introduced as f + = u * /λ, where λ is a Taylorlike scale. It is estimated by Kolmogorov's scaling in terms of wall parameters. The Reynolds number, based on friction velocity, is:

Re + = u * h/ν = h/y 0 ≈ Re 3/4
h , where y 0 is the thickness of the viscous layer, and Re h is the Reynolds number based on the center-line velocity. One then yields: λ ≈ hRe

-1/2 h ≈ hRe -2/3 +
. Second, the starting value for the random path ( 14) is sampled from the stationary log-normal distribution of f /f + .

The probability density function (PDF) of the frequency f has been computed for different wall distances by means of DNS in a channel flow with Re + = 590. Details about this simulation are given in Table 1. First, the norm of the acceleration was computed and then f was estimated by using Equation [START_REF] Schmidt | Near-wall LES closure based on one-dimensional turbulence modelling[END_REF]. As it can be seen from Fig. 1, surprisingly, the model (Equations 14 and 15) matches well the results of DNS. In agreement with DNS data, the stochastic process provides a broad frequency distribution in the wall region and relaxes toward low frequencies when distance from the wall increases.

Model for the orientation of the acceleration vector

We assumed that with increasing distance from the wall, the orientation of subgrid acceleration relaxes stochastically from the streamwise-spanwise alignment (with random azimuth) to full isotropy.

First, this assumption was assessed by DNS performed in this paper. The orientation vector e i in Equation ( 9) is determined by longitude φ and latitude θ:

e i = â i |a| =    e x = cos(θ) cos(φ) e y = sin(θ) e z = cos(θ) sin(φ) (16) 
where -π ≤ φ ≤ π characterizes orientation in the streamwise-spanwise (x, z) plane, and -π/2 ≤ θ ≤ π/2 defines orientation relatively to the normal-to-wall direction (θ = 0 and θ = ±π/2 will correspond to accelerations, which are parallel to the wall and normal to the wall, respectively). The schematic representation is given in Fig. 2. If φ and θ are random, their PDF's corresponding to full isotropy, have the following forms P isotropic (φ) = 1/2π and P isotropic (θ) = | cos(θ)|/2, respectively. The mean value for both distributions is zero, and computation of variance yields:

< φ 2 > isotropic = π -π φ 2 P isotropic (φ)dφ = π 2 3 ( 17 
)
< θ 2 > isotropic = π/2 -π/2 θ 2 P isotropic (θ)dθ = π 2 4 -2 ( 1 8 ) 
By DNS at Re + = 180, 590 and 1000, one can obtain the statistics of φ and θ (see Section 3, and especially, Table 1 for details about the resolution used in the simulation). Then, < φ 2 > and < θ 2 > can be computed and compared with [START_REF] Voth | Lagrangian acceleration measurements at large reynolds numbers[END_REF] and [START_REF] Voth | Measurements of particle accelerations in fully developed turbulence[END_REF], respectively. To this end, large-scale acceleration obtained by our DNS has been removed by using sharp spectral filtering in homogeneous directions and Gaussian filtering in the normal to the wall direction. In such filtering operation, the mean of these two angles is negligibly small. The results of computations are given in Fig. 3 for different distances from the wall. It can be seen that the variance of φ (Fig. 3a) is close to the variance of the isotropic distribution (Equation 17) for almost the entire range of y + , and for all three Reynolds numbers. As to variance of θ (Fig. 3b), it is negligibly small at the wall, and then it grows almost linearly with the distance from the wall up to y + ≈ 30 ∼ 50, after which it tends towards a constant value. This value is relatively close to the variance of the isotropic distribution of θ (Equation 18). From this observation, we conclude that the subgrid acceleration vector relaxes towards isotropy, reaching at a high Reynolds number a nearly isotropic distribution at about y + ≈ 50.

In order to reflect this tendency towards isotropy, the stochastic model for the orientation ( 16) is constructed as a Brownian random walk on the surface of a sphere of unity radius. This random walk takes place with increasing distance from the wall. The evolution of the unit vector e i is defined by the following stochastic process:

γ = 2DdW 0 ≤ β < 2π ( 19 
)
where γ is the path length between two successive positions on the sphere, and β is the initial direction from point 1 to point 2 (see Fig. 2). β is chosen randomly from the uniform distribution. D is a diffusion coefficient, and dW is the standard Wiener process defined by: < dW >= 0, < dW 2 >= 2dy + , with dy + representing the cell size (in wall units) in the wall normal direction. The rules of this random walk are given by geodesic calculus:

       θ k+1 = sin -1 (sin θ k cos γ + cos θ k sin γ cos β) φ k+1 = φ k + arg(ξ) (ξ) = sin β sin γ cos θ k (ξ) = cos γ -sin θ k sin θ k+1 (20) 
where θ k and φ k are two angles corresponding to the node k, and ξ is a complex number, with real and imaginary part (ξ) and (ξ), respectively. With increasing distance from the wall (y + ), the diffusive equilibrium is attained as a final state, which corresponds to the isotropic PDF's:

P θ (θ, y + → ∞) → P isotropic (θ) P φ (φ, y + → ∞) → P isotropic (φ) (21) 
where, at the distance from the wall y + , P θ (θ, y + ) and P φ (φ, y + ) are the PDF's of θ and φ, respectively. An example of one realization of such a Brownian motion on a sphere is given in Fig. 4. Correspondingly to DNS, the process starts on the wall (y + = 0) with:

P θ (θ, y + = 0) = δ(θ) P φ (φ, y + = 0) = P isotropic (φ) ( 22 
)
where δ is the Dirac distribution. This implies that the subgrid scale acceleration at y + = 0 is taken to be parallel to the wall with random azimuth. In our case, the diffusion coefficient D controls the relaxation rate towards isotropy. A linear regression of DNS data (Fig. 3b for y + < 20), yields that D = 0.01. Fig. 5 shows statistics of θ computed from the model proposed here (Equations 19, 20 and 22, and D = 0.01) and from our DNS. It can be seen that the model matches well the DNS data. For φ, with the prescribed wall condition [START_REF] Jiménez | The autonomous cycle of near-wall turbulence[END_REF], the model provides exactly < φ 2 >=< φ 2 > isotropic .

Characteristics of the numerical simulations

For assessment of the SGS acceleration model, we ran simulations of a pressure driven turbulent channel flow. A pseudo-spectral computational code is used. The code uses the spectral approximation (Fourier Chebyshev) and a variational projection method on a divergence free space following the original idea of Moser [START_REF] Moser | A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow[END_REF]. The time integration uses the explicit Adam-Basforth algorithm for non-linear terms, and the semi-implicit algorithm for diffusion terms. A rotational form is used for convective terms in order to ensure energy conservation. Periodic boundary conditions were applied along the streamwise (x) and the spanwise (z) directions, whereas the no-slip condition is imposed on the walls. The computer code was developed in the scientific group of M. Buffat [START_REF] Pascal | Etude d'une turbulence compressée et ou cisaillée entre deux plans parallèles: comparaison entre approche statistique et simulation des équations de Navier-Stokes instantanées[END_REF].

A posteriori tests have been done for three Reynolds numbers: Re + = 590, 1000 et 2000. Results of LES-SSAM approach were compared with the standard LES and the DNS given in the literature [START_REF] Moser | Direct numerical simulation of turbulent channel flow up to Reτ = 590[END_REF][START_REF] Hoyas | Reynolds number effects on the reynolds-stress budgets in turbulent channels[END_REF] and also with the DNS performed specifically in the present work. The conditions for those three approaches were exactly the same, including the same computational mesh for LES and LES-SSAM. The parameters taken for these simulations are summarized in Table 1. [START_REF] Moser | Direct numerical simulation of turbulent channel flow up to Reτ = 590[END_REF] c Hoyas and Jiménez (2008) [START_REF] Hoyas | Reynolds number effects on the reynolds-stress budgets in turbulent channels[END_REF] For LES and LES-SSAM simulations, the classical Smagorinsky model is used with wall damping function for the turbulent viscosity [START_REF] Sagaut | Large Eddy Simulation for Incompressible Flows: An introduction[END_REF]:

ν turb = (C s ∆f V D ) 2 |S| |S| = (2S ij S ij ) 1/2 f V D = 1 -e -y/A (23)
where A is specified below. Here C s is the Smagorinsky constant, ∆ = (∆x × ∆y × ∆z) 1/3 is the characteristic grid size,

S ij = 1 2 ∂ ūi ∂xj + ∂ ūj ∂xi
is the resolved strainrate tensor, f V D is the Van Driest function, y is the distance from nearest wall, and A is the constant controlling the damping function f V D . As suggested by [START_REF] Shur | A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[END_REF], for a detached-eddy simulation (DES), the turbulent length-scale in the wall-layer is defined as = min(y, ∆). In order to fulfill this suggestion, in the Van Driest damping function, we choose A such that ∆ × f V D ∼ min(y, ∆).

It should be noted that in this code, the Reynolds number is given by choosing ν and the pressure gradient-1 ρ ∂Pt ∂x . In order to attain the required Reynolds number we used the Dean's correlation [START_REF] Dean | Reynolds Number dependance on skin Friction and other bulk flow variables in twodimensional rectangular duct flow[END_REF]: ν = 0.110U c hRe -1.1296 + and-

1 ρ ∂Pt ∂x = Re 2 + ν 2 /h 3
, where U c is the center-line velocity. It can be noticed from Table 1 that the LES-SSAM matches better the DNS Reynolds number than the standard LES. Thereby, for a given set of parameters (ν and -1 ρ ∂Pt ∂x ), both the center-line velocity and the mass flow rate are improved by LES-SSAM model.

Results and discussion

For the sake of simplicity, we will only present simulations for the 64 × 65 × 64 grid, for all three Reynolds numbers. For finer resolutions the difference between LES-SSAM and standard LES is less pronounced, but still present. Fig. 6 shows evolution of the mean velocity across the channel. The LES-SSAM reproduces well the logarithmic law of the wall predicted by DNS, which is not the case with standard LES. Fig. 7 shows also the improvement in the prediction of the velocity variance when LES-SSAM is used. This can be seen especially for the streamwise velocity compared to the DNS of [START_REF] Hoyas | Reynolds number effects on the reynolds-stress budgets in turbulent channels[END_REF]. For the other components, the profile is also better predicted by LES-SSAM than by the standard LES. It should be noted that the variance of the streamwise velocity at Re + = 1000 computed by our DNS deviates slightly from the DNS in [START_REF] Hoyas | Reynolds number effects on the reynolds-stress budgets in turbulent channels[END_REF]. This may be due to a smaller computational domain in comparison with [START_REF] Hoyas | Reynolds number effects on the reynolds-stress budgets in turbulent channels[END_REF] and a higher Reynolds number.

Fig. 8 illustrates the vertical profiles of the turbulent and viscous stresses, τ turb = -ρ u v and τ visc = -ρν ∂ u ∂y , respectively. The results are presented as ratios τ turb /(τ turb + τ visc ) and τ visc /(τ turb + τ visc ). Once again, the advantage of the LES-SSAM approach versus the classical LES is explicitly shown. Both the viscous and the turbulent stresses are better predicted by LES-SSAM.

Velocity spectra are illustrated in Fig. 9. For both Reynolds numbers and both y + shown in the figure, it can be clearly seen that the high wave number part of the spectrum is much better resolved by LES-SSAM than by LES. Fig. 10 represents the evolution of the longitudinal autocorrelation coefficient of the velocity components at y + = 5, representing the near-wall region. The improvement of the correlation length due to the better resolution of the small-scale part of the spectrum by LES-SSAM is clearly seen in this figure. Another observation is that for small wall distances, the streamwise longitudinal autocorrelation is more spatially correlated than the remaining two components, because of the alignment of streaky structures with the wall. Fig. 11 illustrates the PDF of the spanwise acceleration. At three very different distances to the wall, the PDF obtained by the DNS displays stretched tails, as a manifestation of intermittency. The same evidence of intermittency is obtained by LES-SSAM, while in the case of the standard LES those tails are much less developed. This effect is also observed for the PDF of the other two components of the acceleration.

Conclusion

In numerical simulation of a high-Reynolds number channel flow at moderate resolution, the instantaneous acceleration has been split into filtered and subgrid parts. Then, both components were modeled, in the framework of LES combined with the stochastic subgrid acceleration model.

The aim of the new model for subgrid acceleration was to account for intermittency in the residual (unfiltered) wall-bounded flow. This model was constructed in accordance with DNS observations, reported in the literature, and DNS performed specifically in the present paper. The model is based on two independent stochastic processes: one for the norm of the subgrid acceleration, the other for its orientation.

The norm is given by a characteristic velocity increment, in terms of wallparameters, multiplied by stochastic frequency. The stochastic process, constructed in lines of statistical universalities in fragmentation under the scaling symmetry, evolves with distance from the wall towards outer flow. To this end the nondimensional evolution parameter was introduced, which increases from zero to infinity, as the distance to the wall increases from the wall to the channel half-width. The multiplicative stochastic process provides correlation of the subgrid forcing across the channel. With increasing wall distance and consequently, decreasing mean frequency, this process has two intermediate universal asymptotics. The earlier is the log-normal distribution, while the later is power distribution. The power law has a high peak of probability for zero-frequency and a stretched tail for high-frequencies, which depends on the Reynolds number. Sampling from that stretched tail induces rare events of strong subgrid forcing in the outer-flow, mimicking thereby bursting events.

It was assumed that orientation of the subgrid acceleration is controlled by orientation of vortices, which become randomly distributed, if distance from the wall increases. In order to fulfill this tendency towards full isotropy, the stochastic model for subgrid acceleration orientation is based on a Brownian random walk on the surface of a sphere of unity radius. Starting close to the wall, from the direction in the streamwise-spanwise plane with random azimuth, the random walk takes place with increasing distance from the wall, and tends to the diffusive equilibrium as a final state, which corresponds to isotropic PDF's for the two geodesic angles, longitude and latitude. The diffusion coefficient was computed by DNS and found to be almost independent of the Reynolds number.

In the case of turbulent channel flow, the results of the LES-SSAM approach were compared with DNS data (Re + = 590, 1000 and 2000) and with standard LES. The LES-SSAM model was proven successful in predictions of DNS results: (i) resolution of the small-scale part of the energy spectrum and simulation of spatial correlations are close to DNS; (ii) stretched tails in the PDF of acceleration are predicted in agreement with DNS; (iii) computation of mean and of variance of the velocity components, as well as of turbulent and viscous stresses are explicitly improved. Along with fundamental interest, the LES-SSAM approach has a practical relevance, when significant physics take place on subgrid scales. In such conditions, simulations at a high Reynolds number warrant advanced SGS models that account for intermittency effects on small spatial scales. Examples include scalar mixing and turbulent combustion, dispersion, vaporization and combustion in twophase flows. This requires the further development of this approach with many associated questions, concerning complex geometry, correlation between norm and orientation of the subgrid acceleration, time-correlations, etc. However, the approach given in [START_REF] Sabel'nikov | The coupled LES -sub-grid stochastic acceleration model (LES-SSAM) of a high Reynolds number flows[END_REF], and in the present paper is very simple, and easily realizable for any LES code without supplementary CPU requirement. 
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 111122 Figure 1. Distribution of f/f+ from SSAM (cross) and comparison with DNS (line) at Re+ = 590, for several distances from the wall.

Figure 2 .Figure 3 .

 23 Figure 2. Coordinate system, and definition of the angles φ, θ, γ and β.

Figure 4 .Figure 5 .Figure 6 .

 456 Figure 4. Realization of the random walk on the sphere given by Equations 19 and 20.

Table 1 .

 1 Summery of parameters used for numerical simulations. dt + = dt/t * is the time step of the simulation; t * = ν/u 2 * is a viscous time of the order of the Kolmogorov time scale at the wall.

	Name	Re+	Rec	Nx × Ny × Nz	Lx × Ly × Lz	∆x + × ∆y + × ∆z +	dt +a	Cs	A/h
	DNS	180	3280	192 × 193 × 192	3πh × 2h × 4 3 πh	9.0 × (0.02 ∼ 3.0) × 4.0	0.030	-	-
	DNS DNS b LES LES-SSAM	587 587 587 587	12490 12547 14160 12760	384 × 257 × 384 384 × 257 × 384 64 × 65 × 64 64 × 65 × 64	3 2 πh × 2h × 3 4 πh 7.2 × (0.04 ∼ 7.2) × 3.6 2πh × 2h × πh 9.7 × (0.04 ∼ 7.2) × 4.8 3πh × 2h × πh 87 × (0.71 ∼ 29) × 29 3πh × 2h × πh 87 × (0.71 ∼ 29) × 29	0.033 -0.1 0.1	--0.16 0.16	--0.015 0.015
	DNS DNS c LES LES-SSAM 1000 1000 934 1000 LES 1000 LES-SSAM 1000	22250 20960 25430 23380 25500 23700	512 × 385 × 512 3072 × 385 × 2304 96 × 97 × 96 96 × 97 × 96 64 × 65 × 64 64 × 65 × 64	4 3 πh × 2h × 2 3 πh 8.2 × (0.03 ∼ 8.3) × 4.1 8πh × 2h × 3πh 7.6 × (0.06 ∼ 7.6) × 3.8 3πh × 2h × πh 99 × (0.53 ∼ 33) × 33 3πh × 2h × πh 99 × (0.53 ∼ 33) × 33 3πh × 2h × πh 147 × (1.2 ∼ 49) × 49 3πh × 2h × πh 147 × (1.2 ∼ 49) × 49	0.034 -0.1 0.1 0.1 0.1	--0.16 0.16 0.2 0.2	--0.009 0.009 0.015 0.015
	DNS c LES LES-SSAM 2000 2003 2000 LES 2000 LES-SSAM 2000	48680 49350 48950 52640 49050	6144 × 633 × 4608 128 × 129 × 128 128 × 129 × 128 64 × 65 × 64 64 × 65 × 64	8πh × 2h × 3πh 3πh × 2h × πh 3πh × 2h × πh 3πh × 2h × πh 3πh × 2h × πh	8.2 × 8.9 × 4.1 147 × (0.60 ∼ 49) × 49 147 × (0.60 ∼ 49) × 49 295 × (2.4 ∼ 98) × 98 295 × (2.4 ∼ 98) × 98	-0.1 0.1 0.1 0.1	-0.16 0.16 0.2 0.2	-0.006 0.006 0.015 0.015

a b Moser et al. (1999)
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