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Abstract

Linear magneto-hydrodynamic instabilities are studied analytically in the case of unbounded

inviscid and electrically conducting flows that are submitted to both rotation and precession with

shear in an external magnetic field. For given rotation and precession the possible configurations of

the shear and of the magnetic field and their interplay are imposed by the “admissibility” condition

(i.e., the base flow must be a solution of the magnetohydrodynamic Euler equations): We show

that an “admissible” basic magnetic field must align with the basic absolute vorticity. For these

flows with elliptical streamlines due to precession we undertake an analytic stability analysis for

the corresponding Floquet system, by using an asymptotic expansion into the small parameter ε

(ratio of precession to rotation frequencies) by a method first developed in the magneto-elliptical

instabilities study by Lebovitz and Zweibel (Astrophys. J., 609, 301, 2004). The present stability

analysis is performed into a suitable frame that is obtained by a systematic change of variables

guided by symmetry and the existence of invariants of motion. The obtained Floquet system

depends on three parameters: ε, η (ratio of the cyclotron frequency to the rotation frequency) and

χ = cos α, α being a characteristic angle which, for circular streamlines, ε = 0, identifies with the

angle between the wave vector and the axis of the solid body rotation. We look at the various

(centrifugal or precessional) resonant couplings between the three present modes: hydrodynamical

(inertial), magnetic (Alfven) and mixed (magneto-inertial) modes by computing analytically to

leading order in ε the instabilities by estimating their threshold, growth rate and maximum growth

rate and their bandwidths as function of ε, η and χ. We show that the subharmonic “magnetic”

mode appear only for η >
√

5/2 and at large η (≫ 1) the maximal growth rate of both the

“hydrodynamic” and “magnetic” modes approaches ε/2, while the one of the subharmonic “mixed”

mode approaches zero.
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1. INTRODUCTION

Rotating and precessing flows are very common in Nature for example in celestial objects

such as planets for which the combination of proper rotation and of gravitation lead to

tidal forces making small elliptical deformations of the initial sphere. This may explain

why both neutral and conducting fluids in such configurations have been considered in a lot

of studies on theoretical and experimental grounds, in particular precessing flows for their

importance in geophysics and in astrophysics, especially for the understanding of natural

dynamos. Neutral fluids in rotating spheroids can lead in particular to both elliptical and

centrifugal instabilities due to the possible coupling of the inertial waves that are excited by

(fast) rotation and coupled by (slower) ellipticity or precession. Rossby waves can be also

driven in rotating fluids in the presence of curved boundaries for example in oceans. In the

case of the elliptical instability however earlier studies have been mainly motivated not by

natural objects but by hydrodynamical considerations aimed at describing the evolution of

vortices in a stretching field. The context of trailing vortices is still relevant, from the work

of Crow [1], but an important simplification consisted of disconnecting ellipticity from the

mutual induction of adjacent counter-rotating vortices. For instance, the stability analysis

of a single vortex flow with elliptical streamlines by Pierrehumbert [2] and by Bayly [3],

using different methods, gave a new interest to this instability, whose a good review can be

found in Kerswell [4]. It is perhaps useful to recall that Bayly used disturbances in terms of

advected Fourier modes, with time-dependent wave vector, as in Rapid Distortion Theory

(RDT hereinafter) for unbounded flows, since the same technique is used in the present paper

and in many other mentioned here. RDT was introduced by Batchelor and Proudman [5]

for disturbances to irrotational mean flows, but Moffatt [6] was probably the first to study

the linear response of disturbances to a rotational flow (a pure plane shear), calculating a

complete Green’s function for individual disturbance modes. In addition, he proposed to

coin “Kelvin mode” the Fourier mode with time-dependent wave vector, which derives from

an eikonal equation. The reader is also referred to Cambon et al. [7] for generalization

of this technique to base flows with hyperbolic, rectilinear and elliptical streamlines in a

rotating frame.

Very recent developments on the elliptical flow instability in terms of classical normal

mode analysis, including nonlinear evolution of the instabilities by going to mode couplings
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at higher order, can be found for example in Eloy et al.[8, 9] and Lacaze et al. [10] with

both theoretical and experimental approaches. Its original result comes from the notice that

a 2D flow with elliptical streamlines is found to be unstable to wave perturbations. This is

in particular the case for the Kerswell flow ([11], KBF hereafter) under study here which

is characterized by the following configuration: its base flow has an horizontal shear whose

cross gradient is normal to both main (reference direction) and precession (here taken at right

angle from main rotation) rotations axis, while the Mahalov base flow ([12] MBF hereafter)

has instead a vertical shear with a cross gradient aligned with the main rotation. These

flows can be subject to both elliptical and centrifugal instabilities, these denominations

correspond to the coupling of the two inertial eigenmodes of the system such that their

azimuthal numbers differ by ∆m = 1 for the centrifugal case and by ∆m = 2 for the elliptical

case. A detailed comparison of the linear stage of the instability for these two flows, using

RDT and therefore ignoring solid boundaries, has been done in a previous paper (Salhi &

Cambon [13]) without magnetic field. For the centrifugal instability a detailed theoretical

and experimental study can be found in Gans [14]. These instabilities are still actively

studied also for their nonlinear saturation and compared with experiments conducted on

purpose (see for example in a cylinder the recent works of Meunier et al. [15], and of Lehner

et al. [16]).

In the presence of magnetic fields various magnetohydrodynamical and here magneto-

Coriolis waves ([17, 19]) can be excited, and magneto-Archimedes- Coriolis (MAC) waves as

well in the presence of an additional density stratification ([20, 21]). In the case of accretion

disk in astrophysics it is widely believed that the angular momentum transport might be

driven by turbulence and would be very improbable without the presence of the magnetic

field (see for example Balbus and Hawley [22]). A close topic concerns the description of the

magneto-rotational instability and of its saturation for accretion disk but in the presence of

differential rotation (for example a Keplerian one), it is still a very active area of research

([23–25]) in various domains of physics.

For the specific case of dynamo and precession, Gans [26] undertook a hydromagnetic

study in liquid sodium in precession where he observed an amplification of an initial feeding

magnetic field by a factor of 3 (see also Lacaze et al. [10]).

It has been pointed out that buoyancy can trigger planetary and stellar dynamos. Bullard

[27] and after him, Malkus [28] have suggested on purely energetic grounds that precession
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FIG. 1: Rotating precessing shear flows in magnetic fields. (a) The Kerswell base flow (KBF): Solid

body rotation (with rate Ω0), background rotation (with rate 2εΩ0), horizontal shear (Ui = Sx3δi2,

with rate S = −2εΩ0), external magnetic fied (Bi = 2εB0δi1 + B0δi3). (b) The Mahalov base flow

(MBF): Solid body rotation (with rate Ω0), background rotation (with rate 2εΩ0), vertical shear

(Ui = Sx2δi3, with rate S = −2εΩ0), external magnetic field (Bi = B0δi3).

can be a viable driving mechanism for the geodynamo. For the special case of a precessing

sphere, it is known that differential rotation which is a fundamental feature for powering

dynamo action, may be induced by a balance between viscosity and nonlinear effects (Zhang

et al. [29]). However, it remains an open question to know whether precession driven flow

has a suitable structure for magnetic field generation (Tilgner [30]). But, recently, Wu and

Roberts [31] have claimed that they have obtained numerically dynamo action in precessing

spheroids. This result stimulates new interests for this topic in general but also for finding

driving mechanisms suitable for laboratory experiments scale dynamo which still remains a

challenge (Gailitis [32]). This type of forcing of an inertial m = 1 mode by precession is met

frequently in astrophysical objects including the Earth ([23, 24, 26]).
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We present a theoretical asymptotic linear analysis of the magnetohydrodynamical insta-

bilities that might be present in the case of the two quoted unbounded base flows: KBF and

MBF flows. These base flows are with elliptic streamlines due to the action of the precession

(along an horizontal axis, say x2) on the circular streamlines of the vertical solid rotation

(see figure 1). Similarities between precessing sheared flows and two-dimensional flows with

elliptical streamlines (see e.g., [2, 3, 33, 34]) has been considered by Kerswell ([4, 11], then

by [13]), and are investigated in the present study accounting for the effect of an external

magnetic field. As we will show here, the “admissibility” condition [33] with MHD coupling,

which means that the base flow must be a solution of the magnetohydrodynamical Euler

equations, requires that the basic magnetic field aligns with the basic absolute vorticity:

For the MBF case, the magnetic field is then vertical, while for the KBF case, it has, in

addition to a vertical component B0, an horizontal one, 2εB0, (along the rotation axis of

the background rotation).

Both Euler equations and induction equation are linearized. In addition to the Poincaré

parameter ε, the magnetic parameter η is the crucial parameter for MHD coupling. It is

defined here as η = Vak/Ω0, where Va is the Alfvén velocity, Ω0 is the angular velocity and

k is a wave number further specified in Eq. (17).It is a reciprocal Alfvén number of a sort,

and it corresponds to the Lehnert number [18] if k is replaced by the inverse of a typical

lengthscale.

Disturbances in terms of Kelvin (i.e. base-flow advected Fourier) modes are governed by

a Green’s function [6, 7, 13], which reduces to a Floquet system, given the time-periodicity

of the wave vector induced by close elliptical streamlines. This Floquet system is then

analyzed at leading order of the precession parameter ε by using the method first introduced

in the study of magnetoelliptical instabilities by Lebovitz and Zweibel [35] and also used by

Mizerski & Bajer [36] to account for the effect of the Coriolis force on these instabilities.

In the first part (section 2) we set our formulation recalling first the basic equations

we are dealing with, together with the three selected basic flows. Then we look at the

3D linearized perturbations around these base flows leading to a Floquet system, also by

investigating useful special cases. In section 3 we perform the asymptotic expansion into

the small precession parameter, by making first a convenient change of variables in order

to simplify the (4-4) Floquet system and we compare it with the one derived in section

2 in the case of magneto-elliptical instabilities. We recover also the growth rate for the
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pure centrifugal case without the B field. Then we introduce in section 4 the sub-harmonic

resonances arising from the solid body rotation. We put aside detailed computations that

are given in appendices. Section 5 contains our discussion of results, and Section 6 is devoted

to conclusions.

2. FORMULATION

The fluid is assumed inviscid and perfectly conducting. The equations describing the

evolution of the velocity field ũ and the magnetic field b̃ are the Navier-Stokes equations

with the Lorentz and Coriolis forces and the induction equation,

∇·ũ = 0, (1)

∂ũ

∂t
+ (ũ·∇) ũ = −1

ρ
∇p̃ − 2Ω × ũ +

1

ρ

(

j̃ × b̃
)

, (2)

∂b̃

∂t
+ (ũ·∇) b̃ =

(

b̃·∇
)

ũ, (3)

where p̃ is the pressure modified by the centrifugal potential (1/2)ρ (Ω × x)2 , ρ is the fluid

density and j̃ is the density of the electric current. By neglecting the displacement current,

the Maxwell laws take the form

∇·b̃ = 0, j̃ =
1

µ0
∇× b̃, (4)

where µ0 denotes the magnetic permeability.

2.1. Relevant neutral wave modes

The MHD flow is subject to instabilities in the presence of ellipticity and/or precession.

The neutral wave modes, however, that appear with uniform external magnetic field and solid

body rotation with purely circular streamlines, are essential for a subsequent understanding

of the development of instabilities, especially in the linear limit.

The equations above are linearized around a uniform B0 magnetic fluid, with no velocity

base flow except the Coriolis force already present in eq. 2.

As for many wave motions, a single equation can be found for the pressure disturbance p

∂4

∂t4
∇2p̃ − 2(V a∇)2 ∂2

∂t2
∇2p̃ + 4(Ω∇)2 ∂2

∂t2
p̃ + (V a∇)4∇2p = 0, (5)
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introducing the Alvèn velocity

V a =
B0√
ρµ0

(6)

for dimensional convenience.

The dispersion relation is immediately recovered for wave-like solutions of the equation

above, p ∼ p̂ exp(ı(k·x − ωt)), as

ω4 −
(

ω2
i + 2ω2

a

)

ω2 + ω4
a = 0.

This equation involves the two basic dispersion laws, ωi for inertial waves and ωa for

Alfvén waves, or

ωi = ±2Ω·k

k
and ωa = ±V a·k. (7)

The solution of the dispersion relationship is finally found as

ω2 =
1

2
ω2

i + ω2
a ±

√

(

1

2
ω2

i + ω2
a

)2

− ω4
a. (8)

Without rotation, the case of pure Alfvén wave is recovered with ω2 = ω2
a. Without

external magnetic field, the two solutions ω = 0 (sign minus) and ω2 = ω2
i (sign plus) mean

that the magnetic field is not affected by waves, whereas the hydrodynamic field is affected by

pure inertial waves. When rotation and external magnetic field are simultaneously present,

inertia-Alfvén waves do affect “mixed” magneto-hydrodynamic modes. A Poincaré-type

equation for the pressure fluctuation can be found in the precessing case as well, but it would

be much more complicated than Eq. (5). This equation (5) accounts for rotation through

the Coriolis force, which corresponds only to the precession rotation in what follows, but

without the effect of the main solid body rotation and related additional shear flow, forming

the following base flow.

2.2. Base flow

The base flow considered in the present study corresponds to a vertical (x3) solid body

rotation viewed in a rotating frame about the x1 axis with additional plane shear in an

external magnetic field,

U = A·x, Ω = [εΩ0, 0, 0]T , B0 = [B01, B02, B03]
T (9)
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where

A = Ω0











0 −1 0

1 0 −2ε

0 0 0











or A = Ω0











0 −1 0

1 0 0

0 −2ε 0











, (10)

and B0j = constant (j = 1, 2, 3) is not a priori specified. Here, T denotes transpose.

The presence of the plane shear with rate −2εΩ0 in each one of these two base flows

allows to ensure the admissibility conditions, previously mentioned (see e.g. Craik [33]).

Physically, this additional plane shear, which results from the precession, was found in

previous experimental studies (e.g., Wiener et al. [37], Lehner et al. [16]). More precisely,

Salhi and Cambon [13] have shown how the prescribed shear exactly balances the gyroscopic

torque, which results from the misalignment of main rotation axis and precessing rotation

axis, in order to satisfy the equation for absolute vorticity.

The main difference between these two base flows is the cross-gradient direction of the

plane shear: For the base flow described by the first relation in (10) it is horizontal, while

for the base flow described by the first relation in (10) it is vertical. As in the study by

Salhi & Cambon [13], these base flows are referred to as the Kerswell base flow [11] (KBF)

and the Mahalov base flow [12] (MBF), respectively. It should be noted that, for sufficiently

small precessing parameter (ε ≪ 1), both flow cases (KBF and MBF) can be deduced from

the Poincaré’s basic state of precessing spheroidal container (see [11, 13]).

Now, admissibility conditions are applied to the basic magnetic field. Because B0 is

constant, the induction equation for the basic magnetic field reduces to A·B0 = 0, and

remains similar to the equation for the basic absolute vorticity W = ∇× U + 2Ω,

A·W = 0.

This implies that B0 aligns with W . For the KBF case where the matrix A is described by

the relation (10), the induction equation reduces to











0 −1 0

1 0 −2ε

0 0 0











·











B01

B02

B03











=











0

0

0











.

So that

B0 = B0 [2ε, 0, 1]T , W = 2Ω0 [2ε, 0, 1]T . (11)
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It appears that the basic magnetic field has an horizontal component (2εB0) that can be

seen as generated by the interaction between the horizontal plane shear and the vertical

magnetic field. For the MBF case where the matrix A is described by the second relation

in (10), the induction equation implies that B0 must align with the vertical axis,

B0 = B0 [0, 0, 1]T , W = 2Ω0 [0, 0, 1]T . (12)

As it can be seen ‖W ‖ = 2Ω0 and ‖B0‖ = B0 for the MBF and ‖W ‖ = 2Ω0

√
1 + 4ε2 and

‖B0‖ = B0

√
1 + 4ε2 for the KBF. Obviously, without background rotation (ε = 0), both

the flow cases reduce to a solid body rotation in a vertical magnetic field.

On the other hand, it should be informative for comparison to consider the “classical”

case with elliptical streamlines studied by several authors (e.g., [3, 4, 7, 33–35]),

U = Ω0(−Ex2, E
−1x1, 0)T . (13)

In that case, the induction equation implies that B0 aligns with the vertical axis (see [35]).

2.3. Three-dimensional perturbations

We consider three-dimensional disturbances to the above basic precessing rotating flows

in the form of single plane waves with a time-dependent wave vector,











u (x, t)

1
ρ
p (x, t)

1√
ρµ0

b (x, t)











=











û (k, t)

p̂ (k, t)

b̂ (k, t)











exp [ık(t)·x] . (14)

in which b̂ has the same dimension as the velocity modes ûi(k, t). The admissible base

flow is shown to be compatible with the wavelike form for the disturbance flow, and the

superposition of both is called “a class of exact solutions” for Euler equations (see Craik

[33]). This is nothing other than a formal rediscovery of RDT, mentioned in introduction,

but one in which nonlinearity is rigorously excluded in the equations for the disturbance

flow: Only single-mode perturbation is considered and nonlinearity is then zero (at least for

divergence-free flows.)
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Equation and solution for the time-dependent wave vector

The wave vector k satisfies the eikonal-type equation: dk/dt = −AT
·k. For the KBF

case, it reduces to
d

dt
[k1, k2, k3]

T = Ω0 [−k2, k1, 2εk2]
T (15)

with solution (see [11, 13]),

[k1, k2, k3]
T = [kp cos τ, kp sin τ, k0 − 2εkp cos τ ]T

τ = Ω0t + arctan (K2/K1) , k0 = k3 + 2εk1 = K3 + 2εK1,

kp =
√

k2
1 + k2

2 =
√

K2
1 + K2

2 .

Here, the capital letter K denotes initial value (at t = 0). For the MBF, the eikonal-type

equation reduces to
d

dt
[k1, k2, k3]

T = Ω0 [−k2, k1 + 2εk3, 0]T (16)

with solution [13],

[k1, k2, k3]
T = [−2εk0 + kp cos τ, kp sin τ, k0]

T ,

τ = Ω0t + arctan (K2/(K1 + 2εK3)) , k0 = K3 = k3,

kp =

√

(k1 + 2εk3)
2 + k2

2 =

√

(K1 + 2εK3)
2 + K2

2 .

For both flow cases (KBF and MBF), the characteristic lines (or “trajectories” in wavespace)

exhibit two invariants, namely k0 and kp which define ellipses in wave-space [13]. As will

be shown later, the stability problem for both flow cases depends on three parameters: The

precessing parameter ε, the magnetic parameter η and the characteristic angle α such that

η =
B0

Ω0
√

ρµ0

√

k2
0 + k2

p, χ ≡ cos α =
k0

√

k2
0 + k2

p

. (17)

The parameter η is of the form η = Vak/Ω0, in terms of the Alfvén velocity Va (Eq. (6)), and

appears as a reciprocal Alfvén number of a sort, with a close linkage to the Lehnert number,

as mentioned in introduction. When ε = 0 (i.e., circular streamlines), the wavenumber
√

k2
0 + k2

p reduces to the modulus of the wave vector, and the angle α identifies with the

polar angle (i.e., the angle between the wave vector and the vertical axis).
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We note that for the case with elliptical streamlines (given by equation (13)), the stability

problem depends on the parameters ε, χ and η such that

ε =
1

2

(

E − E−1
)

,

while χ ≡ cos α and η are described by (17) with

k0 = k3 = K3, k2
p = k2

1 + E−2k2
2 = K2

1 + E−2K2
2 ,

k1 = kp cos τ, k2 = kpE sin τ = kp

(

ε +
√

1 + ε2
)

sin τ,

and

τ = Ω0t + arctan (K2/(EK1)) . (18)

The equations for the disturbances

In view of the eikonal equation, the substitution of the form (14) into the equations for

the perturbations derived from equations (1)-(4) yields,

dûi

dt
+ (Aij + 2εΩ0ei1j) ûj = −ıp̂ki +

ı√
ρµ0

[(

k × b̂
)

× B0

]

i
, (19)

db̂i

dt
− Aij b̂j =

ı√
ρµ0

(B0jkj) ûi, (20)

k·û = 0, k·b̂ = 0, (21)

where δij is the Kronecker delta and eijk is the permutation tensor. The pressure term is

solved in order to satisfy the incompressibility constraint,

p̂ = p̂h + p̂m = 2ı
km

k2
(Amn + Ω0εem1n) ûn +

1√
ρµ0

km

k2

[(

k × b̂
)

× B0

]

m
, (22)

in which the first term p̂h corresponds to the hydrodynamic part, while the second one p̂m

corresponds to the magnetic part,

p̂m = −B0(b̂3 + 2εb̂1)/
√

ρµ0

for the KBF case and

p̂m = −B0b̂3/
√

ρµ0

12



for the MBF case. The linear differential system for û = (û1, û2, û3)
T and b̂ = (b̂1, b̂2, b̂3)

T ,

is determined by substituting (22) into (19),

dû1

dτ
= 2

k1k2

k2
û1 +

(

1 − 2
k2

1

k2
+ 2ε

k1k3

k2

)

û2 − 6ε
k1k2

k2
û3 + ıηχb̂1,

dû2

dτ
= −

(

1 − 2
k2

2

k2

)

û1 − 2

(

k1k2

k2
− ε

k2k3

k2

)

û2 + 2ε

(

2 − 3
k2

2

k2

)

û3 + ıηχb̂2,

dû3

dτ
= 2

k2k3

k2
û1 −

[

2
k1k3

k2
+ 2ε

(

1 − k2
3

k2

)]

û2 − 6ε
k2k3

k2
û3 + ıηχb̂3,

db̂1

dτ
= −b̂2 + ıχηû1,

db̂2

dτ
= b1 − 2εb̂3 + ıηχû2,

db̂3

dτ
= ıηχû3. (23)

for the KBF case and

dû1

dτ
= 2

k1k2

k2
û1 +

(

1 − 2
k2

1

k2
− 2ε

k1k3

k2

)

û2 − 2ε
k1k2

k2
û3 + ıηχb̂1,

dû2

dτ
=

(

−1 + 2
k2

2

k2

)

û1 −
(

2
k1k2

k2
+ 2ε

k2k3

k2

)

û2 + 2ε

(

1 − k2
2

k2

)

û3 + ıηχb̂2,

dû3

dτ
= 2

k2k3

k2
û1 − 2

(

k1k3

k2
+ ε

k2
3

k2

)

û2 − 2ε
k2k3

k2
û3 + ıηχb̂3,

db̂1

dτ
= −b̂2 + ıηχû1,

db̂2

dτ
= b̂1 + ıηχû2,

db̂3

dτ
= −2εb̂2 + ıηχû3 (24)

for the MBF case. Because the wave vector is time-periodic (with period 2π), (23) and (24)

are Floquet systems.

2.4. The limit cases, kp = 0 and k0 = 0

We now examine the stability of the above Floquet systems at the limit cases, kp = 0

and k0 = 0.

The KBF case

If kp =
√

k2
1 + k2

2 = 0, then k1 = 0 and k2 = 0, and due to the fact that both u and b are

solenoidal, one obtains k3û3 = 0 and k3b̂3 = 0. Because the case where k = (0, 0, 0)T (for

which the perturbation is uniform with respect to the space coordinates) is not considered
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here, the disturbances associated to kp = 0 are two-dimensional lying to the horizontal plane.

In that case, the Floquet system (23) reduces to

dû1

dτ
= û2 + ıηb̂1,

dû2

dτ
= −û1 + ıηb̂2,

db̂1

dτ
= −b̂2 + ıηû1,

db̂2

dτ
= b̂1 + ıηû2,

with eigenvalues λ1,2 = ı
√

1 + η2 and λ3,4 = −ı
√

1 + η2, indicating stability.

When k0 = k3 + 2εk1 = 0 and |η| < +∞, so that ηχ = 0, the Floquet system (31) can be

transformed as

d

dτ
[k1û2 − k2û1] = 0,

d

dτ

[

k2û3 − 2εk2 (k1û2 − k2û1)
]

= 0, (25)

d

dτ

[

k1b̂2 − k2

(

b̂1 − εb̂3

)]

= 0,
db̂3

dτ
= 0,

indicating that, at k0 = 0 and |η| < +∞, there is no instability. On the other hand, when

k0 → 0 and |η| → +∞, there is instability (see §4.4).

The MBF case

If kp =
√

(k1 + 2εk3)
2 + k2

2 = 0, then k2 = 0 and k1 = −2εk3. The substitution of this

solution into (21) yields

û3 = 2εû1, b̂3 = 2εb̂1.

Accordingly, the Floquet system (24) reduces to

dû1

dτ
=

1

(1 + 4ε2)
û2 + ıηb̂1,

dû2

dτ
= −

(

1 − 4ε2
)

û1 + ıηb̂2,

db̂1

dτ
= −b̂2 + ıηû1,

db̂2

dτ
= b̂1 + ıηû2,

with eigenvalues

λ1,2 = ±ı



η2 +

(

1 − 4ε2
√

1 + (1 + 4ε2) η2
)

(1 + 4ε2)





1/2

,

λ3,4 = ±ı



η2 +

(

1 + 4ε2
√

1 + (1 + 4ε2) η2
)

(1 + 4ε2)





1/2

,
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indicating instability when 0 ≤ η <
√

4ε2 − 1. This implies that, when ε < 1/2, there is no

instability at χ = ±1 with or without basic magnetic field. Note that in several geophysical

or astrophysical (accretion disks) applications, the parameter of precession is small, ε < 0.2

(see e.g., [16]).

When k0 ≡ k3 = 0, the Floquet system (24) is transformed as

d

dτ
[k1û2 − k2 (û1 + 2εû3)] = 0,

dû3

dτ
= 0,

d

dτ

[

k1b̂2 − k2

(

b̂1 − 2εb̂3

)]

= 0,
db̂3

dτ
= 0, (26)

indicating that, at k0 = 0 and |η| < +∞, there is no instability, as for the KBF case.

However, when k0 → 0 and |η| → +∞, there is instability (see §4.4).

3. ASYMPTOTIC ANALYSIS

3.1. Change of variables

In this subsection, we introduce new variables to facilitate subsequent calculations of the

asymptotic (or perturbation) procedure for small ε.

In the purely hydrodynamic case, it is possible to reduce the number of dependent vari-

ables, and therefore the rank of the system of governing equations, using only solenoidal

modes for the velocity disturbance. Projection of û(k, t) into an orthonormal frame of

reference, often called Craya-Herring in the turbulence community, yields a solenoidal de-

composition in terms of two-components u(1), u(2) (see appendix V here). The procedure in

Fourier space, in which the solenoidal (divergence-free) property is a purely algebraic condi-

tion of orthogonality (k·û = 0), see Eqs. 21, is close to the toroidal/ poloidal decomposition

in physical space (see [38] for details). In addition, the above-mentioned two components

are similar to Orr-Sommerfeld-Squires variables, in terms of vertical vorticity and Laplacian

of vertical velocity. This decomposition has been successfully used for RDT approach and

related stability analysis in [7, 13], with some results (only published in French) prior to the

Bayly’s ones, and recalled in [7]. This decomposition applies to the magnetic disturbance

field, resulting in two component (b(1), b(2)), as well.

Instead of working on the rank-4 system of equations for u(1), u(2), b(1), b(2), given in ap-

pendix V, we prefer to generalize the similar system of four variables introduced by Lebovitz
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and Zweibel in the case of the “classical” elliptical flow case. The interest of the latter de-

composition appears at vanishing basic magnetic field (i.e., η = 0), where the induction

equation reduces to

db̂/dt = A·b̂

and therefore remains similar to the equation for the trajectories in physical space (dx/dτ =

A·x).

The L-Z system of variables are invariant along trajectories in the limit of vanishing

η. As their counterpart in the Craya-Herring system of reference, they use the Fourier

components of vertical vorticity (and vertical Curl of magnetic field) and vertical velocity,

but in a combined way.

The KBF case

For the KBF case, the induction equation in system (23) takes the form

db̂1

dτ
= −b̂2,

db̂2

dτ
= b̂1 − 2εb̂3,

db̂3

dτ
= 0, (27)

indicating that b̂3 is constant along trajectories for η = 0. With the help of the equation of

the wave vector (equation (15)), we easily show that the variable

[(

k1b̂2 − k2b̂1

)

+ 2εk2b̂3

]

is also constant along trajectories for η = 0. When η 6= 0, the use of the two variables

c3 = k1b̂2 − k2

(

b̂1 − 2εb̂3

)

, c4 = −k0b̂3, (28)

transforms the induction equation in system (23) as follows

dc3

dτ
= ıηχc1,

dc4

dτ
= ıηχc2 (29)

where

c1 = k1û2 − k2 (û1 − 2εû3) , c2 = −k0û3, (30)

Hence, the Floquet system (equations (23)) can be rewritten as

dc

dτ
= D·c, (31)
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in the variables c = [c1, c2, c3, c4]
T , where the non-zero components of the fourth rank matrix

D are

D11 = −4ε
k2 (k0 − εk1)

k2
, D11 + D22 = −4ε

k2k3

k2

D12 = −2

(

1 + ε
k1

k0

+ 4ε3k1k
2
2

k0k2

)

, D21 = 2
k0 (k0 − εk1)

k2
,

D13 = D24 = D31 = D42 = ıηχ. (32)

The MBF case

When η = 0, the induction equation in system (24) reduces to

db̂1

dτ
= −b̂2,

db̂2

dτ
= b̂1,

db̂3

dτ
= −2εb̂2, (33)

and due to the equation for the wave vector (16), we deduce that the following two variables

c3 = (k1 + 2εk3) b̂2 − k2b̂1, c4 = k0

(

2εb̂1 − b̂3

)

(34)

are constants along trajectories for η = 0. When η 6= 0, the use of these two variables

transforms the induction equation in system (24) into the equation (29) with

c1 = (k1 + 2εk3) û2 − k2û1, c2 = k0 (2εû1 − û3) . (35)

Accordingly, the Floquet system (24) takes the form (31) with

D11 = −4ε
k2k0

k2
− 4ε2k1k2

k2

(k2
1 + k2

2)

k2
p

+ 8ε3k2k0

k2

k2
1

k2
p

,

D11 + D22 = −4ε
k2k0

k2
, D12 = −2

(

1 + ε
k1

k0
− 4ε3k1k0

k2

k2
2

k2
p

)

,

D21 = 2

(

k2
0

k2
− ε

k1k0

k2
+ 4ε3k1k0

k2

k2
2

k2
p

)

,

D13 = D24 = D31 = D42 = ıηχ. (36)

As will be shown later, at sufficiently small ε, the matrix D has the same form in the both

flow cases (KBF and MBF, see also [13]).

On the other hand, it should be informative for comparison to report here the non zero

components of the matrix D in the case of the magnetoelliptical instabilities (see [35]),

D11 = −4ε
k1k2

k2
, D12 = −2, D21 = 2

k2
0

k2
, (37)
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D13 = D24 = D31 = D42 = ıηχ.

As will be shown later, for fixed value of η, the point at which occur the first harmonic insta-

bility in the KBF and MBF cases correspond to the point at which occurs the subharmonic

instability in the elliptical flow case.

3.2. The Floquet multiplier matrix

We denote by Φ(τ) the fundamental matrix solution of equation (31), which is similar to

the Green’s function used in the purely hydrodynamic case [6, 7, 13]

d

dτ
Φ + D·Φ = 0, Φ(0) = I4, (38)

where I4 is the unit matrix, and by M = Φ(2π) the Floquet multiplier matrix (see [41]).

Because
1

k2

dk2

dτ
=

2

k2
ki

dki

dτ
= − 2

Ω0k2
kiAjikj = 4ε

k2k3

k2
= −Dii,

it found that Det Φ = (K/k)2, and hence Det M = 1 (see [42]) This implies that

the product of the eigenvalues of M is unity, say λ1λ2λ3λ4 = 1, or equivalently,

exp [2π (σ1 + σ2 + σ3 + σ4)] = 1 since the general solution of equation (31) is a linear super-

position of Floquet modes, c(τ) = eστf(τ) where f(τ) is periodic with period 2π (see [41]).

If any of the eigenvalues has modulus exceeding 1 (|λ| > 1) there is an exponential growing

for the solution of equation (31) (or (38)), and hence the system is unstable. Moreover, the

Floquet system (31) possesses the property that whenever λ is an eigenvalue of the Floquet

matrix, so also are its inverse λ−1 and its complex conjugate λ∗. The proof of this proposi-

tion is similar to the one given by Lebovitz & Zweibel [35]. It follows that, i) in the stable

case all the eigenvalues lie on the unit circle, ii) if an eigenvalue is at the onset of instability,

it must have multiplicity two (or higher). Consequently, a necessary condition for the onset

of linear instability is a resonance where two Floquet multipliers coincide [35]).

4. THE SUBHARMONIC RESONANCES

In this section, we give the main results derived from the asymptotic analysis, while the

calculations yielding these results are reported in Appendices for the sake of clarity.
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4.1. Case with circular streamlines

When ε = 0 (i.e., circular streamlines), the matrix D (say D0) is time-independent

D0 =















0 −2 ıηχ 0

2χ 0 0 ıηχ

ıηχ 0 0 0

0 ıηχ 0 0















. (39)

with eigenvalues that are purely imaginary,

σ1,2 = ±ı
(

1 +
√

1 + η2
)

χ, σ3,4 = ±ı
(

1 −
√

1 + η2
)

χ. (40)

Lebovitz & Zweibel [35] noted that the first two eigenvalues correspond to “hydrodynamic

modes” since they reduce, when η = 0, to the eigenvalues of the purely hydrodynamic case,

while the second two refer to “magnetic modes” (they are zero at η = 0). The frequencies

associated to these four eigenvalues are respectively denoted by

ω1,2 = ±
(

1 +
√

1 + η2
)

χ, ω3,4 = ±
(

1 −
√

1 + η2
)

χ. (41)

This analysis can be supported more generally by the dispersion relation of neutral wave

modes, recalled in subsection 2.1. Previous equations (41) are the dispersion laws of inertia-

Alfvénic waves, given by Eq. (8), when the rotation axis is aligned with the external magnetic

field, rendered nondimensional by the basic rotation.

The resonant cases for ε = 0 are characterized by the condition ωi − ωj = ℓ where ℓ is

an integer and (i, j = 1, 2, 3, 4). As shown in Appendix, if ℓ 6= ±1, there is no instability

to leading order in ε, while for the magnetoelliptical instabilities, the only possibility of

destabilization in the first-order analysis appears for ℓ = ±2 (see [4, 35, 36]).

4.2. Similarity between the KBF and the MBF cases

We will now show that, at sufficiently small ε, there are no differences between the KBF

and MBF cases in terms of a normal mode stability analysis. Indeed, the expansion of the

matrix D (in the Floquet system (31)) in Taylor series around ε = 0 at fixed χ, is found as

D11 = 2ıεχ
√

1 − χ2
(

eıτ − e−ıτ
)

+ O(ε2),
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D12 = −2 − ε

√

1 − χ2

χ

(

eıτ + e−ıτ
)

+ O(ε2),

D21 = 2χ2 + εχ
√

1 − χ2
(

4χ2 − 1
) (

eıτ + e−ıτ
)

+ O(ε2),

D22 = O(ε2), (42)

for both flow cases (KBF and MBF). Therefore, if the terms of order O(εℓ) with (ℓ = 2, 3, ...)

are neglected, the stability problem is the same for both the flow cases.

When considering the elliptical case and expanding the matrix D given by (37) in Taylor

series around ε = 0 at fixed χ, we found (see also [35])

D11 = ıε(1 − χ2)
(

e2ıτ − e−2ıτ
)

+ O(ε2), D12 = −2, (43)

D21 = 2χ2 + εχ2
(

1 − χ2
) (

e2ıτ + e−2ıτ − 2
)

+ O
(

ε2
)

.

At leading order of ε, the time-dependent terms involving in the expansion of the matrix

D are of the form exp(±ıτ) for the precessing flow cases, and are of the form exp(±2ıτ)

for the elliptical case. Therefore, at leading order of ε, the instability can appear only if

ωi − ωj = ±1 in the former case (see Appendix), and only if ωi − ωj = ±2 in the later case

(see [35]).

4.3. Case without magnetic field

When η = 0, an alternative formulation of the Floquet system (31) yields a Hill equation,

which, at sufficiently small ε, reduces to a Mathieu equation (see Salhi & Cambon [13]),

d2Y

dτ 2
+

[

4χ2 − 2ε
(

3 − 8χ2
)

χ
√

1 − χ2 cos τ
]

Y = 0, (44)

Y = − k

kpkh

(k1û2 − k2û1) , kh =
√

k2
1 + k2

2.

From the above Mathieu equation, one can characterize the subharmonic instability. Indeed,

the stability properties of the Mathieu equation are well-known (see [39]): For small ε, the

solutions are generally bounded, except in the vicinity of resonances defined by χ2 = n2/16

with n = 1, 2, 3, 4, where the solutions are exponentially growing with growth rate of order εn,

respectively. Because the width of the last three unstable bands is of O(εn) with n ≥ 2, the

Mathieu equation does not allow to determine whether instability exists near χ = 1/2, 3/4

and χ = 1 for the original system (31) with η = 0. Therefore, equation (44) only characterizes
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the subharmonic instability which occurs at χ = 1/4 with maximal growth rate σmax of the

form
σmax

ε
=

[

(

3 − 8χ2
)

χ
√

1 − χ2
]

n=1
=

5
√

15

32
, (45)

in agreement with the result obtained by the power statement method (Kerswell [11]). Such

a result can also be recovered from the present asymptotic analysis (see §4).

In the presence of the magnetic field, i.e., η 6= 0, we propose to analyze the fourth order

Floquet system (31) for small ε by using the asymptotic (or perturbation) procedure given

by Lebovitz & Zweibel [35].

Because the interchange χ → −χ leads to the same set of frequencies (given by equation

(40), see also [35, 36]), we may consider without loss of generality that χ = cosα > 0. This

allows us to consider only the following four resonant cases.

4.4. Hydrodynamic modes: Case with ω1 − ω2 = 1

The substitution of the condition ω1−ω2 = 1 into the first relation in equation (41) yields

ω1 = 1/2 or equivalently

χ = cos α =
1

2
(

1 +
√

1 + η2
) . (46)

At vanishing basic magnetic field, i.e., η = 0, equation (46) reduces to χ = cosα = 1/4

meaning that the subharmonic instability emanates from the point P1(ε = 0, χ = 1/4),

in agreement with previous studies ([11, 13]). When η 6= 0, the point P1 that lies to the

ε = 0 axis approaches the point P (0, 0) since the value of χ yielded by (46) decreases with

increasing η, and approaches zero (so that k0 → 0) for η → +∞ (see figure 2-a). Recall

that, when |η| < +∞ and χ = cos α = 0, the Floquet system (31) is stable (see equations

(25) and (26)).

Regarding the maximal growth rate σmax (defined by equation (79) in Appendix IV) of

the “hydrodynamic” subharmonic instability, it takes the form (see equation (80)),

σmax

ε
=

∣

∣1 − χ − 2χ2
∣

∣

√

1 − χ2

4χ
√

1 + η2
(47)

In the limit η → 0 (the pure hydrodynamic limit), one has χ = 1/4 as already noted, and

hence, σmax/ε = 5
√

15/32, in agreement with (45). Note that, at χ = 1/4, equations(47)

and ((45) yields the same value. As it can be expected, σmax/ε decreases as η increases
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approaching ε/2 when η → ∞ (see figure 2-b). This means that the basic magnetic field

acts to reduce the maximal growth rate of the “hydrodynamic” subharmonic instability.

As for the width δ = (ν+ − ν+) ε of the “hydrodynamic” subharmonic instability, it is of

the form (see equation (81)

δ =
∣

∣1 − χ − 2χ2
∣

∣

√

1 − χ2

√

1 + η2
ε (48)

with ν+ = −ν− = δ/(2ε) (the slopes ν± are defined by equation (78) in Appendix IV). The

above relation shows that, at fixed ε, the width δ decreases as η increases: It varies between

δ = (5
√

15/32)ε at η = 0 and δ → 0 as η → ∞ (see figure 2-c). In the (ε, χ) plane, the

instability band is symmetrical with respect to the axis ε = 1/[2(1+
√

1 + η2)]. Note that in

the case of the elliptical instability, it has been shown that the subharmonic “hydrodynamic”

instability band is not symmetrical with respect to the axis ε = 1/[1 +
√

1 + η2] because

|ν−| < |ν+|. Its maximal growth rate varies between (9/16)ε in the pure-hydrodynamic limit

η = 0 (see [4, 34, 35]) and approaches ε/4 when η → ∞ (see figure 3 and [35]).

4.5. Mixed modes: Case with ω1 − ω3 = 1

The substitution of (41) into the relation ω1−ω3 = 1 yields ω1 = χ+1/2 and ω3 = χ−1/2,

and hence,

χ = cosα =
1

2
√

1 + η2
. (49)

In the (ε, χ) plane, the point P2(ε = 0, χ = 1/(2
√

1 + η2)), from which this instability em-

anates, approaches the point P (0, 0) as η → ∞ (see figure 2-b). This subharmonic instability

represents a “mixed” mode since, at η = 0, ω3 becomes zero while ω1 reduces to unity. We

note that, at η = 0, the instability emanating from P2(0, χ = 1/2) is rather harmonic since

it is of order ε2 (see [13]). The maximal growth rate of the “mixed” subharmonic instability

takes the form (see equation (82) in Appendix IV),

σmax

ε
=

|1 − 4χ2|
√

1 − χ2

4
√

1 + η2
=

η2
√

3 + 4η2

8 (1 + η2)2 . (50)

For fixed ε, the maximal growth rate is zero at η = 0, and increases for 0 ≤ η < ηm =

(
√

3 +
√

33)/2, reaches to the maximal value

(3 +
√

33)
√

6 +
√

33

2
(

7 +
√

33
)2
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at η = ηm and decreases for ηm < η approaching zero as η → ∞ (see figure 2-b). The width

of the “mixed” subharmonic instability is found as (see equation (83) in Appendix IV)

δ = (ν+ − ν−)ε =
χ |1 − 4χ2|

√

1 − χ2

√

1 + η2
ε =

η2
√

3 + 4η2

4 (1 + η2)5/2
ε, (51)

with ν+ = −ν+ = ν/(2ε). This implies that, in the (ε, χ) plane, the “mixed” subharmonic

instability is symmetrical with respect to the axis ε = 1/[2
√

1 + η2]. The bandwidth has a

maximum at η(
√

3 +
√

201 )/4 and approaches zero as η → ∞ (see figure 2-c).

For the elliptical case studied by Lebovitz & Zweibel [35]), the “mixed” instability em-

anates from the point P2(0, χ = 1/
√

1 + η2) (see figure 3-a) with a maximal growth rate

that increases when η increases: It takes a zero value at η = 0 and approaches ε/4 as η → ∞
(see figure 3-b and [35]).

4.6. Magnetic modes: Case with ω4 − ω3 = 1

The substitution of the expression of ω3 and ω4 given by equation (41) into the relation

ω4 − ω3 = 1 yields

χ = cosα =
1

2
(

√

1 + η2 − 1
) . (52)

Because χ ≤ 1, the resonance can occur only when

η >

√
5

2
. (53)

This subharmonic instability is due to the resonance between the magnetic modes and it is

called the subharmonic “magnetic” instability. In the (ε, χ) plane, the point P3(ε = 0, χ =

1/2(
√

1 + η2 − 1)) at which the “magnetic” instability occurs, also approaches the point

P (0, 0) as η → ∞ (see figure 2-a). The fact that η >
√

5/2 implies that the “magnetic”

stability cannot emanate exactly from the point (χ = 1, ε = 0). Recall that, at χ = 1 so

that kp = 0, there is no instability (see §2.3).

When
√

5/2 > η, the maximal growth rate of the subharmonic “magnetic” instability is

of the form (see equation (84) in Appendix IV)

σmax

ε
=

|1 + χ − 2χ2|
√

1 − χ2

4χ
√

1 + η2
. (54)
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FIG. 2: (a) Dependence of the points where the three subharmonic instabilities occur on the

magnetic parameter η (equations (46), (49), (52)); (b) Dependence of the maximal growth rate σmax

normalized by the precession parameter ε of the three subharmonic instabilities on the magnetic

parameter η (equations (47), (50), (54)); (c) Dependence of the width of the three subharmonic

instabilities normalized by the precession parameter ε on the magnetic parameter η (equations

(48), (51), (55)).
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Therefore, for fixed ε, the maximal growth rate increases as η increases, approaching ε/2 as

η → ∞ (see figure 2-b). The expression of the width of the “magnetic” instability is found

as (see equation (85) in Appendix IV)

δ =
|1 + χ − 2χ2|

√

1 − χ2

√

1 + η2
ε, (55)

with ν+ = −ν− = δ/(2ε) signifying that, in the (ε, χ) plane, the subharmonic magnetic

instability band is symmetrical with respect to the axis ε = 1/2(
√

1 + η2 − 1). For the sake

of clarity, we do not report here the expression of δ in function of η, but we indicate that δ

has a maximum value at η ≈ 1.9 and approaches zero when η → ∞ (see figure 2-c).

For the elliptical case, the subharmonic “magnetic” instability appears only when η >
√

3 : It emanates from the point P3

(

ε = 0, χ = 1/
(

√

1 + η2 − 1
])

with maximal growth

rate approaching ε/4 as η → ∞ (see figure 3 and [35]).

Finally, considering the case with ω1 − ω4 = 1. The use of (41) leads to χ = cosα = 1/2,

but, at first order in ε, there is no instability associated with this resonance (see the end of

Appendix IV).

5. DISCUSSION

In this section, the asymptotic analysis results are discussed and their validity when

ε(≤ 0.25) is not small. Recall that the domain 0 < ε ≤ 0.25 covering most of geophysical

and astrophysical applications (see e.g. [16]) is addressed in connection with the numerical

results. For fixed values of the parameters ε and η and 0 < χ < 1, the Floquet system (31)

is solved numerically over one period (0 ≤ τ ≤ 2π) (using the fourth order Runge-Kutta

method) to compute M(2π) and to determine its eigenvalues (using the QZ method) Λi

(i = 1, 2, 3, 4), and hence, the growth rate σi,

σi =
1

2π
log Λi (i = 1, 2, 3, 4). (56)

Recall that if any of the eigenvalues satisfies |Λi| > 1 the system is unstable.

5.1. The validity of the asymptotic analysis when ε is not small

Figure 4 shows the subharmonic instability bands in the (ε, χ) plane for η = 0, 1, 2 and

η = 5, respectively. The choice of these values is justified along the following analysis. At
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FIG. 3: (a) Dependence of the points where the first subharmonic magnetoelliptic instabilities

occur on the magnetic parameter η (see Lebovitz & Zweibel [35]), “hydrodynamic modes”: χ =

[1 +
√

1 + η2]−1, “mixed modes”: χ = [
√

1 + η2]−1, “magnetic modes”: χ = [
√

1 + η2 − 1]−1; (b)

Variation of σmax/ε versus η (see [35]), “hydrodynamic modes”: σmax/ε = (1 + χ)2/4, “mixed

modes”: σmax/ε = (1−χ)2/4, “magnetic modes”: σmax/ε = (1−χ)2/4; (c) Variation of δ/ε versus

η (see [35]). “hydrodynamic modes”: δ/ε = χ(1 + χ)2/2, “mixed modes”: δ/ε = χ(1 − χ2)2/2,

“magnetic modes”: δ/ε = χ(1 − χ)2/2.
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vanishing magnetic field (η = 0), only the “hydrodynamic” modes exist and the subharmonic

ones emanates from the point

χ =
1

(

1 + 2
√

1 + η2
) = 0.25

of the ε = 0 axis. At η = 1, there are only “hydrodynamic” and “mixed” instabilities. The

subharmonic modes occur at the points

χ ≈ 0.207, χ =
1

2
√

1 + η2
≈ 0.356,

respectively since the “magnetic” instability appears only for η >
√

5/2. In addition, the

choice η = 1 can be justified by the fact that the width of the ”mixed” instability band

approaches the maximal value which occurs at η ≈ 1.036 (see §4.4). The width of the

“magnetic” instability band. The choice η = 2 >
√

5/2 is due to the fact that the width

of the subharmonic “magnetic” mode is maximal at η ≈ 1.9 (see section 4.5). At η = 2,

the three subharmonic instabilities (“hydrodynamic”, “mixed” and “magnetic”) are present

and they emanate from the points

χ ≈ 0.155, χ ≈ 0.224, χ =
1

2
(

√

1 + η2 − 1
) ≈ 0.405,

of the ε = 0 axis, respectively. As for the value η = 5, it has been chosen to illustrate the

fact that the “hydrodynamic” and the “magnetic” subharmonic instabilities can merge for

ε < 0.25. Indeed, at sufficiently ε, we assume that the variation of χ versus ε is linear (see

61 in Appendix I and [35]), χ(ε) = χ(0) + ν±ε. Therefore, the use of (48) and (55) allows us

to deduce that the “hydrodynamic” and the “magnetic” instabilities merge when

ε ≥
[

η2 (ν+h − ν−m)
]−1

,

in which ν+h = δ/(2ε) (δ given by equation (48)) and ν−m = −δ/(2ε) (given by equation

(55)) denote the positive and negative slopes corresponding to the “hydrodynamic” and the

“magnetic” instability bands, respectively (see also figure 4-d). At η = 5, the “hydrody-

namic”, “mixed” and “magnetic” subharmonic resonances occur at

χ ≈ 0.082, χ ≈ 0.098, χ ≈ 0.122,

respectively, of the ε = 0 axis. It is clear from figure 4 that, for ε ≤ 0.25, the stability bound-
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FIG. 4: Stability boundaries in the (ε, χ) plane for the KBF and MBF cases. Comparison of the

asymptotic analysis results with the numerical ones for (a) η = 0 (purely hydrodynamic mode); (b)

η = 1 (only the hydrodynamic and mixed modes are present); (c) η = 2 (the three subharmonic

instabilities are present but only the boundaries of the hydrodynamic and magnetic modes are

presented since the width of the mixed mode is relatively small); (d) η = 5 (The hydrodynamic

and magnetic instabilities merge for ε ≥ 0.2).
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aries are well reproduced by the analytical results except those for the “mixed” instability

band at ε > 0.1. In that case, the agreement is not quite good as for the “hydrodynamic” and

the mixed ones. Note that the width of the “mixed” instability is relatively thin (see figure

2-c). To more illustrate the agreement between the analytical results and the numerical ones

for ε < 0.25, figure 5-a compares the variation of δ/ε versus η for the subharmonic “hydrody-

namic” instability (see equation (48)) with the numerical results obtained for several values

of 0 ≤ ε ≤ 0.25. Figure 5-b shows the variation of σmax/ε versus η for the subharmonic

“hydrodynamic” instability which is the most unstable one (see equation (47) and figure

2-c). We have also reported in this figure the numerical results at ε = 0.2 for both the flow

cases (KBF and MBF). As it can be seen, equation (47) well approximates the maximal

growth rate of the “hydrodynamic” instability even if ε is not small. Recall that, at η ≫ 1,

the maximal growth rate of the “hydrodynamic” and “magnetic” instabilities approach ε/2

(see figure 2-b).

5.2. Harmonic resonances

While, at sufficiently small ε, one obtains the same results considering either the KBF

case or the MBF case, at order εℓ with ℓ = 2, 3, ..., there are differences between these two

flow cases as illustrated by figures 6 and 7 displaying (ε + ℜσ) versus χ = cosα for fixed ε

(0 ≤ ε ≤ 0.4), and η = 1 (figure 6) and η = 5 (figure 7). As indicated in section 4.1, the

resonant cases for ε = 0 are characterized by the condition

ωi − ωj = ℓ, (i, j = 1, 2, 3, 4)

where ℓ is an integer. According to the asymptotic analysis, at leading order of ε, the modes

for which

ω1 − ω2 = 1, ω1 − ω3 = 1, ω3 − ω4 = 1,

are exited by the precession and due to this mechanism, subharmonic instabilities appear, in

agreement with the numerical results which also show the presence of harmonic resonances

when

ω1 − ω2 = ℓ1 ∈ E1 =
{

2, ...,
⌊

2
(

√

1 + η2 + 1
)⌋}

,

ω1 − ω3 = ℓ2 ∈ E2 =
{

2, ...,
⌊

2
√

1 + η2
⌋}

,
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FIG. 5: The figure compares the asymptotic analysis results with the numerical ones (ε ≤ 0.25.) for

the subharmonic “hydrodynamic” instability (which is the most unstable one) in both flow cases

(KBF and MBF). (a): Variation of δ/ε versus η. (b) variation of σmax/ε versus η.
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ω3 − ω4 = ℓ3 ∈ E3 =
{

2, ...,
⌊

2
(

√

1 + η2 − 1
)⌋}

. (57)

Here ⌊·⌋ is the floor function. For instance, at η = 1 <
√

5/2, only the “hydrodynamic” and

“mixed” resonances are present, and according to relation (57), there are three harmonic

“hydrodynamic” resonances (ℓ1 ∈ {2, 3, 4}) occurring at

χ =
ℓ1

2
(

√

1 + η2 + 1
) ≈ 0.414, 0.621, 0.828,

respectively, whereas, there is only one harmonic “mixed” resonance (ℓ2 ∈ {2}) occurring at

χ =
ℓ2

2
√

1 + η2
≈ 0.707

(see figure 6-a,b,d). The third harmonic “hydrodynamic” resonance is of order O (ε4) and

hence it is very thin (see figure 6-c). The comparison made for several values of η shows that

the “hydrodynamic” and “magnetic” harmonic instability bands are larger in the MBF case

than in the KBF and inversely when considering the ”mixed” harmonic instability bands

as illustrated by figure 7 displaying ε + ℜσ versus χ for fixed 0 ≤ ε ≤ 0.4 and η = 5. In

that case and according to relation (57), the first harmonic “hydrodynamic”, “mixed” and

“magnetic” modes occur at χ ≈ 0.164, 0.196, 0.244, respectively, while the second ones

occur at χ ≈ 0.246, 0.294, 0.366, respectively.

For the elliptical case, the integers ℓ1, ℓ2 and ℓ3 given by (57) must be even, and hence

at η = 1, there are two subharmonic “hydrodynamic” and one “mixed” modes occurring at

χ ≈ 0.414, 0.828 and χ ≈ 0.707, respectively (see figure 6-c). The subharmonic instability

bands in the elliptical case are larger than their counterparts (those associated to the even

integers in E1, E2 and E3) in the KBF and MBF (see also figure 7). Finally, we note that the

maximal growth rate for the precessing flow cases is more important than the one for the

flow with elliptical streamlines (see figures 2 and 3).

5.3. Upper bound for the magnetic field strength

Lebovitz and Zweibel [35] have applied the results of the magnetoelliptic instability anal-

ysis to a system of finite vertical thickness H (such as the accretion disks). They showed

that, in that case, the instability would operate when the Alfvén speed VA = B0/
√

ρµ0 does

not exceed the critical value

VA ≤
√

3
Ω0H

C
, (58)
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FIG. 6: Variation of ε + ℜ(σ) versus χ = cos α for fixed 0 ≤ ε ≤ 0.4 and η = 1. (a) the KBF case,

(b)-(c) the MBF case, (d) the case with elliptical streamlines.

where C is a factor of order unity. More recently, Mizerski & Bajer [36], who studied the

effects of the Coriolis force on the magnetoelliptic instability, have showed that rotation

significantly modifies the above condition: The bound on B0 is eased for cyclonic rotation

(see their equation (4.22)).

We note that for the elliptical case, both the vertical space coordinate x3 and the vertical

wavenumber k3 are time independent. Therefore, the product k3x3 is also time-independent.

In contrast, for both the precessing shear cases considered in the present study, only one of

these two variables is time independent. For instance, in the MBF case, k0 = k3 = K3 is
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(b) the MBF case, (d) the case with elliptical streamlines.

time-independent, while

x3 = X3 + 2ε (x1 − X1) ,

is time-dependent since the trajectory equation, dx/dt = A·x, yields

x1 = xp cos τ ′, x2 = xp sin τ ′, τ ′ = Ω0t + arctan (X2/X1) ,

where X is the position vector at t = 0 and xp =
√

X2
1 + X2

2 . Therefore, one may consider

a precessing 2-D system (X1 → 0) with finite vertical thickness H,

|x0| = |x3 − 2εx1| = |X3| ∼ H.
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Therefore, the vertical wavenumber k0 = k3 cannot be smaller than C/H in order that

subharmonic instability operates,

vA ≤
√

5

2

Ω0H

C
. (59)

Indeed, both the “hydrodynamic” and “mixed” instabilities require χη ≤ 1/2 (see equations

(48) and 51), while the ”magnetic” instability requires (see equation (55)),

χη =
k0B0

Ω0
√

ρµ0

=
k0vA

Ω0

≤
√

5

2
. (60)

In the KBF case, x0 = x3 = X3 is time-independent, whereas, k3 = k0 − 2εk1 is time-

dependent (see equation (15)). Therefore, if one considers a system of finite vertical thickness

H and initial perturbations with K1 = 0, then the wavenumber k0/(= k3 + 2εk1 = K3)

cannot be smaller than C/H, and hence, one obtains the condition (59). The critical value

for the magnetic field strength in the precessing sheared cases (given by equation (60)) is not

very different to the critical value in the magnetoelliptical instabilities (see equation (58)),

both are comparable to the maximum value of the field at which the magnetorotationnal

instability (MRI) can operate (see [22, 35]).

6. CONCLUDING REMARKS

Extension of the study of precessing flows with external magnetic field and coupled in-

duction equation for the magnetic field has been performed here in a linear stage. Analogies

and differences of “magneto-precessional” instabilities with magneto-elliptical ones can thus

be discussed, at least in the unbounded flow case. Even in the purely hydrodynamic case,

elliptical streamlines are found in both cases, but the occurrence of ellipticity in the preces-

sional case merits to be recalled. As shown by [13], the gyroscopic torque induced by the

misalignment of the precession axis with the main solid body rotation axis can be exactly

balanced by an additional plane shear, and this base shear, of the same magnitude as the

Poincaré parameter ε, combined with the basic rotation, yields elliptical streamlines. The

previous “hydro” analysis allowed us to identify two cases of balancing shear, yielding the

KBF case with horizontal plane shear and the MBF case with vertical one. Additional

shear is in agreement with previous physical experiments ([16, 37]). For the MBF case, the

basic absolute vorticity aligns with the vertical axis, whereas, for the KBF case, it has an

horizontal component (along x1) of the form 4εΩ0, in addition to the vertical component
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(2Ω0). Extension to the magnetic case of these exactly balanced contributions of shear, for

the B0 = 0 case, to absolute vorticity, related to Craik’s “admissibility conditions” as well,

have nontrivial consequences: The external magnetic field must align with the basic absolute

vorticity. Accordingly, for the KBF case, the basic magnetic field must have an horizontal

component (along x1) of the form 2εB0 in addition to the vertical component B0. The hori-

zontal component can be seen as generated by the vertical magnetic field and the horizontal

shear.

For more classical elliptical flow instabilities, and their recent extension to magneto-

elliptical ones, the ellipticity of basic streamlines is given a priori, with for instance the

parameter E given in Eq. (13), and only horizontal ellipses are considered, whereas preces-

sion can cause both ellipticity and departure of the plane of trajectories from horizontal.

Even if the small parameter ε can be defined both in the precessional case and in the “clas-

sical elliptical” case, its physical origin is very different.

Linear stability has been investigated for disturbances to the base flow in terms of base-

flow-advected Fourier modes. In the presence of closed streamlines for the base-flow, ellipses

in all cases here, this method yields time-periodicity for the wave vector, so that the analysis

amounts to solve a linear system of equations with time-periodic coefficients, and a Floquet

problem is called into play. This Floquet system of equations has been written in a suitable

frame obtained by a systematic change of variables guided by symmetry and the existence of

invariants of motion. At sufficiently small precessing parameter ε, the Floquet system, which

is the same for the two precessing flow cases (KBF and MBF), has been analyzed by using

an asymptotic method first introduced in the study of the magnetoelliptical instabilities by

Lebovitz and Zweibel [35]. We have shown that, in the (ε, χ) plane, the point where the

first harmonic resonances occur for the precessing shear flow cases correspond to the point

where the subharmonic resonances occur for the elliptical flow case. Definition of three

types of modes, “hydro”, “magnetic” and “mixed” (e.g. [35]) follows from the marginal

stability analysis at vanishing ellipticity or precession (or ε parameter) and small η. We have

computed the thresholds, maximum instability growth rates and bandwidths for the different

involved modes mainly as function of the magnetic parameter η. We have shown that the

magnetic field acts on the “hydrodynamic” subharmonic instability that is induced by the

precession in the absence of the magnetic field ([11–13]), by reducing its width and its growth

rate, while other (mixed and magnetic) subharmonic modes appear. The subharmonic
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magnetic mode occurs only when the magnetic parameter η is greater than
√

5/2 and at

large η (≫ 1) the maximal growth rate of both the “hydrodynamic” and “magnetic” modes

approaches ε/2, while the one of the subharmonic “mixed” mode approaches zero.

Fig. 2, for the magneto-precessional, MBF or KBF case, and Fig. 3, for the magneto-

elliptical case, shows significant differences in terms of location of subharmonic instability,

maximum growth rate and bandwidth. As the most important difference, the growth rate of

the magnetic mode largely exceeds the one of the mixed mode at large η in our “precessional

case”, and becomes close to the growth rate of the hydrodynamic mode. On the other hand,

the growth rate of the magnetic mode remains bounded by the one of the mixed mode, and

remains below the hydro’s one, in the magneto-elliptical case. The previous results concern

very small ε and are obtained analytically : In addition to differences between magneto-

precessional and magneto-elliptic instabilities identified at small ε, differences between KBF

and MBF begin to appear at increasing ε. This effect is shown in a synoptic way in figures

6 (η = 1) and 7 (η = 5), for the three cases, KBF, MBF and elliptical, for values of ε up to

0.4.

Of course we have chosen here an idealized model: Studying the linear stage of instabili-

ties in an unbounded medium without viscous effects. Future work will concern the nonlinear

stage and saturation of these instabilities by looking at the various mode couplings induced

by the nonlinearities of the system: The convective terms in u·∇b and u·∇u and the mag-

netic ones in b×u and b·∇u. Pseudo-spectral DNS in deformed periodic boxes are a natural

continuation of “RDT” studies, and we will use them to reintroduce strong nonlinearity and

“volume” dissipation, but still ignoring physical confinement. Such future DNS studies will

give a new insight to developed turbulence triggered by well identified linear instabilities,

without artificial forcing.

Appendices

In the following appendices, we will use the asymptotic procedure given by Lebovitz &

Zweibel [35] to derive the results discussed in §4.
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I. Construction of the Floquet multiplier matrix M at first order of ε

Assuming that, at sufficiently small ε, the instability emanating from the point P (0, χ0)

of the plane (ε, χ) is a wedge apex, so that (see e.g., [35, 36]),

χ = χ0 + νε + O(ε2). (61)

Accordingly, for fixed η, the expansion of the Floquet multiplier matrix M (described by

equation (38)) in Taylor series around ε = 0 and χ = χ0 takes the form

M(ε, χ) = M0 + εM1 + O
(

ε2
)

, (62)

where

M0 = M(0, χ0), M1 = Mε(0, χ0) + νMχ(0, χ0),

with the notation

Mε =
∂M

∂ε
, Mχ =

∂M

∂χ
.

For the determination of the matrices M0 and Mε, we expand both the matrices D and Φ

in Taylor series around ε = 0 at fixed χ and τ ∈ [0, 2π],

D(τ, ε, χ) = D0(τ, χ) + εDε (τ, χ) + O
(

ε2
)

, (63)

Φ(τ, ε, χ) = Φ0(τ, χ) + εΦ1(τ, χ) + O
(

ε2
)

, (64)

with Φ(0) = I4 and Φ1(0) = 0. The expression of D0 is given by equation (39), while the

expression of Dε can be deduced from the expansion (42),

(Dε)11 = 2ıεχ
√

1 − χ2
(

eıτ − e−ıτ
)

,

(Dε)12 = −ε

√

1 − χ2

χ

(

eıτ + e−ıτ
)

,

(Dε)21 = εχ
√

1 − χ2
(

4χ2 − 1
) (

eıτ + e−ıτ
)

, (65)

whereas the other components are zero. Accordingly, by substituting the form (64) into the

Floquet system (38), we obtain
dΦ0

dτ
= D0·Φ0,

dΦ1

dτ
= D0·Φ0 +

∂D

∂ε
·Φ0. (66)
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Because D0 is a constant matrix, as already indicated, the solution of the first differential

system takes the form Φ0 = exp (τD0) and hence M0 = exp (2πD0) . On the other hand,

by using the variation of constants formula, we may determine the solution of the second

differential system in (66), which, at τ = 2π, takes the form (see also [35, 36]),

Mε(χ) = Φ1(2π, χ) = [exp (2πD0)]J(χ) =

[exp (2πD0)]

[
∫ 2π

0

Φ−1
0 (τ, χ)Dε(τ, χ)Φ0(τ, χ)dτ

]

. (67)

To determine the eigenvalues of the Floquet multiplier matrix M it is simpler to work in

the base diagonalizing the matrix D0.

II. Calculations in the base diagonalizing D0

The base diagonalizing D0 has been determined by Lebovitz & Zweibel [35] and will

repeated here for the sake of clarity. In the new basis, one has

D̃0 = diag (σ1, σ2, σ3, σ4) = P−1D0P,

where σi (i = 1, 2, 3, 4) is described by equation (40) and

P =















σ1 σ2 σ3 σ4

−ıχσ1 ıχσ2 −ıχσ3 ıχσ4

ıηχ ıηχ ıηχ ıηχ

ηχ2 −ηχ2 ηχ2 −ηχ2















,

P−1 =
1

4χ2η
√

1 + η2















−ıχη η σ3 ıσ3/χ

ıχη η σ3 −ıσ3/χ

ıχη −η −σ1 −ıσ1/χ

−ıχη −η −σ1 ıσ1/χ















. (68)

It follows that, in the new basis, the transformed matrix M̃ε = P−1MεP takes the form

M̃ε(χ) = M̃0(χ)J̃(χ) =

M̃0(χ)

[
∫ 2π

0

Φ̃−1
0 (τ, χ)D̃ε(τ, χ)Φ̃0(τ, χ)dτ

]

, (69)
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where M̃0(χ) = exp(2πD̃0) because the eigenvalues σi (i = 1, 2, 3, 4) are distinct (see equa-

tion (40)). For the KBF case (ot the MBF case) the matrix Dε has only three non-zero

components, those given by (66). Hence, the component J̃ij can be written as

J̃ij = P−1
i1 H11P1j + P−1

i1 H12P2j + P−1
i2 H21P1j (70)

where

H11 =

∫ 2π

0

e(σj−σi)τ (Dε)11 (τ)dτ,

H12 =

∫ 2π

0

e(σj−σi)τ (Dε)12 (τ)dτ,

H21 =

∫ 2π

0

e(σj−σi)τ (Dε)21 (τ)dτ. (71)

The above integrals vanish when (σj − σi) 6= ±ı, or equivalently, when (ωj − ωi) 6= ±1.

Otherwise, one finds

H12 = −2π

√

1 − χ2

χ
, H21 = 2πχ

(

4χ2 − 1
)

√

1 − χ2,

for both (ωj − ωi) = ±1, and

H11 = ±4ıπχ
√

1 − χ2 for (ωj − ωi) = ∓1, (72)

respectively. This implies that the diagonal components of the matrix J̃ are zero, i.e.,

J̃jj = 0. For convenience, we give here only the expression of the off-diagonal elements J̃ij

that will be used later,

ω1J̃12 = ω2J̃21 =
ıπω1ω2

χ
√

1 + η2

√

1 − χ2
∣

∣2χ2 + χ − 1
∣

∣ ,

ω1J̃13 = ω3J̃31 =
ıπω1ω3

√

1 + η2

√

1 − χ2 (2χ + 1) ,

ω3J̃34 = ω4J̃43 =
ıπω3ω4

χ
√

1 + η2

√

1 − χ2
∣

∣−2χ2 + χ + 1
∣

∣ ,

−ω4J̃41 = ω1J̃14 =
ıπω1ω4

χ
√

1 + η2

√

1 − χ2
∣

∣2χ2 + χ − 1
∣

∣ . (73)

We note that, for the elliptical flow case studied by [35], it is found that J̃jj 6= 0 (see equation

A(26) in [35]).
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To determine the transformed matrix M̃1 = P−1M1P where M1 appears in equation

(63), we need the derivative

M̃χ(0, χ) =
∂M̃(0, χ)

∂χ
=

∂M̃0(χ)

∂χ
.

Due to the fact that

M̃0 = diag [exp (2πσ1) , ..., exp (2πσ4)] ,

and (∂σi/∂χ) = σi/χ (see equation (40)), we deduce that

M̃χ(0, χ) =
2π

χ
diag [σ1 exp (2πσ1) , ..., σ4 exp (2πσ4)] .

It follows that
(

M̃1

)

jj
=

2νπ

χ
σj exp (2πσj) , (j = 1, 2, 3, 4)

(

M̃1

)

ij
= [exp (2πσi)] J̃ij (i 6= j). (74)

III. Characteristic polynomial

We expand the characteristic polynomial

p(ε, χ) = |M(ε) − λI4|

in perturbation series around ε = 0,

p(λ, ε) = p0(λ) + εp1(λ) + ε2p2(λ) + O
(

ε3
)

, (75)

where, p0(λ) = Π4
i=1 (λi − λ) = Π4

i=1 (exp(2πσi) − λ) is the characteristic polynomial of the

matrix M̃0. The roots of p(λ, ε) are denoted by Λ1, Λ2, ...

The condition for destabilization is that there exist a double (or higher) roots of p(λ, ε).

For instance, assuming that λ1 = λ2 and expanding the root Λ1 in the form of a Puiseux

expansion (see e.g. Hille [40]),

Λ1 = λ1 + ε1/2β1/2 + εβ1 + O
(

ε3/2
)

. (76)

Because p1(λ1) = 0, one shows that β1/2 = 0 and β1 is a solution of the second-order algebraic

equation (see Appendices A3 and B in [35]),

a0β
2
1 + a1β1 + a2 = 0, (77)
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with

a0 =
1

2

[

d2p0

dλ2

]

λ=λ1

= (λ3 − λ1) (λ4 − λ1) ,

a1 =

[

dp0

dλ

]

λ=λ1

= −
[(

M̃1

)

11
+

(

M̃1

)

22

]

a0,

a2 = p2(λ1) =

∣

∣

∣

∣

∣

∣

(

M̃1

)

11

(

M̃1

)

12
(

M̃1

)

21

(

M̃1

)

22

∣

∣

∣

∣

∣

∣

a0.

By setting γ = β1/λ1, equation (76) is rewritten as

Λ1

λ1

= 1 + εγ + O(ε3/2), γ =
1

2a0

[

a1 ±
√

a2
1 − 4a0a2

]

. (78)

Consequently, at first order of ε, there is instability if ℜγ 6= 0. For the cases where λ1 = λ3,

λ3 = λ4 or λ1 = λ4, the coefficients a0, a1 and a2 are calculated in a similar manner.

IV. Maximal growth rate and width of the subharmonic instabilities

As noted in §4, the “hydrodynamic” modes are the modes for which λ1 = λ2. The

substitution of (73) into (74) allows us to determine the coefficients a1, a1 and a2. Because,

in that case one has a1 = 0, the coefficient γ (given by (78)) takes the form

γ2 =
π2

χ2

[

−ν2 +
(1 − χ2)

4χ2 (1 + η2)

(

2χ2 + χ − 1
)2

]

.

Both the maximal growth rate σmax and the width δ of the subharmonic “hydrodynamic”

instability can be deduced from the above relation,

σmax

ε
=

max(ℜγ)

2π
, (79)

δ = (ν+ − ν−) ε,

such that ν+ and ν− are the roots of the algebraic equation ℜγ(ν) = 0. It follows that

σmax

ε
=

√

1 − χ2

4χ
√

1 + η2

∣

∣2χ2 + χ − 1
∣

∣ , (80)

and

ν2 =
(1 − χ2)

4χ2 (1 + η2)

(

2χ2 + χ − 1
)2

,

or equivalently,

ν+ = −ν− =

√

1 − χ2

2
√

1 + η2

∣

∣2χ2 + χ − 1
∣

∣ . (81)
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In the case with λ1 = λ3 (i.e., the so called “mixed modes”), the coefficients a0, a1 and

a2 in (77) take the form

a0 =
1

2

[

d2p0

dλ2

]

λ=λ1

= (λ2 − λ1) (λ4 − λ1) ,

a1 =

[

dp0

dλ

]

λ=λ1

= −
[(

M̃1

)

11
+

(

M̃1

)

33

]

a0,

a2 = p2(λ1) =

∣

∣

∣

∣

∣

∣

(

M̃1

)

11

(

M̃1

)

13
(

M̃1

)

31

(

M̃1

)

33

∣

∣

∣

∣

∣

∣

a0.

Similarly, the substitution of (73) into (74) allows us to calculate these coefficients and

determine the coefficient γ,

γ = 2ıπν ±
√

D, D =
π2 (1 − 4χ2)

2
(1 − χ2)

4 (1 + η2)
− π2ν2

χ2
.

It appears that ℜγ is maximal for ν = 0, so that,

σmax

ε
=

√

1 − χ2

4χ
√

1 + η2

∣

∣4χ2 − 1
∣

∣ , (82)

while the slopes ν− and ν+, that are the roots of the algebraic equation ℜγ(ν) = D = 0,

take the form

ν+ = −ν− =
χ
√

1 − χ2

2
√

1 + η2

∣

∣1 − 4χ2
∣

∣ . (83)

Similarly, for the case where λ3 = λ4, which characterizes the subharmonic ”magnetic”

modes, we determine the expression of the coefficient γ,

γ2 =
π2

χ2

[

(1 − χ2) (1 + χ − 2χ2)
2

4 (1 + η2)
− ν2

]

,

from which we deduce
σmax

ε
=

√

1 − χ2

4χ
√

1 + η2

∣

∣1 + χ − 2χ2
∣

∣ , (84)

ν− = −ν+ =

√

1 − χ2

2
√

1 + η2

∣

∣1 + χ − 2χ2
∣

∣ . (85)

We finally consider the case where λ1 − λ4 = 1. In that case, one has χ = 1/2, which gives

J̃14 = J̃41 = 0 (see equation (73)). Accordingly, one shows that the coefficient γ is purely

imaginary,

γ = 2ıπν
(

√

1 + η2 ± 1
)

,

meaning that, when λ1 = λ4, there is no instability.
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V. The link between the variables (c1, c2, c3, c4) and the poloidal and toroidal modes

An alternative way which better reflects the physical processes especially for rotating

flows is to use a local frame in which both the geometrical constraints k·û = 0 and k·b̂ = 0

are satisfied by construction (see e.g. [38]). The orthonormal basis of this frame is defined

as

e(1) = k × n/‖k × n‖, e(2) = k × e(1)/k, e(3) = k/k,

or equivalently, by considering that the unit vector n aligns with the solid rotation axis (i.e.,

n = e3),

e(1) =

[

k2

kh

, −k1

kh

, 0

]T

, e(2) =

[

k1

kh

k3

k
,

k2

kh

k3

k
, −kh

k

]T

. (86)

where kh =
√

k2
1 + k2

2 is the horizontal wave number In that frame, û (respectively b̂) has

only two components,

ûi = e
(1)
i u(1) + e

(2)
i u(2), b̂i = e

(1)
i b(1) + e

(2)
i b(2), (i = 1, 2, 3). (87)

where u(1) and u(2) are subsequently coined “toroidal” and “poloidal” in reference to their

meaning in physical space [38], and they are related to the variables (c1, c2, c3, c4) as

(c1, c3) = −kh

(

u(1), b(1)
)

− 2ε
khk2

k

(

u(2), b(2)
)

,

(c2, c4) =
khk0

k

(

u(2), b(2)
)

,

for the KBF case, and

(c1, c3) = −
(

kh + 2ε
k1k0

k2
h

)

(

u(1), b(1)
)

+ 2ε
k2k

2
0

kkh

(

u(2), b(2)
)

,

(c2, c4) = 2ε
k2k0

kh

(

u(1), b(1)
)

+

(

2ε
k1k

2
0

kkh
+

k0kh

k

)

(

u(2), b(2)
)

for the MBF case. In the local frame, the Floquet system for the poloidal and toroidal

modes takes the form

d

dτ















u(1)

u(2)

b(1)

b(2)















=















0 m12 ıχη 0

m21 m22 0 ıχη

ıχη 0 0 m34

0 ıχη m43 −m22















·















u(1)

u(2)

b(1)

b(2)















(88)
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with

m12 = 2
k0

k
, m21 = −2

(k0 − εk1)

k
, m22 = −2ε

k2k3

k2
, (89)

m34 = m21, m43 = 2
(k0 − 2εk1)

k
,

for the KBF case and

m12 = 2
k0

k
+ 2ε

k1k

k2
h

, m21 = −2
(k0 − εk1)

k
− 2ε

k1k

k2
h

, m22 = −2ε
k2k3

k2
, (90)

m34 = −2ε
k1

k
+ 2ε

k1k

k2
h

, m43 = −2ε
k1k

k2
h

,

for the MBF case.
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