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Abstract. The flow generated by heat convection in a long, vertical channel is
studied by means of particle imagery velocimetry techniques, with the help of the
thermal measurements from a previous paper (Gibert et al 2009 Phys. Fluids 21
035109). We analyse the mean velocity profiles and the Reynolds stresses, and
compare the present results with the previous ones obtained in a larger cell and
at a larger Reynolds number. We calculate the horizontal temperature profile and
the related horizontal heat flux. The pertinence of effective turbulent diffusivity
and viscosity is confirmed by the low value of the associated mixing length.
We study the one-point and two-point statistics of both velocity components.
We show how the concept of turbulent viscosity explains the relations between
the local probability density functions (pdf) of fluctuations for temperature,
vertical and horizontal velocity components. Despite the low Reynolds number
values explored, some conclusions can be drawn about the small scale velocity
differences and the related energy cascade.
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1. Introduction

Free convection in a long vertical channel is particularly well designed for modelling natural
convection, such as that occurring in stars, in a planet’s atmosphere or in half-natural situations,
such as industrial plants. It allows the study of mixing phenomena in the bulk of the fluid, far
from scalar injecting boundaries, with a minimum number of control parameters. The first one
is the Prandtl number Pr = ν/κ , where ν is the kinematic viscosity and κ the heat diffusivity.
The second control parameter is the Rayleigh number,

Ra =
gαβL4

νκ
, (1)

where g is the gravitational acceleration and α the constant pressure thermal expansion
coefficient. β and L deserve a wider explanation.

Let us choose the origin of the temperature T such that its time and space average, on
the whole channel, is zero. 〈T 〉 is the time-averaged temperature and β = −d〈T 〉/dz is the
temperature gradient that drives the flow. If the thermal expansion coefficient α > 0, which is
the general case, convection occurs if the hot fluid is below the cold one (β > 0).

L is a characteristic length of the flow. The natural choice is d, the width of the channel.
In a recent paper [1], thermal measurements yield another choice for L . We shall come back to
this point later.

For experimental realizations, the considered channel connects two chambers, the hot one
at the bottom and the cold one at the top. The sketch of such an experiment is shown in figure 1.

Note that salted water has been used for a similar study. For instance, the authors of [2]–[4]
looked at the free convection in a vertical tube connecting two chambers with different salt
concentrations. They studied a flux of salt instead of a flux of heat, and the salt diffusion
coefficient (respectively the Schmidt number Sc) takes the place of κ (respectively Pr ). Some
numerical simulations [5, 6] also correspond well to this situation, using periodic boundary
conditions.

As in the Rayleigh–Bénard case (the other great paradigm in thermal convection), the state
of the system can be characterized by its global response to the above applied parameters.
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Figure 1. Sketch of the cell arrangement.

For instance, the Nusselt number (Nu) compares the global heat flux to a purely diffusive one,

Nu =
Q

χβ
, (2)

where Q is the heat flux across the channel and χ is the heat conductivity of the fluid. One can
also define a Reynolds number

Re =
U L

ν
, (3)

where U is a typical velocity, which can be determined in various ways, indirectly through
thermal measurements or directly through particle imagery velocimetry (PIV) techniques.

We can now come back to the choice of the characteristic length L . In [1, 7], it was noted
that results appeared clearer when L was chosen as the ratio between a typical amplitude of
temperature fluctuations θ and the gradient β. With such a definition, L/d was observed to
be constant for Re being smaller than some threshold value, and increased regularly above
this threshold, apparently linear with ln Re. The measurements made with the cell described
in section 2 all correspond to Reynolds numbers lower than the threshold, where L/d can be
considered as constant.

However, global measurements are not the only information that can be extracted from
this system. PIV measurements allow a rather complete knowledge of the flow, which proves
to be much simpler than in a Rayleigh–Bénard cell [8]. In a Rayleigh–Bénard cell, the flow
is very inhomogeneous, the neighbourhood of plates, that of walls, the centre of the cell and
the corners all corresponding to different statistical properties. Here, the turbulent flow is rather
homogeneous, presenting translational invariance along the z-axis, and constant mean profiles,
both of temperature and velocity, can be defined.

The paper is organized as follows. In section 2, the experimental setup and experimental
procedures are exposed. In section 3, the results of thermal measurements are recalled, with
reference to the corresponding papers. We then come to the new PIV measurements, with the
mean profiles (section 4), and we discuss their implications (section 5). The following two

New Journal of Physics 12 (2010) 075024 (http://www.njp.org/)

http://www.njp.org/


4

Figure 2. Picture of the cell. The ‘I’ structure (the bridge) measuring the vertical
temperature gradient is visible in the middle of the channel.

sections are dedicated to the characterization of the produced turbulence, both with one-point
(section 6) and two-point (section 7) statistics. We then conclude in section 8.

2. Experimental setup

Our cell, sketched in figure 1 and shown in figure 2, is filled with water. The chambers are
conical and axisymmetric: the upper one is cold and the other is hot. As one can see in
figures 1 and 2, these two chambers are linked through a square channel, 20 cm in length
and 5 × 5 cm2 in cross-sectional area. The walls of the channel, 10 mm thick, are made of
polymethylmethacrylate (PMMA). A regulated water bath controls the temperature of the upper
plate. The hot chamber is closed with a bottom plate that is heated by the Joule effect, thanks
to a heating wire. With a power supply, the power provided to the water varies between 3 and
80 W, which allows the Rayleigh number to be in the range between 4 × 105 and 4 × 106.

For vertical temperature gradient measurements in the channel, we use a bridge with four
thermistors, from the same batch. The typical values of resistance are 2 k� at 20 ◦C and 1 k�
at 40 ◦C. These sensors are welded at the corners of a rectangle, the width of which is 2.5 cm
and the height of which is 5 cm. To prevent this geometry from being too intrusive, we use an
‘I’ structure, shown in the middle of figure 2. In addition, in this Wheatstone bridge, the two
upper (respectively lower) resistors are in the opposite situation (no common point). Since the
calibrations of sensors are very close, the output of the bridge is poorly sensitive to the average
temperature. But this output is very sensitive to a temperature difference between the top and
bottom of the bridge. An Agilent 33220A function generator provides the bridge with a voltage
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with a range of 0.1 V and with a frequency of 34 Hz. We measure the output of the bridge with
a differential lock-in amplifier (Stanford Research SR8303DSP).

To carry out PIV, we use a one watt green continuous laser (Melles Griot). In a first step, we
seed water with hollow glass particles (Sphericel 110P8, LaVision GmbH), 10µm in average
diameter. A laser sheet (DPSS-Laser System, 532 nm, Melles Griot) is created, thanks to a
cylindrical lens. We record images of the channel with the Imager Pro Lavision camera. All our
PIV measurements are made at a frequency of 25 Hz and the recording and batch processing are
done with Davis Lavision’s software.

The images are grouped in blocks of 20 (0.8 s for the block). The blocks are separated by
2 min, much larger than the correlation time of velocity (see [1]). A record consists of 160 blocks
(which corresponds to 5 h and 20 min). All the records are made at an average temperature of
25 ◦C (Pr = 6), close to the room temperature, to minimize eventual heat leaks.

3. Brief overview of thermal results

The output of the bridge gives us all the global information on our system. In the absence
of convection (no heat flux), it presents no visible fluctuations, which allows us to precisely
measure the zero of our bridge. It also allows us to finely check the eventual heat leaks on
our hot chamber, which enhance our precision on the heat flux Q. The average value of the
output gives us the temperature gradient β. We checked that its value is reasonably constant
when translating the ‘I’ structure along the axis of the cell [1]. Assuming a short correlation
length for the temperature field (we verified this hypothesis), the rms value of the output gives
an amplitude θ for the temperature fluctuations. With the ratio between θ and β, we can define
an ‘intrinsic’ length

L = θ/β. (4)

Furthermore, the cut-off frequency of the bridge output power spectrum gives a
characteristic time τ . We verified that L/τ is systematically close to the root mean square (rms)
value of the velocity. Thus, the only measure of the bridge output gives us the gradient β, the
length L and thus the Rayleigh number Ra and the Reynolds number if we define it by

Re =
L2

ντ
. (5)

In [1], it has been shown that all the data, whether of the present cell or of another one with
d twice larger (called ‘the previous cell’ hereafter), at various Prandtl numbers Pr , agree with
the following laws:

Nu = 1.6
√

Ra Pr , RePr = 1.3
√

Ra Pr . (6)

It is worth mentioning that, with our choice for L , the close similitude between Nu and
RePr has a simple interpretation. The heat flux Q can be written as

Q = C p(〈〈vzT 〉〉 + κβ), (7)

where C p is the heat capacity per unit volume (χ = C pκ). 〈〈.〉〉 means averaging both on time
and the width of the channel. Then, the Nusselt number

Nu =
〈〈vzT 〉〉

κβ
+ 1

' CvT

√
〈〈δT 2〉〉

β

√
〈〈v2

z 〉〉

κ
(8)

New Journal of Physics 12 (2010) 075024 (http://www.njp.org/)

http://www.njp.org/


6

with

CvT =
〈〈vzT 〉〉√

〈〈v2
z 〉〉

√
〈〈δT 2〉〉

, (9)

where δT = T − 〈〈T 〉〉 is the difference between the instantaneous temperature T and its
average. CvT is the correlation coefficient between vz and T .

Considering, as we assume, that θ , used in the definition of L (equation (4)), is proportional
to

√
〈〈δT 2〉〉 and U to

√
〈〈v2

z 〉〉, we can write

Nu ∝ CvT RePr. (10)

If CvT is constant, the choice we made for L ensures similar behaviour between Nu and RePr .
In a previous study [1], we used a cell (‘the previous cell’) with the same channel length as

here (20 cm) and a width twice as large. Despite this difference in aspect ratio, the Nu versus
Ra and Re versus Ra were in agreement with equation (6). As noted in [1], the same agreement
is found with the salt water experiments [2, 3] and the numerical simulations [5, 6].

In the following, all measurements concern velocities, with no direct measure of β and thus
of L . The only thermal information is the heat power input to the hot plate. It is thus useful to
translate β in terms of a velocity squared,

gαβd2, (11)

which is the square of the free fall velocity, under the buoyancy acceleration, on a length d.
Taking into account that, in the regime we explore, L ' 0.8d , the relation Nu = 1.6

√
Ra Pr

gives

gαβd2
'

(
Qdgα

C p

)2/3

= U 2
t , (12)

which we take as the definition of our reference velocity Ut .

4. Mean transverse profiles

In [1], a PIV study was analysed, for two different input powers, in the ‘previous cell’. In this
section, we report a similar study, systematically performed for four different input powers, in
our present cell. The goal is multiple. First, we want to check the expected scalings, both with
spatial dimensions and the input power. We also want to check the pertinence of the turbulent
viscosity approximation, in the present situation, where the Reynolds number is significantly
lower than in [1]. Indeed, we shall see in the next section the importance of this concept
of turbulent viscosity for interpreting the relation between temperature and vertical velocity
fluctuations.

To correctly analyse the flow through PIV techniques, it is very important to take into
account one of its characteristics: it often separates into two columns, one ascending and the
other descending.

In most of the pictures, the flow is globally ascending in the left-hand part and descending
in the right one, or the opposite. These flows we call 8-flows. Some of the pictures show a
flow globally ascending in both parts (remember that we record only a sheet of the flow) or
descending. We call this kind of flow 4-flows. 8-flows have a typical mixing layer structure.
In order to discuss them, first we have to extract the average profile of the velocity field.
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Figure 3. Time-averaged values of ψvz.

With this in mind, as done in [1], we first define ψl, which is 1 if the average of the vertical
velocity in the left part is positive, and ψl = −1 if it is negative. We also define ψr, which is −1
if the average of the vertical velocity in the right part is positive, and ψr = 1 if this latter average
is negative. For 8-flows, ψl = ψr. Reciprocally, for 4-flows, ψl = −ψr. We then define

ψ =
1
2(ψl +ψr), (13)

which is zero for 4-flows and ±1 for 8-flows.
Figure 3 shows the average field 〈ψvz〉, where 〈〉 stands for time average divided by the time

average of ψ2, to take into account only the 8-flows. 〈ψvz〉 presents a reasonable invariance
versus z, as expected for the central part of the channel.

Due to the observed translational invariance, it is reasonable to define the z-average,

Uz(x)= 〈ψvz〉
z
, (14)

as the profile of the vertical velocity. Here, 〈.〉
z

stands for a time average, itself averaged along z.
Such profiles are shown in figure 4 for four different applied powers: P = 17.3, 45.2, 65.9 and
77.9 W (Q = 6920, 18 100, 26 400 and 31 200 Wm−2). The same treatment applied to vx gives
negligible values. In figure 4, in order to increase the statistics, we symmetrize the Uz profile,
i.e. we plot (Uz(x)− Uz(d − x))/2.

Taking into account these reversals is fundamental for correctly defining fluctuations, and
Reynolds stresses, which, in turn, give indirect information about the horizontal temperature
profile:

2(x)= 〈ψT 〉
z
. (15)

As shown in [1], 2(x) and Uz(x) are related through the differential equation

∂x(τxz − ν∂xUz)= gα2, (16)

where τxz = 〈ψvxvz〉
z

is the transverse Reynolds stress.
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Figure 4. Vertical (z-component, circles) and horizontal (x-component, stars)
velocities, averaged on time and z for the various applied powers. Red, P =

17.3 W; black, P = 45.2 W; blue, P = 65.9 W; green, P = 77.9 W. The vertical
velocity has been symmetrized: (Uz(x)− Uz(d − x))/2. The horizontal velocity
is almost zero.

Equation (16) alone shows the importance of τxz, which represents the momentum flux
along x when the viscosity can be neglected. If we forget reversals, this transverse Reynolds
stress averages to zero [3].

The two other significant Reynolds stresses, τzz = 〈(ψvz − 〈ψvz〉)2〉
z

and τxx =

〈(ψvx − 〈ψvx〉)2〉
z
, play little role as stresses, but give a good estimate of the amplitude of

the fluctuations. Their profiles are shown in figures 5 and 6, for the same four heat fluxes as
above. Note the nice uniformity of τzz. This is not so obvious for τxx , but a constant value
approximation remains reasonable. In figures 5 and 6, we do not symmetrize the profiles. The
difference between a particular profile and its symmetric gives an estimate of the error bar.

In all the above comments, we dismiss the points very close to the walls for two reasons:
the reliability of our PIV measurements is poor here and the viscosity must dominate sufficiently
close to the walls.

We turn to the transverse Reynolds stress τxz now. In figure 7, we plot its symmetrized
version (τxz(x)+ τxz(d − x))/2. We remark first that τxz is positive and much larger than the
viscous stress |ν∂xUz| (5 × 10−7 m2 s−2 at the centre for the highest power), except very close
to the walls. This means that most of the momentum created by the buoyancy forces directly
exchange from one side of the channel to the other, with almost nothing going to the walls. We
can practically neglect the friction on the walls. That is why we can compare our experiment to
the numerical simulations [5, 6] with periodic boundary conditions.

Secondly, the curvature of the profile is clear. Indeed, this profile is very similar to that of
dUz/dx , which will allow us to define a turbulent viscosity ν turb through the relation

τxz = 〈ψvxvz〉
z
= −ν turb dUz

dx
. (17)
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Figure 6. Profiles of the horizontal velocity fluctuation variance τxx for the four
considered applied powers. The same colour code as in figure 4.

τxx and τzz profiles being approximately constant, we can consider this turbulent fluid as
homogeneous, with a constant effective viscosity. We can also refer to the cross correlation Cxz

between vx and vz, as shown in figure 8. Note that this cross correlation is independent of the
applied power, showing that we are in a high Reynolds inertial limit, despite the relatively low
value of our Reynolds number (Re = 200–400).

The x dependence of 2 suggests the existence of a horizontal energy flux Qx . Again, as
shown in [1], Qx and Uz(x) are related through the differential equation

C pβUz = ∂x Qx . (18)
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Thus, measuring Uz and τxz, we have indirect access to the horizontal heat flux Qx

and the horizontal temperature profile 2. This allows us to define an effective turbulent heat
conductivity χ turb

x through

Qx = −χ turb
x

d2

dx
. (19)
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However, the noise on averaged quantities forbids calculating derivatives as we have in
equations (17)–(19). That is why we smooth the obtained profiles through a simplified model.

We model the major central part of the flow, setting aside two regions x < x− and x+ < x
close to the vertical walls. Considering that the momentum flux toward the walls is very small,
a stress-free boundary flow fits the profile of the vertical velocity well:

Uz(x)= Uo cos

(
π

x − x−

x+ − x−

)
. (20)

We can then determine ν turb using eqaution (17), and approximating τxz(x) with a sine
function

〈ψvxvz〉
z
= τxz,o sin

(
π

x − x−

x+ − x−

)
(21)

with

τxz,o = ν turb πUo

(x+ − x−)
. (22)

Note that, in order to increase the statistics, we use for these fits the symmetrized profiles:
(Uz(x)− Uz(d − x))/2 and (τxz(x)+ τxz(d − x))/2.

Having ν turb, we can return to equation (16) and determine

2(x)= (ν turb + ν)
π2Uo

gα(x+ − x−)2
cos

(
π

x − x−

x+ − x−

)
=2o cos

(
π

x − x−

x+ − x−

)
. (23)

Finally, using equations (18) and (19), we can determine χ turb
x :

χ turb
x = C pβ

(x+ − x−)
4

π 4

gα

ν turb + ν
. (24)

5. Mean flow discussion

We now apply the above discussion to demonstrate the validity of an effective diffusion
approach (ν turb, χ turb

x ) and the inertial scaling of the mean flow. An effective diffusion approach
is valid if the mixing length is much smaller than the scale d of the flow. We can define it in the
following way:

ν turb
= Lν

√
τxx , χ turb

x = C p Lkx
√
τxx . (25)

As we do not measure β, we have to express χ turb
x in terms of Ut , which is obtained directly

from P . It gives

χ turb
x = C p

(x+ − x−)
4

π 4

U 2
t

ν turbd2

= C pν
turb U 2

o U 2
t

τ 2
xz,o

(x+ − x−)
2

π 2d2
. (26)

Lν/d and Lkx/d have to be small to give meaning to the effective viscosity and diffusivity
coefficient. On the other hand, if the explored range corresponds to a pure inertial behaviour,
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their values have to be independent of the applied power P . In the same spirit, Ut must give the
velocity scale. We thus expect Ũ = Uo/Ut and τ̃ = τxz,o//U 2

t to also be independent of P .
Figure 9 shows the dependence of Lν/d, Lkx/d, Ũ 2 and τ̃ as a function of P . We give

below how these quantities depend on the measured ones: Ut (equation (12)), Uo (equation (20)
and figure 4), τxz,o (equation (21) and figure 7) and τxx (figure 6):

Lν
d

=
(x+ − x−)

πd

τxz,o

Uo
√
τxx

(27)

Lν
d

=
(x+ − x−)

3

π3d3

UoU 2
t

τxz,o
√
τxx
, (28)

Ũ 2
=

U 2
o

U 2
t

, (29)

τ̃ =
τxz,o

U 2
t

. (30)

The values of Lν/d and Lkx/d are effectively small, and reasonably independent of P . Ũ
and τ̃ are also reasonably independent of P . We can even define an effective turbulent Prandtl
number:

Pr turb
=

C pν
turb

χ turb
x

=
τ 2

xz,o

U 2
o U 2

t

π 2d2

(x+ − x−)2
. (31)

As (x+ − x−)' d, Pr turb
' (πτ̃/Ũ )2. The constant value of τ̃ and Ũ when P is varied

guarantees a constant value for Pr turb. This value is close to 0.4. In [1], a value closer to 0.3 was
found.

In [1], a careful study of error bars was made, with the conclusion that Pr turb is determined
within 15%, taking into account its sensitivity to (x+ − x−). Although at the limit of the error
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Figure 10. Pdfs of the vertical velocity fluctuations, for the different applied
powers P . Once normalized to their rms value, all pdfs merge together.

bar, the difference between 0.3 and 0.4 cannot be considered significant. On the other hand, we
confirm that Pr turb is significantly smaller than 1 with this flow geometry.

Note that, within the same approximations, 2o can be written as

2o '
πτxz,o

gα(x+ − x−)
= βd τ̃

πd

(x+ − x−)
. (32)

Again, the constant value of τ̃ when P is varied guarantees a constant value for 2o/βd.
The transverse mean temperature gradient is proportional to the vertical one.

6. One-point statistics

In this section, we examine the one-point statistics of the vertical and horizontal velocity
fluctuations, respectively v′

z and v′

x . The comparison between them, and with the temperature
fluctuations, reveals some apparent contradictions that we shall discuss.

Figure 10 shows the probability density function (pdf) of v′

z, normalized to its rms, for the
four considered input powers. Clearly the shape of these pdfs does not depend on P and is very
close to Gaussian. This is indeed the case in most of the turbulent flows. The surprise comes
when comparing to the temperature pdf. The one shown in figure 11 corresponds to P = 65.9 W.
Obviously, we cannot distinguish here between ψ = 1 and ψ = −1, which slightly deforms the
pdf. On the other hand, the width of this distribution is much larger than the value of2o (0.25 ◦C
here), and the shape of the pdf is close to Gaussian.

This is rather surprising. Looking at the equations, at large scales, the temperature seems
to balance with the velocity squared, but a relation like

T ′
= av′

z

√
v′2

z (33)

would not be consistent with both T ′ and v′

z being Gaussian.
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Figure 11. The temperature pdfs for P = 65.9 W, in the middle of the channel.
There is no way to correct for the ψ time dependence here.

This is not due to a small correlation coefficient between T ′ and v′

z, as we will show. Using
the values of U = 7 × 10−3 ms−1 (see figure 4) and2o = 0.25 ◦C, the power carried by the mean
flow can be estimated as 9 W, which gives 57 W for the fluctuations and

〈v′

zT ′
〉 =

57 W

C pd2
= 5.5 × 10−3 K ms−1. (34)

The rms of velocity fluctuations is 8.5 × 10−3 ms−1 (see figure 5) and that of temperature
fluctuations is 0.75 ◦C. This gives a very large correlation coefficient: 0.86.

This thus leads us to the conclusion that the relation between temperature and vertical
velocity is close to linear. This is consistent with the validity of the turbulent viscosity
approximation. In this ‘viscous turbulent fluid’, we can write that velocities are proportional
to buoyancy forces,

gαT ′
' ν turb v

′

z

`2
, (35)

` being the typical size of large-scale fluctuations. Using the above values, and α =

2.57 × 10−4 K−1, we obtain `' 1 cm, close to the mixing length value, which confirms this
interpretation.

The pdf of v′

x , shown in figure 12 for the four applied powers explored, has a shape that
differs from the v′

z one but does not depend on the power P .
The shape is exponential up to the rms and then approximately Gaussian for the highest

absolute values of v′

x . To interpret this shape, we shall follow the same picture as above, noting
that the buoyancy forces have no component along x . The only driving force, here, is the
pressure gradient. Pressure fluctuations δp scale as the velocity fluctuations squared, so we
assume a similar distribution for these quantities. We thus write

δp

`
'
v′2

z

`
' ν turbv

′

x

`2
. (36)
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Figure 12. Pdfs of horizontal velocity fluctuations, normalized to their rms
values. Note the exponential shape for small amplitudes.

This gives

v′

x '
v′2

z `

ν turb
, (37)

which explains why v′

x behaves as v
′2
z while its variance scales as the v′

z one.
To conclude this section, we note that assuming the fluctuations follow the macroscopic

rules, as is generally admitted in statistical physics, well explains the respective shapes of
temperature, v′

z and v′

x pdfs.

7. Two-point statistics

This section is devoted to the study of two-point correlations through the statistics of velocity
differences,

δiv j = v j(xi + a)− v j(xi), (38)

where i = x, z indicates the orientation of the vector joining the two points (e.g. xz = z) and
j = x, z indicates the velocity component whose difference is taken.

For instance, figure 13 shows the pdfs of the vertical velocity component differences on
various vertical distances.

Several remarks can be made. Firstly, these pdfs have a clear dissymmetry (skewness), the
negative wing being fatter than the positive one. As we are considering longitudinal differences,
this feature is similar to what occurs in isotropic turbulence. Secondly, the shape of the pdfs
changes with distance. Again, this corresponds to intermittency in isotropic turbulent flows.
Finally, the obvious change in width can be characterized by the second-order structure function,
〈(δzvz)

2
〉(a). This is shown, for each applied power, in figure 14.

Let us begin with the skewness. If we have time-reversal symmetry for the problem at
hand, the skewness would be zero. The dissipated power per unit mass, ε, which breaks the
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Figure 14. The second-order structure function 〈(δzvz)
2
〉 of vertical velocity

differences, for the various P values: red, P = 17.3 W; black, P = 45.2 W; blue,
P = 65.9 W; green, P = 77.9 W.

time-reversal symmetry, should thus be proportional to the third-order moment, 〈(δzvz)
3
〉, as in

isotropic turbulence. Here, ε can easily be related to the applied power P or to the heat flux Q:

ε = gα〈T vz〉 =
gαQ

C p
=

U 3
t

d
. (39)

Figure 15 shows 〈(δzvz)
3
〉/U 3

t as a function of the vertical distance a.
The four sets of values nicely merge, particularly for small a. However, even on this linear

plot, it is clear that this quantity is not proportional to a, as it should be within a true inertial
range, far from both dissipation and the large scale d. A calculation of the orders of magnitude
will explain why.
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Two lengths are important in developed turbulence: the dissipative length η and the Taylor
length λ.

η4
=
ν3

ε
=
ν3C p

gαQ
. (40)

Thus η is inversely proportional to P1/4 (P = Qd2). In our system,

η ' 1.4 × 10−3 P−1/4, (41)

with P in watts and η in metres. It gives a fraction of millimetre in our experiments, which is
smaller than our resolution, which explains why we do not observe the trivial viscous scaling
〈(δzvz)

p
〉 ∝ a p, even for the lowest values of a.

λ2
= 15ν

〈v
′2
〉

ε
= 15ν

〈v
′2
〉C p

gαQ
, (42)

where the factor 15 refers to the isotropic case, as we aim at an order of magnitude. As 〈v
′2
〉 is

proportional to P2/3, we see that λ is inversely proportional to P1/6 and

λ' 1.7 × 10−2 P−1/6, (43)

with P in watts and λ in metres, so that λ is about 1 cm in our experiments. λ can be used to
define a Reynolds number Rλ:

R2
λ = 15

〈v′2
〉

2

εν
= 15

〈v′2
〉

2C p

νgαQ
. (44)

In our experiments, Rλ ' 10P1/6, with P in watts. For the maximum value of P , it gives 21.
This value is too small for developing a true inertial range.

Intermittency, even at such small Rλ, can be revealed by quantities like

F3 =
〈|δzvz|

3
〉

〈|δzvz|〉
3
. (45)
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This is a kind of flatness due to the use of absolute values and it avoids calculating 〈(δzvz)
4
〉,

which would ask for very high statistics. Such a quantity is expected [9] to be constant both at
large and small scales, and to have an inertial range (a power law in a) and an intermediate
dissipative range (a rather rapid drop between dissipative and inertial scales) behaviours. The
transition between large and inertial scales is neat (see figure 16), giving 3.5 cm for the scale a
under which the cascade of energy develops. Again, due to our small Rλ values, there is no true
power law behaviour. The value of F3 for a Gaussian distribution is π . Indeed, it slightly differs
from π at large scales, particularly for the lowest P value, revealing small differences with the
Gaussian shape.

We also looked at differences of v′

x along z (transverse differences), as well as those of
v′

x and v′

z along x . Would the turbulence be isotropic, the transverse second-order structure
functions, both in the x- and z-directions, would be identical, the same for longitudinal ones.
However, a difference would appear between transverse and longitudinal structure functions.
This is why we separately plot the transverse second-order structure functions (in figure 17)
and the longitudinal ones (in figure 18), normalized by U 2

t . They have the usual behaviour, the
transverse ones seemingly shifted toward the small a values compared with the longitudinal
ones (see, for instance, [10]). Here, the characteristic lengths are smaller in the x (horizontal)
direction than in the z (vertical) one, due to the anisotropy.

We have to stress the behaviour of the second-order structure function of the x velocity
component both transverse and longitudinal, for the smallest P value, as it clearly does not
merge with others. The same difference with the other powers, contrary to the vz case, appears
when considering 〈(δxvx)

3
〉/U 3

t (figure 19).
The interesting point is that the problem cannot be solved by a simple change in Ut ; thus it

is not due to a bad evaluation of the heat flux or of velocities. This could reveal a transition, at
low Ra number, but further investigation will be necessary to confirm or deny this hypothesis.
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8. Conclusions

This study of the velocity field for the heat convection in a vertical channel completes the
works [1, 7], mainly based on thermal measurements. The relative independence versus the
applied power P of all the normalized functions and profiles confirms the inertial character of
the mechanisms involved: the molecular viscosity and the molecular diffusivity have a poor
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influence in the explored range. On the other hand, the study of small scales shows that the
energy cascade is not well developed, even if some intermittency is present. It leads to the
conclusion that the transition observed in [1], where the characteristic length L begins to depend
on the Reynolds number Re, should coincide with the apparition of an inertial range. The regime
explored here could be called ‘intermediate turbulence’.

In this ‘intermediate turbulent’ state, the notions of turbulent viscosity and turbulent
diffusivity appear meaningful and powerful. They can be invoked even for the relation between
the various fluctuation fields, temperature and both velocity components. We find here a
situation reminiscent of solid state statistical physics. It results in well-defined quantities, as
mixing lengths or turbulent Prandtl numbers, whose determination from first principles is a
challenge for future studies.
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