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This paper extends an existing analytical model of the aeroacoustic response of a
rectilinear cascade of flat-plate blades to three-dimensional incident vortical gusts,
by providing closed-form expressions for the acoustic field inside the inter-blade
channels, as well as for the pressure jump over the blades in subsonic flows. The
extended formulation is dedicated to future implementation in a fan-broadband-
noise-prediction tool. The intended applications include the modern turbofan engines,
for which analytical modelling is believed to be a good alternative to more expensive
numerical techniques. The initial model taken as a reference is based on the Wiener–
Hopf technique. An analytical solution valid over the whole space is first derived by
making an extensive use of the residue theorem. The accuracy of the model is shown
by comparing with numerical predictions of benchmark configurations available in the
literature. This full exact solution could be used as a reference for future assessment
of numerical solvers, of linearized Euler equations for instance, in rectilinear or
narrow-annulus configurations. In addition, the pressure jump is a key piece of
information because it can be used as a source term in an acoustic analogy when the
rectilinear-cascade model is applied to three-dimensional blade rows by resorting to a
strip-theory approach. When used as such in a true rectilinear-cascade configuration,
it reproduces the exact radiated field that can be derived directly. The solution is also
compared to a classical single-airfoil formulation to highlight the cascade effect. This
effect is found important when the blades of the cascade overlap significantly, but
the cascade solution tends to the single-airfoil one as the overlap goes to zero. This
suggests that both models can be used as the continuation of each other if needed.

Key words: aeroacoustics

1. Introduction

The design of modern turbofan engines involves larger diameters and higher bypass
ratios than previous technologies, for improved aircraft performance at lower nominal
rotation speed. The noise from the jet is reduced as a result of the lower exhaust
velocity of burnt gases. As a result, the fan noise associated with sources distributed
over the rotor blades and the outlet guide vanes has turned out to be a major
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contribution to the total noise, especially during approach and landing of an aircraft.
Even though liners are currently integrated in engine duct walls to attenuate fan noise,
their benefit is partly limited by the relatively shorter duct length needed for weight
and drag constraints in large-bypass-ratio architectures. Therefore, noise reduction
at the source remains a concern for engine and/or aircraft manufacturers. In this
context, accurate prediction schemes, including the relative and absolute effects of the
geometrical parameters of the fan, become essential to a quieter design.

New technological options involve lower fan-tip speed, reduced number of blades,
and selected blade and vane counts. This ensures tonal noise control and shifts
the tone frequencies to lower values associated with weaker loudness. As a result,
the broadband noise contribution becomes relatively more significant, and dedicated
acoustic predictions are a crucial step to be included in the design cycles, as early
and as accurately as possible. Broadband noise is essentially generated because of
the interaction of turbulence with the blade and vane surfaces. This includes fan
rotor noise due to ingestion of turbulence either in the inner flow or in the casing
and spinner boundary layers, rotor trailing-edge noise and stator noise due to the
impingement of the rotor wakes. This study addresses broadband-noise contributions
resulting from the impingement of incident turbulence on a blade row. Currently, the
prediction of fan broadband noise over the extended frequency range of aeronautical
applications, typically between 50 Hz and 8 kHz according to effective perceived
noise level standards, is still a daunting task. Apart from the Reynolds-number and
Mach-number issues, and from the complex geometry, the Helmholtz numbers kRT

or kc based on either the duct outer diameter RT or the blade chord c typically range
up to 100 and 30, respectively. The acoustic wavenumber is defined as k = ω/c0, with
c0 being the speed of sound and ω the angular frequency. This makes the turboengine
fan a very challenging case going from relatively low to very high frequencies.
Computational aeroacoustics or computational fluid dynamics simulations dealing
with so different scales are simply not realistic in the short term for industrial
purposes. In recent years, linearized Euler codes have been developed to solve two-
dimensional (e.g. Hall & Verdon 1991; Fang & Atassi 1993) and progressively fully
three-dimensional annular-cascade problems with mean swirling flow (e.g. Golubev &
Atassi 2000; Atassi et al. 2004) and loading, and have been successfully applied
to broadband computations (e.g. Atassi & Vinogradov 2005, 2007; Atassi & Logue
2008). These methods developed in a research context are intermediate between direct
numerical simulations or large-eddy simulations and analytical or semi-numerical
models. Even though they should be used in industry in the near future, their
simulation time is still too long to fit into an actual optimization loop. This is why
a full analytical approach is preferred here. Fast-running analytical models are more
appropriate for the parametric studies required during the preliminary design of a fan.
The price to pay is the possible inaccuracy inherent in the necessary simplifications
made to get closed-form solutions. Typically, a blade is locally represented by a flat
plate with zero thickness and the relative mean flow over the blade rows is assumed
uniform and parallel to the chord line. In fact, as pointed out by Evers & Peake
(2002), the real shape of blades with small camber and thickness has an important
effect on the interferences producing the tonal noise from periodic wake interactions.
In contrast, a blade can be reasonably represented by a flat plate with zero thickness
for a pure-broadband-noise evaluation, taking advantage of the smoothing effect of
a statistical description. Another point is the mathematical complexity of prediction
schemes based on a cascade response function when compared to approaches resorting
to single-airfoil solutions. But even though successful predictions have been achieved
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in the past based on single-airfoil response functions for instance in the case of open
rotors with four blades (e.g. Paterson & Amiet 1979), several authors (Goldstein 1976,
Atassi & Hamad 1981 and Peake 2004, for instance) recognized the need for a proper
account of the cascade effect, understood as the influence of neighbouring blades on
the response of a single one, or as an ensemble behaviour somewhat similar to the
diffraction of electromagnetic waves by optic gratings. This effect is already expected
intuitively, since nothing can be seen across a fan rotor due to the blade overlap,
except close to the hub. Therefore, sound waves cannot propagate through the rotor
without being affected significantly. More generally, the cascade effect occurs on both
the sound generation by a blade row and the sound transmission through a blade row.
This motivated the efforts made here to derive a uniformly valid solution extending
the previous analysis proposed by Glegg (1999).

The first two-dimensional rectilinear-cascade semi-numerical and analytical models
were mostly developed in the 1970s. Considering a semi-numerical approach, Kaji &
Okazaki (1970b) proposed a singularity method based on the acceleration potential
to treat the sound transmission through a blade row and then the sound generation
from rotor–stator interaction (Kaji & Okazaki 1970a). Whitehead (1972) derived
a solution, from a lifting-surface method, providing the forces on the blades, the
vortical field, the acoustic field scattered upstream and downstream of a blade row
for incident vortical and acoustic gusts or bending and flutter excitation. Smith (1973)
addressed the same problem with a lifting-surface method based on a distribution of
bound vortices. Whitehead (1987) later implemented this method in the code LINSUB
(i.e. linearized subsonic unsteady flow in cascade), which is currently used by many
researchers. Goldstein (Goldstein 1976, chapter 5) proposed a solution to account
for three-dimensional gusts and duct walls in a rectilinear configuration. Atassi &
Hamad (1981) used this approach to treat the interaction of wakes and secondary
flows with a cascade. Their work is the basis of the code LINC (i.e. linear cascade).
In addition, they derived similarity rules for three-dimensional gusts impinging on a
rectilinear cascade, as established by Graham (1970) for airfoils. All these methods
require numerically solving an integral equation resorting to a collocation technique
in most cases.

Alternatively, models based on the Wiener–Hopf technique lead to explicit solutions.
Mani & Horvay (1970) derived a zeroth-order solution for the sound transmission
through a blade row, neglecting the interaction between leading and trailing edges.
Koch (1971) later introduced the backscattering necessary to couple both edges. But
the resulting full formulation obtained with a finite Wiener–Hopf technique was still
time-consuming and hard to apply, till Peake’s new analysis of Koch’s problem for the
noise generation provided a quick evaluation of the unsteady loading (Peake 1993).
This exact solution is obtained by matching the scattering at the leading edge and
the scattering at the trailing edge with inter-blade channel modes. Peake (1992) also
proposed a high-frequency approximation, which accounts for the first two terms in
Landahl’s approach (Landahl 1961). This solution, being valid only when radiated
modes and duct modes are well cut-on, has been extended to a uniformly valid
solution by Peake & Kerschen (1995). Majumdar & Peake (1996) extended Peake’s
model (Peake 1993) to a three-dimensional gust to account for spanwise variation
of the incident distortion. This refinement can be important when studying both the
rotor–stator interaction, as shown by Ravindranath & Lakshminarayana (1980) and
Ganz et al. (1998), or the ingestion of atmospheric turbulence by a rotor (e.g. Hanson
1974). The full exact solution for a three-dimensional gust may be derived in the
same way as in the two-dimensional gust problem (Peake 1993). Yet, the authors
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addressed only high-frequency gusts for which the cascade trailing-edge effects can
be neglected. Finally, Glegg (1999) applied the Wiener–Hopf technique to get the
exact solution for the acoustic field radiated from a cascade, taking advantage of
the fact that determining the unsteady loadings on the blades is no longer necessary
to derive the acoustic potential outside the cascade. Furthermore, the model was
easily adapted to infer the cascade response for three-dimensional gusts and swept
blades.

In addition to all approaches resorting to a rectilinear cascade, Namba (1987) and
Schulten (1982) developed semi-numerical singularity methods for a ducted three-
dimensional annular cascade. This included a rotor or a zero-stagger stator and then
possibly swept blades (Kodama & Namba 1990; Schulten 1997). These methods
account for the first three-dimensional annular effects. But the zero-stagger restriction
discards mean swirling flow effects and radial variations of the stagger. The swirl was
introduced, numerically, in the three-dimensional annular problem by Golubev &
Atassi (2000) and Atassi et al. (2004) with a code solving the three-dimensional
linearized Euler equations. These investigations point out many three-dimensional
issues such as the complex geometry, the spanwise non-uniformity of the excitation
and mean flow changes on both sides of a cascade.

This paper, based on Glegg’s analytical approach, i.e. Glegg (1999), re-addresses the
problem of the sound generated as turbulent gusts interact with a blade row. Some
extensions are made to the original formulation. Whereas Glegg’s analysis focused
on the waves outside the blade row, a unified analytical solution is derived, which
is valid over the whole space, including the inter-blade channels for all values of
frequency. This is achieved by an intensive use of the residue theorem for complex-
variable functions and provides a formula for the distributed unsteady lift over a
blade. This exact formulation is equivalent to that of Peake (1993) when a two-
dimensional gust is considered, and extends the results to three-dimensional gusts.
Writing down formulae for the unsteady lift is motivated by the future implementation
in a turbulence-interaction noise model for a three-dimensional annular blade row,
based on a strip-theory approach within the framework of an acoustic analogy, as
detailed by Posson, Moreau & Roger (2010). Furthermore, the full exact solution
will possibly serve as a reference for future comparisons to assess numerical methods
and simulations, of linearized Euler equations for instance, in rectilinear-cascade or
narrow-annulus configurations.

The analytical formulation is first described in § 2 where the extended equations
are derived. The method is detailed only for one part of the potential field inside the
inter-blade channel, and guidelines are given for the complementary derivations, for
the sake of conciseness. The full solution is explicitly given in Appendix A for the
sound generation configuration, both in the general case and in the particular case of a
gust impinging on a zero-stagger cascade in phase on all blades. The validation of the
extensions proposed for the three-dimensional rectilinear-cascade model is addressed
in § 3 for the unsteady loading on the blades and in § 4 for the pressure field inside
and outside the inter-blade channel. The unsteady loading on the blades is also used
as equivalent dipole source distribution in the usual sense of an acoustic analogy to
predict the radiated field in § 5. The synthesized radiated field is then compared with
the one directly produced by the model. Finally, to go beyond the cascade effect,
the cascade solution is compared to Sears’ isolated-airfoil incompressible response
function in § 3.2, and to Amiet’s isolated-airfoil response function with backscattering
(Amiet 1975) both for the unsteady blade loading and for the radiated field in §§ 3.2
and 5.2, respectively.
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Figure 1. Geometry of the rectilinear-cascade model and incident velocity gust: (a) side view;
(b) three-dimensional view. The spanwise velocity component Wc is non-zero only for swept
blades. The blades are numbered from n= −∞ to n= +∞.

2. Analytical formulation

This section is aimed at deriving analytical expressions for the acoustic field in
the inter-blade channels and the unsteady blade loading. This study is based on
Glegg’s analysis of cascade response functions (Glegg 1999). The model geometry
and reference frames are plotted in figure 1. The blade row is assumed an equivalent
rectilinear cascade of infinite spanwise extent. The blades are rigid flat plates of finite
chord c and zero thickness, possibly staggered with an angle χ . The normal distance
between successive blades is denoted by h. The mean flow of speed U0 is parallel to
the blade surface, which corresponds to a zero angle of attack. The sweep angle ϕ

splits the incident velocity into a spanwise mean flow component Wc, and a chordwise
component Uc. The Cartesian coordinates (xc, yc, zc) in the cascade reference frame
are defined in the chordwise uxc

, normal uyc
and spanwise uzc

directions, respectively.
The incident wave pattern here is a vortical gust convected downstream by the mean
flow. The upwash gust consists of a harmonic wave of amplitude w0 normal to
the blade at angular frequency ωex with wavenumbers (kxc0

, kyc0
, kzc0

) in the cascade
reference frame, and hence is defined by

w · uyc
= w0 exp(−iωex t + ikxc0

xc + ikyc0
yc + ikzc0

zc). (2.1)

It should be stressed that the stagger distance d cannot be larger than the chord
length c, i.e. the adjacent blades must have a non-zero overlap. This condition is
necessary when solving the iterative Wiener–Hopf equations successively applied to
the leading-edge and trailing-edge diffraction problems. Both edges are coupled by the
guided waves in the overlapping region of the inter-blades channels. Some extensions
are proposed here to get analytical expressions for all quantities of interest everywhere
inside and outside the blade row.

Since all assumptions are kept the same as in Glegg’s analysis, the starting point is

the expression for the velocity potential of the scattered field φ̂ in the strip 0 6 yc <h,
reproduced here from (31) of Glegg (1999):

φ̂(xc, yc, zc, t) =
1

2

∫ ∞

−∞
D

(
kxc

)
exp

(
−ikxc

xc − iωex t + ikzc
zc

)

×
{

eiζyc

1− exp
(
iζh− ikxc

d − iσ
) +

e−iζyc

1− exp
(
− iζh− ikxc

d − iσ
)
}

dkxc
. (2.2)

The expression of φ̂ is in fact the opposite of the one given in the reference equation
(31) due to a misprint (omission of a minus sign in (11) after the integration over yc
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in (10) of the reference paper). The present expression involves the Fourier transform
of the velocity-potential jump across the blade D. The latter is the sum of four terms
D(j ), j =1, 2, 3, 4, given in Appendix A.1 from Glegg’s results. D(1) stands for the
direct scattering of the incident gust by the leading edge, with the cascade being
assumed to be a row of semi-infinite plates extending to infinity downstream. D(2) is
the trailing-edge backscattering which accounts for the Kutta condition at the trailing
edge and deals with a row of semi-infinite plates extending to infinity upstream. Since
the resulting solution using D(1) + D(2) no longer accounts for the continuity of the
velocity potential upstream of the blades, two new terms D(3) and D(4) are added
and coupled to get the full solution by an infinite matrix system. In a first step,
D(1) is computed, then D(2) and finally, in the third step, D(3) and D(4) in a coupled
fashion. The technique has been described previously by Glegg (1999) for a vortical
gust interacting with a blade row. The expressions of ζ and of the inter-blade phase
angle σ are given in Appendix A.1. By linearity of the problem, the scattered field
will be harmonic in time at the same frequency ωex and since the blades have infinite
span, it will also be harmonic in the spanwise direction uzc

and can be defined as

φ̂(xc, yc, zc, t) = φ(xc, yc) exp(−iωex t + ikzc0
zc). (2.3)

Glegg’s formulation provides the acoustic field outside the cascade with no need
for explicitly calculating the unsteady loadings on the blades and the field between
adjacent blades. This is all the more important as the pressure jump evaluation
is often time-consuming and a source of errors. Boquilion et al. (2003) and
Grissom, Devenport & Glegg (2005) investigated the distortion of a velocity field
passing through a blade row and the velocity potential field inside the inter-blade
channels. Their predictions were compared to measurements made in the cases of a
homogeneous incident turbulence and of a discrete upwash gust, respectively. These
comparisons were performed by numerically computing the integral of (2.2), whereas
the radiated field outside the blade row was provided by the Wiener–Hopf procedure.
It would be more attractive to also produce the velocity potential of the scattered
field inside the inter-blade channel analytically, to make the understanding of the
cascade mechanisms easier.

Besides, the pressure jump along the blade chord may be needed as the explicit
equivalent noise-source distribution if the radiated field is to be determined by
application of the acoustic analogy (Ffowcs-Williams & Hawkings 1969). Though
cumbersome at a first glance, such a procedure is necessary when resorting to a
rectilinear cascade response function to deal with the three-dimensional geometry
of a real fan stage. A strip theory is then applied to split the three-dimensional
configuration into a series of equivalent rectilinear-cascade problems. The unsteady
blade loading is first calculated on each strip and the modal coefficients inside the
fan duct can then be determined from the contributions of all strips (Posson 2008;
Posson et al. 2010).

Before going further in the formulation, different types of modes, found in the
model, must be highlighted. A vortical gust impinging on the rectilinear cascade
produces an acoustic field outside the cascade, which can be decomposed into modes
of index q , called cascade modes. These modes are oblique waves in the rectilinear-
cascade reference frame and are related to the wavenumbers λ±q given in (A 1). Below
a non-zero frequency, here called the cascade cut-on frequency ωex,c, the radiated field
decays exponentially. This frequency corresponds to the smallest cut-on frequency
of all possible modes. The cut-on frequency of mode q is imposed by the relation



28 H. Posson, M. Roger and S. Moreau

κ2
e − f 2

q = 0. If the cascade is an unwrapped model of a blade row in an annular duct,
the radiated mode q is related to the duct modes of azimuthal order m×m = mg−q B ,
where the incident inter-blade phase angle is σ = 2π mg/B and B is the number of
blades. The position of the incident gust frequency with respect to the successive
cascade radiated modes will modify both the radiated field and the unsteady blade
loading, in particular close to the cascade cut-on frequency. Furthermore, the pressure
field between adjacent blades is a combination of the characteristic modes of the inter-
blade channel. These modes are related to the wavenumbers δn and εl in the model,
given by (A 1).

The subsequent analytical developments are considered only for the reference
channel yc ∈ [0, h[ and the results for other values of yc can be deduced from the
periodicity of the cascade and the inter-blade phase angle σ . Let Ac denote half the
term in the curly brackets of (2.2):

Ac

(
kxc

, yc

)
= +

1

2

{
eiζyc

1− exp
(
iζh− ikxc

d − iσ
) +

e−iζyc

1− exp
(
− iζh− ikxc

d − iσ
)
}

. (2.4)

The integral in (2.2) can be performed by applying the residue theorem, paying
special attention to all terms, because the different contributions D(1)–D(4) of D

and of the factor Ac do not behave similarly for field points everywhere inside the
inter-blade channel. This means that a unique contour of integration in the complex
plane cannot be uniformly valid for the whole product D×Ac. In order to determine
the velocity potential of the scattered field, D and Ac are written in a more convenient
way. D is first split into two parts: D(1) +D(3) and D(2) +D(4). As pointed out by Glegg
(1999), the acoustic field upstream of the blade row is related to D(1) + D(3) only and
the downstream field involves only D(2) + D(4). However, all terms contribute inside
the inter-blade channel. It is also convenient to rewrite the term Ac found in (2.4) in
the equivalent form

Ac

(
kxc

, yc

)
= A(1)

c

(
kxc

, yc

)
+ A(2)

c

(
kxc

, yc

)
, (2.5a)

with

A(1)
c

(
kxc

, yc

)
= − exp

(
i
(
kxc

d + σ
))

cos (ζyc)

2
(
cos (ζh)− cos

(
kxc

d + σ
)) , (2.5b)

and

A(2)
c

(
kxc

, yc

)
=

cos (ζ (yc − h))

2
(
cos (ζh)− cos

(
kxc

d + σ
)) . (2.5c)

Equation (2.5) will be used as such or factorized according to the Wiener–Hopf
splitting functions J+ and J− alternatively (noting that 1/J+ = J−/j , where j and J±
are defined in (A 4) and (A 3)), depending on the chordwise position in the inter-blade
area and whether the contribution D(1) + D(3) or D(2) + D(4) is calculated. For this
procedure, the inter-blade area for staggered blades is divided into three rectangular
patches, as proposed by Peake (1993) for the response function to a two-dimensional
incident gust. The three patches for the strip yc ∈ [0, h[ are defined by

0 < xc < d, patch (a),

d 6 xc 6 c, patch (b),

c < xc < c + d, patch (c),





(2.6)

and are shown in figure 2. The middle overlap area (b) necessary to couple the
leading-edge and trailing-edge diffractions in the model is treated as a short duct,
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Figure 2. Subdivision of the inter-blade space into patches (a, b, c) and into segments:
(I, II, III) in the case A where 0< d < c/2; (I, II′, III) in the case B where c/2 < d < c. Patches
and segments are defined for the analytical calculation of the acoustic field and of the pressure
jump on the reference blade, respectively.

whereas the other two have an intermediate behaviour between free space and a
waveguide, with interactions between the cascade radiated modes associated with λ±q ,
and the inter-blade channel duct modes associated with δn and εl . The mathematical
statement imposes rectangular patches (a) and (c) instead of the triangles that could
be defined intuitively from the leading-edge front of the cascade.

The question of the closure of the integration path must be re-addressed for
each patch to ensure the convergence of the integral. As an example, the solution
is detailed here for patch (a) for the leading-edge term Φ+(kxc

, yc) = (D(1)(kxc
) +

D(2)(kxc
))×Ac(kxc

, yc). The velocity potential of the scattered field will be decomposed
into two parts. One is φac, the acoustic part of φ. The other one, φv , is the pressure-free
part of the potential convected by the mean flow, which corresponds to the vortical
disturbance produced to ensure the rigid-wall boundary condition on blades and to
the vortical gust produced to fulfil the Kutta condition at the blades’ trailing edge.
The two terms A(1)

c and A(2)
c have different behaviours as |kxc

| tends to infinity. The
variable Φ+(kxc

, yc) can be written as one of the following two expressions (see (2.7)
and (2.8)) using (2.5) and the definition of J + and j :

Φ+
(
kxc

, yc

)
=

(
D(1)

(
kxc

)
+ D(3)

(
kxc

))
Ac

(
kxc

, yc

)

= Φ+
1

(
kxc

, yc

)
+ Φ+

2

(
kxc

, yc

)
, (2.7a)

with

Φ+
1

(
kxc

, yc

)
=

(
D(1)

(
kxc

)
+ D(3)

(
kxc

))
A(1)

c (kxc
, yc), (2.7b)

and

Φ+
2

(
kxc

, yc

)
=

(
D(1)

(
kxc

)
+ D(3)

(
kxc

))
A(2)

c

(
kxc

, yc

)
, (2.7c)

or

Φ+
(
kxc

, yc

)
= Φ+

1

(
kxc

, yc

)
+ Φ+

2

(
kxc

, yc

)
, (2.8a)

with

Φ+
1

(
kxc

, yc

)
=

{
iw0

(2π)2 J−
(
− kxc0

) (
kxc

+ kxc0

) +
∑

l>1

Bl J+(εl)

kxc
− εl

}

× J−
(
kxc

)2π exp
(
i
(
σ + kxc

d
))

cos (ζyc)

ζ sin (ζh)
, (2.8b)
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and

Φ+
2

(
kxc

, yc

)
=

{
−iw0

(2π)2 J−
(
− kxc0

) (
kxc

+ kxc0

) −
∑

l>1

Bl J+(εl)

kxc
− εl

}

× J−
(
kxc

)2π cos (ζ (yc − h))

ζ sin (ζh)
. (2.8c)

As the splitting functions J± have an algebraic growth, Φ+
1 (kxc

, yc) exp(−ikxc
xc)

behaves like exp(ikxc
(d − xc)) at infinity, whereas Φ+

2 (kxc
, yc) exp(−ikxc

xc) behaves like
exp(−ikxc

xc). Since 0 <xc <d in patch (a), the contours for Φ+
1 (kxc

, yc) exp(−ikxc
xc) and

Φ+
2 (kxc

, yc) exp(−ikxc
xc) must be closed in the upper and lower parts of the complex

plane, respectively, as shown in figure 3. As J− is analytic in the lower half-plane
only, the expression (2.7b) is chosen to compute the inverse Fourier transform of
Φ+

1 (kxc
, yc) and the expression (2.8c) to compute the inverse Fourier transform of

Φ+
2 (kxc

, yc). Then

Φ+
1

(
kxc

, yc

)
= −

[
D(1)

(
kxc

)
+ D(3)

(
kxc

)] exp(i(kxc
d + σ )) cos (ζyc)

2
(
cos (ζh)− cos

(
kxc

d + σ
))

︸ ︷︷ ︸
(1′ac)

.
(2.9)

Inside the contour, D(3) has simple poles at (εl)l∈N∗ and the factor (1′ac) of (2.9) has
poles at the zeros λ−q of the function kxc

7→ cos (ζh)− cos (kxc
d + σ ) in the upper part

of the complex plane. The residue theorem finally yields the inverse Fourier transform
as

φ+
ac,a,1(xc, yc) =

∑

q∈Z

φ+
ac,a,1,λ,q(xc, yc) +

∑

l > 1

φ+
ac,a,1,l(xc, yc), (2.10a)

with

φ+
ac,a,1,λ,q(xc, yc) = −i π ζ+

q D(λ+
q )

cos (ζ+
q yc) exp(i(σ + λ+

q d)) exp(−iλ+
q xc)

sin (λ+
q d + σ ) (ζ+

q d +S+
q hβ2η+

q )
, (2.10b)
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and

φ+
ac,a,1,l(xc, yc) = iπ

Bl exp(i(εl(d − xc) + σ )) cos (ζ (εl)yc)

(cos (ζ (εl)h)− cos (εld + σ ))
. (2.10c)

The duct modes (εl)l > 1 propagating upstream appear here because step 3 of the
problem introduces the backscattering by the leading edges (terms in Bl) acting on
the field scattered from the trailing edge (terms in An).

Concerning the term Φ+
2 (kxc

, yc), the factor in the curly brackets of (2.8c) has a
simple pole at −kxc0

= −ωg/Uc, in the case of an incident vortical gust, leading to the
contribution φv,a,2,1:

φ+
v,a,2,1(xc, yc) = −w0 cos

(
ζ
(
− kxc0

)
(yc − h)

)
eikxc0

xc

ζ
(
− kxc0

)
sin

(
ζ
(
− kxc0

)
h
) . (2.11)

Other simple poles are found at the zeros (δn)n∈N∗ of the function kxc
7→ (ζ sin (ζh))−1

in the lower half-plane. The contribution to the acoustic potential then reads

φ+
ac,a,2(xc, yc) =

∑

n > 1

φ+
ac,a,2,n(xc, yc) +

∑

n > 1

∑

l>1

φ+
ac,a,2,n,l(xc, yc), (2.12a)

with

φ+
ac,a,2,n(xc, yc) =

−w0 J−(δn) cos (ζ (δn)yc) e−iδnxc

J−
(
− kxc0

) (
δn + kxc0

)
β2 h dn ϑn−1

, (2.12b)

and

φ+
ac,a,2,n,l(xc, yc) = i (2π)2

Bl J+(εl) J−(δn) cos (ζ (δn)yc) e−iδnxc

(δn − εl) β2 h dn ϑn−1

. (2.12c)

Finally, the acoustic field associated with the leading-edge terms D(1) +D(3) is the sum
of (2.10a) and (2.12a). The contribution of the trailing-edge terms D(2) + D(4) and the
formulation in patches (b) and (c) can be derived in a similar way (Posson 2008). The
expressions valid on the three patches and the different terms of D and Ac are listed
in (A 17) and (A 18) of Appendix A.2 for the acoustic part of the scattered potential
field.

The acoustic field in the inter-blade area carries information on the blade coupling
inside the cascade which is hard to analyse with lifting-surface methods. Nevertheless,
the ultimate aim of the present model is to compute the broadband noise of a
three-dimensional annular blade row. Rather than the acoustic field in the inter-blade
channels, the main issue is the pressure jump on the blades to be used as a source
term in the acoustic analogy for in-duct propagation. This pressure jump is often
calculated by collocation methods and as such is very sensitive to the collocation
accuracy and time-consuming. This is why the aforementioned analytical extension is
now used to provide closed-form expressions for the potential jump 1φ and then the
unsteady loading 1p0(xc) =p(xc, 0

+)− p(xc, 0
−) is obtained according to

1p0(xc) exp(−iωex t + ikzc
zc) = −ρ0

D

Dt
(1φ(xc) exp(−iωex t + ikzc

zc)). (2.13)

The potential jump for the reference blade at yc = 0 reads

1φ(xc) = φ0(xc, 0
+)− φ−1(xc, 0

−), (2.14)

where the index n of φn denotes the channel for which yc ∈ [nh, (n + 1)h]. Since the
potential in channel n is related to the one in the reference channel φ0 by

φn(xc, yc) = φ0(xc − nd, yc − nh) einσ , (2.15)
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the potential jump is defined by the equation

1φ(xc) = φ0(xc, 0
+)− φ0(xc + d, h−) e−iσ . (2.16)

Once the potential field in the reference channel is defined on the three patches (a,
b and c) according to formulae (A 14)–(A 18) of Appendix A.2, the pressure jump
is derived for the three segments, I, II, III or I, II′, III. The result depends on the
positions of the points 0+ and 0− in the channels and on the nature of patches on
both sides of the blade (a, b or c). In other words, it depends on the sign of c/2− d ,
as depicted in figures 2(a) and 2(b), where the intermediate segments (II) and (II′)
are surrounded by patches of types (b) and (b), and types (a) and (c), respectively.
The final expressions for the pressure jump are also listed in Appendix A.3.

The whole problem must be revisited in the particular case where blades are not
staggered (d = 0) and the incident gust impinges on all blades in phase (σ ≡ 0[2π]).
The former solution is no longer valid and would diverge if used directly due to
removable singularities. A new formulation can be given in the case where the poles
and zeros have changed. Formulae for this case are given in Appendix B for the sake
of completeness.

Results are presented below for test cases with zero sweep and lean angles (ϕ =0◦;
ψ = 0◦).

3. Unsteady blade loading

The aforementioned model of cascade response function is applied to the problem
of the sound generated by a vortical gust impinging on a rectilinear cascade. The
unsteady loading on the blades is investigated first. The validity of the proposed
extension is checked by comparing the results with alternative semi-numerical
rectilinear-cascade models and also with three-dimensional linearized Euler codes
available in the literature. A comparison is also made with the unsteady blade
loading of an isolated flat plate to assess the cascade effect. The quantities of interest
will be made non-dimensional with respect to the blade chord c, the flow density ρ0

and the sound speed c0 and noted with overbars. Particular non-dimensional factors
will be specifically defined when needed.

3.1. Pressure jump across the blades

The analytical solution is first compared to the modified version of Whitehead’s
LINSUB computer code (e.g. Whitehead 1987), based on the semi-numerical model
developed by Smith (1973). This model was used by Hanson (1994, 1999) and is
currently applied in broadband-noise-prediction schemes such as those developed
by Cheong, Joseph & Soogab (2006) or Lloyd & Peake (2008). The response of
the blade row to any excitation (bending or torsional vibration, acoustic or vortical
incident gust) is given by bounded and free vortices distributed along the blades and
their wakes. The comparison is performed on a staggered benchmark configuration,
defined in table 1 and presented by Verdon & Hall (1990) to validate the linearized
Euler code linearized inviscid flow (LINFLO) (Hall & Verdon 1991) against LINSUB
in a flat-plate configuration. The results for the real and imaginary parts of the
pressure jump made non-dimensional by the factor ρ0w0U0 are plotted in figures
4(a) and 4(b). A very good agreement is found between the analytical and LINSUB
results for all tested Mach numbers.

The present model based on Glegg’s formulation also enables computing the
unsteady blade loading produced by the interaction of the rectilinear cascade with
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s 1
χ (deg.) 45

M {0.3; 0.5; 0.7}
ωex 5M
σ −2π

kzc0
0

ϕ 0

Table 1. Input parameters of the test case defined by Verdon & Hall (1990), used in figure 4.
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Figure 4. Chordwise distributions of the unsteady blade loading −1p0 made non-dimensional
by the factor ρ0w0U0: L= −1p0/(ρ0w0U0) from the analytical formulation of § 2 ( ) and
LINSUB code ( ) at M = 0.3, M = 0.5 and M = 0.7. (a) Real part; (b) imaginary part. Test
case of table 1. Results are the complex conjugate of those presented by Verdon & Hall (1990)
because a different convention for the time Fourier transform is used.

a three-dimensional gust. Goldstein (1976, chapter 5) developed a rectilinear-cascade
model for the case that accounts for the presence of parallel duct walls. Comparisons
can then be performed with the semi-numerical LINC code later developed by
Atassi & Hamad (1981), first with a two-dimensional gust and second with a three-
dimensional one. The benchmark test for the two-dimensional gust corresponds to a
narrow-annulus configuration presented by Elhadidi & Atassi (2002). This case can
either be investigated with the three-dimensional linearized Euler code (e.g. Atassi
et al. 2004) based on the real geometry, or with semi-numerical models (e.g. Atassi &
Hamad 1981) and analytical rectilinear models at the mean radius Rm = 0.99. The
input parameters are reported in table 2 where the frequency is made non-dimensional
with respect to the mean radius Rm: ω̃ex = ωexRm/c0 =ωexBSs/(2π). The unsteady vane
loading is now made non-dimensional by dividing by the factor ρ0c

2
0 . A phase shift

equal to −kxc0
c/2 is introduced to be consistent with the benchmark test in which

the chordwise origin is defined at mid-chord rather than at the leading edge. The
predictions obtained in the mid-frequency range for ω̃ex = 6.5π by Posson & Roger
(2007) show that the two rectilinear codes are in a very close agreement and suggested
the present comparisons involving three-dimensional gusts. Besides, the agreement
between the codes is good not only in the mid-frequency range (ω̃ex =6.5π) where
two acoustic cascade modes are cut-on, but also at the low frequency, ω̃ex = 0.5π,
below the cascade cut-on frequency, as shown in figure 5(a). Both results also agree
well with the computations by Elhadidi & Atassi (2002) based on the numerical
code developed by Atassi et al. (2004). The small remaining discrepancies very close
to the leading edge are most likely attributed to resolution issues in the Euler
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s 1
χ (deg.) 45

M 0.509
ω̃ex = BS sωex/2π 0.5π

σ 2πBR/BS

kzc0
0

ϕ 0
BS 24
BR 16
RT 1

RH /RT 0.98

Table 2. Input parameters of the case defined by Elhadidi & Atassi (2002), used in figure 5.
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Figure 5. Chordwise distributions of the real and imaginary parts of the unsteady vane
loading −1p0 for an incident upwash amplitude at mid-span and mid-chord a0 = c0

(w0 = a0exp(−ikxc0
c/2)). (a) The unsteady blade loading is made non-dimensional by the

factor ρ0c
2
0: L= −1p0exp(−ikxc0

c/2)/(ρ0c
2
0) from the analytical formulation of § 2 ( ), the

numerical three-dimensional linearized Euler code of Atassi et al. (2004) ( ) and the LINC
code (+); ω̃ex = 0.5π (test case of table 2). (b) The unsteady blade loading is made
non-dimensional by the factor ρ0a0U0: L= −1p0exp(−ikxc0

c/2)/(ρ0a0U0) from the analytical
formulation of § 2 ( ) and the LINC code ( ) for the case defined in table 3.

numerical method. They are small enough to have negligible effects on a broadband
noise prediction. The good agreement is a first indication of the reliability of the
rectilinear-cascade model in a narrow-annulus configuration.

The present expression is finally compared with an updated version of the LINC
code for a three-dimensional gust. The proposed test case is taken from a set of
comparisons performed with M. M. Logue & H. M. Atassi (personal communication
on rectilinear-cascade models, 2006). The input parameters are given in table 3 and
the two predictions of the unsteady blade loading are plotted in figure 5(b). Again
the very good agreement shows that the three-dimensionality of the incident gust is
properly included in the analytical solution.

3.2. Comparison with an isolated-airfoil response function

Analytical models based on an isolated-airfoil response function only take into
account a part of the cascade effects by the imposed inter-blade phase angle,
whereas the distributed unsteady lift is derived by ignoring adjacent blades. The
first developments on unsteady-airfoil theory were derived for incompressible flows
by Sears (1941). He derived an analytical expression for the unsteady lift of an
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s 1
χ (deg.) 30

M 0.5
ϕ 0
k1 10
k2 2
k3 5
ωex 2k1M = 10
kyc0

2k2 = 4
kzc0 2k3 = 10

Table 3. Input parameters of the test case defined with M. M. Logue & H. M. Atassi (personal
communication on rectilinear-cascade models, 2006) to compare the two rectilinear models for
a three-dimensional gust with the definition of the gust wavenumbers (k1, k2, k3) in the LINC
code, used in figure 5(b).

airfoil in incompressible non-uniform flows, from the theory of von Kármán &
Sears (1938). After the earlier analyses of the compressible subsonic problem by
Possio (1938) and Reissner (1951) notably, Graham (1970) constructed similarity
rules for the load distributions of a thin airfoil to relate a general case to the two-
dimensional compressible case and the three-dimensional incompressible case. Among
the developed closed-form approximate analytical solutions, Amiet (1976) proposed
a high-frequency asymptotic solution. In order to quantify the expected errors in
such isolated-airfoil approaches, especially when the blades are widely spaced and
the overlap tends to zero, the present cascade solution is compared, for the same
vortical disturbance, both to Sears’ low-frequency incompressible solution and to
Amiet’s high-frequency compressible solution with trailing-edge backscattering (e.g.
Amiet 1975). At high frequencies, Amiet’s solution is a priori equivalent to retaining
only the first iterations D(1) and D(2) of the function D in the limit of vanishing
solidity. In that sense, the comparison is relevant, since the corrections D(3) and D(4)

are important to properly account for only those resonance effects which do not
occur on an isolated airfoil. It should also be noted that the inter-blade phase angle
or equivalently the wavenumber kyc0

normal to a blade is not involved in isolated-
airfoil theories. Unsteady blade loading results are plotted in figures 6(a) and 6(b) for
various solidities at fixed inter-blade phase angle σ = 3π/4 and stagger angle, and in
figure 7 for various inter-blade phase angles and a fixed solidity Γ = c/h = 1.2 and
stagger angle χ = 20◦. In most configurations, the cascade effect on the unsteady
blade loading is significant, as depicted in figures 6(a) and 6(b). Particular resonant
configurations exhibit much higher unsteady lift amplitudes, typically for Γ = 1.25
in figure 6(b). The inter-blade phase angle can also notably modify the response, as
shown in figure 7. However, as the blade overlap goes to zero with a small or moderate
solidity, the unsteady blade loading gets closer to the response of an isolated airfoil
(figures 6a and 6b for Γ = 1.22 and Γ = 0.37, respectively). In addition, for small
overlap cases, the similarity with the isolated airfoil is often better for σ = π/2, as
shown in figure 7(b).

The effect of the Mach number on the cascade response function is studied
next. First, a comparison is made at a very low Mach number, M =0.01, with
Amiet’s response and with Sears’ incompressible response function in figure 8. At
vanishing Mach number, the cascade response reproduces Sears’ function above
k1 = ω c/(2 U ) = 2. Below this value, the reduced frequency ωex = 2 k1 M < 0.04 is very
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Figure 6. Chordwise amplitude distributions of the unsteady blade loading 1p0 made
non-dimensional by the factor ρ0w0c0: L=1p0/(ρ0w0c0) from the analytical formulation of
§ 2 and from Amiet’s response function ( ): (a) for M = 0.5, ωex = 12, kzc0

=0, χ = 50◦,
σ = 3π/4, and Γ = 3.33 ( ), Γ =1.67 (· · · · · ·), Γ = 1.43 ( ) and Γ =1.22 ( );
(b) for M = 0.5, ωex =7, kzc0

= 0, χ = 20◦, σ = 3π/4, and Γ = 1.5 ( ), Γ = 1.25 ( ),
Γ = 0.83 (· · · · · ·), Γ = 0.56 ( ) and Γ = 0.37 ( ).
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Figure 7. Chordwise amplitude distributions of the unsteady blade loading 1p0 made
non-dimensional by the factor ρ0w0c0: L= 1p0/(ρ0w0c0) from the analytical formulation
of § 2 and from Amiet’s response function ( ) for M = 0.5, ωex = 12, kzc0

= 0, χ = 50◦,
with σ = 0 ( ), σ = π/2 ( ), σ =3π/4 (· · · · · ·), σ = 9π/4 (-·-◦-·-) and (a) Γ = 1.67;
(b) Γ = 1.22.

small, and the infinite matrix system to be solved in order to compute D is ill-
conditioned. The cascade response oscillates around Sears’ function. Amiet’s response
departs from Sears’ one below much higher frequencies (k1 = 14.7). At this point,
the curves superimpose but with a residual phase shift. The reduced wavenumber
k1 = 14.7 and Mach number M = 0.01 lead to a parameter µ = k1 M/β2 = 0.147 < π/4,
which indicates, according to Amiet (1974), that the high-frequency solution should
be replaced by the compressible low-frequency correction of Sears’ theory.

Secondly, the blade responses are plotted in figure 9 for different reduced frequencies
and three Mach numbers: M = 0.01 (up to M =0.1) in the left column, M = 0.5 in the
centre column and M = 0.8 in the right column. Each row in figure 9 corresponds to a
particular reduced frequency: k1M =ωex/2 equal to 0.003, 0.2, 0.5, 10, respectively. For
the very low reduced frequency k1M =0.003, the cascade response and Sears’ response
are in very good agreement (figures 9a, 9b and 9c). For the quasi-incompressible case
(M =0.01 up to M =0.1), Amiet’s response is close to these results, with a slight
underestimate, even though it does not coincide until k1 = 14.7, as shown previously
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Figure 8. (a) Vector diagram showing the real and imaginary parts of the Sears function ( )
of −conj(Cp(k1,M, d, χ, σ ) exp(−i k1)), where Cp is the cascade unsteady lift for M = 0.01,

d = 0.98, χ =35◦ and σ = π/2 ( ), and of Amiet’s unsteady lift made non-dimensional by
πρ0w0U0 for M =0.01 ( ), versus the reduced frequency k1 = ω c/(2 U ); (b) zoom around
high-frequency responses.

in figure 8 and also observed in figures 9(a) and 9(d ). On the contrary, for compressible
cases (M > 0.3), Amiet’s solution highly overestimates the chordwise distribution of
the lift, as shown in figures 9(b) and 9(c). As the reduced frequency is increased,
Amiet’s response decreases and gets closer to Sears’ and cascade responses around a
particular value, k1 M ≈ 0.2, for almost all Mach numbers (figures 9d, 9e, 9f ). Above
this value, Sears’ response still gives satisfactory results at very low Mach number
(figure 9g), but no longer matches Amiet’s and cascade responses in compressible
cases. The discrepancy arises (figures 9h and 9i ) at a lower frequency as the Mach
number is increased. Sears’ model underestimates the response beyond 20–40 % of
chord with a regular drop to zero (figure 9i ), whereas the leading-edge contribution
leads to an overestimate of the integrated lift. When the reduced frequency k1M is
increased, the cascade response exhibits more and more extrema along the chord
(figures 9j, 9k, 9l ), the number of which also increases with the Mach number. The
maxima are reproduced by Amiet’s model, but with much smaller amplitudes.

This asymptotic trend suggests that the non-zero overlap assumption inherent in the
analytical model is not a serious drawback: as the overlap goes to zero, an isolated-
airfoil response function can be used as a simplified solution. It is also guessed that,
in the case of a small solidity, the single-airfoil theory is a good alternative. At low
reduced frequencies k1M , Sears’s response can be used. At high reduced frequencies
k1M , Amiet’s response is more appropriate. Even if it does not exactly capture
the local extrema of the unsteady lift, the overall level is consistent and the main
trend of oscillations is recovered. In view of the current plots, the relevance of the
isolated response functions is less convincing at intermediate frequencies (k1M = 0.5 in
figure 9). The similarity rules of Graham (1970) could be used instead in this frequency
range. The question of whether the effect on the acoustic far field is important or not
will be addressed in § 5.2.

4. Acoustic field in the inter-blade channel

The present model produces an analytical formulation for the velocity potential
and then for the pressure field which are continuously valid outside and inside the
inter-blade channel. To go beyond the assessment of the model, the two-dimensional
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Figure 9. Amplitude of the unsteady blade loading 1p0 along the blade chord, made
non-dimensional by the factor ρ0w0c0: L= 1p0/(ρ0w0c0) from the analytical formulation
of § 2, with σ = π/2, d = 0.98 and χ = 35◦ ( ), from Amiet’s response function ( ) and
Sear’s response function ( ).

pressure contours around the blades are then compared with those obtained from
Smith’s two-dimensional analysis (Smith 1973), in the manner described by Goldstein
(1976). The test case summarized in table 4 was proposed by Hanson and is reported
in Dahl’s benchmark test case for rotor–stator interaction in category 4 of the Third
Computational Aeroacoustic benchmark (Hardin, Huff & Tam 2000; Namba &
Schulten 2000). The investigated blade row is a stator with BS = 24 flat-plate vanes of
constant chord length c with zero-stagger angle, placed in a straight duct of inner RH

and outer RT radii. The steady flow is assumed axial (no swirl) with a constant Mach
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RH /RT BS BR χ (deg.) ϕ (deg.) ψ (deg.) c
0.98 24 16 0 0 0 2πRT /BS

Mxd MT ωex p kzc0 q Vp

0.5 0.6495 pBRMT c/RT 1 2πq/(RT − RH ) 0 0.1

Table 4. Definition of the stator geometry and vortical excitation parameters.
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Figure 10. The negative of the imaginary part of the unsteady pressure field at mid-span (Rm)
made non-dimensional by the factor ρ0 VpU 2

xd for the test case defined in table 4 obtained with
the current model (solid lines) and with Smith’s linear two-dimensional model (dashed lines)
from Prasad & Verdon (2002). The minus sign of the unsteady pressure field is plotted due
to a convention for the time Fourier transform different from the one presented by Prasad &
Verdon (2002). The contours are plotted with a 0.1 step.

number, M =0.5. The incident vortical excitation is defined in the duct cylindrical
coordinates (r, θd, xd) as

v(r, θd, xd, t) = Uxd

∞∑

p=0

Vp exp(i [(pBRΩxd/Ud)

+pBRθd + 2πq(r − RH )/(RT − RH )]− ipBRΩt) (4.1)

with typically p = 1, Ω =MT c0/RT , with MT being the tangential Mach number
at the upstream rotor blade tip and σ =2πBR/BS . The pressure field is calculated
here in a narrow-annulus configuration with RH/RT = 0.98 at mid-span (Rm) for a
two-dimensional gust (q = 0). The contours of the imaginary part of the pressure
are plotted in figure 10. The thick horizontal straight lines feature the stator vanes
and the dotted vertical lines indicate the boundaries of the inter-vane channel. The
present rectilinear model matches Smith’s results very well. The current full exact
formulation, dealing with both two-dimensional and three-dimensional gusts, could
then be used as a reference for future assessment of numerical solvers, of linearized
Euler equations, for instance, in rectilinear or narrow-annulus configurations.

5. Pressure field computed from the blade loading

According to the acoustic analogy, each blade acts as a chordwise distribution of
dipoles, the strength of which is defined by the pressure jump 1p0. The final aim of
this study is to lay the basis for a method, described in detail by Posson et al. (2010),
to deal with the three-dimensional geometry of an actual fan stage while resorting
to a rectilinear cascade response. The unsteady loading along the blade calculated
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Figure 11. Real part of the two-dimensional predicted acoustic pressure made
non-dimensional by the factor ρ0c

2
0 for an incident vortical gust of amplitude w0 = 0.01Uc on a

cascade with Γ = 1/h = 1, χ = 20◦, M = 0.2, ωex = 5, kzc0
= 0 and σ = 3π/4: (a) complete

acoustic field from (2.2); (b) external acoustic field computed from the cascade pressure
jump and with BS = 40 blades.

on each strip will be used as a distribution of equivalent dipole sources in the sense
of an acoustic analogy. The total field reconstructed by linear superposition of the
contributions of all blades assumed to radiate in free space is verified to be identical
to Glegg’s solution outside the cascade in a two-dimensional configuration. Such a
computation is not needed in a rectilinear cascade since the model produces directly
the radiated field inside and outside the blades, but, this verification is an important
step in the development of a model for the prediction of the broadband noise of an
annular fan resorting to a strip theory.

5.1. Total field reconstruction from the acoustic analogy

The elementary field of a dipole is deduced from the two-dimensional Green’s function
for the convected Helmholtz equation with uniform flow, written here as the complex
conjugate of Lockard’s expression (Lockard 2000) by virtue of a different convention
for the time Fourier transform. It is derived from the two-dimensional Green’s function
in free field with no mean flow using a Prandtl–Glauert transformation:

G(x, y|ξ, η) =
i

4β
exp(−iMtkx̌/β2) H

(2)
0

(
k

β2

√
x̌2 + β2y̌

)
. (5.1)

In the present case, the total mean Mach number is Mt = M , the acoustic wavenumber
k = ωex/c0, x̌ =(x − ξ ) and y̌ =(y − η) for a source point at (ξ, η) and an observer
point at (x, y). Strictly speaking, the periodicity of the cascade cannot be reproduced
fully because the sum can only be made on a limited number of blades BS . Therefore,
the result in the vicinity of a reference channel yc ∈ [0, h[ is reliable if BS is large
and if the blades are distributed almost symmetrically on each side of this channel.
A satisfactory periodic behaviour is achieved around the mid-cascade channel with
BS = 40 and the map covering five channels is then obtained using the inter-blade
phase relationship. The maps of figures 11(a) and 11(b) agree quite well in terms of
wave patterns and amplitudes. Instantaneous pressure profiles obtained by cutting
the maps on lines of constant yc-values are plotted in figures 12(a) and 12(b) for
a more quantitative comparison with BS = 1000. The discrepancies reach only 6 %
at most at the extrema of the profiles because of the truncation errors. The overall
agreement is thus very good, especially when dealing with the intended application
to broadband-noise evaluations in decibels. This confirms that the acoustic pressure
jump equivalently enables realistic sound predictions based on the acoustic analogy.
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Figure 12. Pressure profiles made non-dimensional by the factor ρ0c
2
0 for an incident vortical

gust of amplitude w0 = 0.01Uc on a cascade with Γ = 1, χ = 20◦, M = 0.2, ωex = 5, kzc0
=0, and

σ = 3π/4 at yc =0.2 c (curves (1)), yc =0.5 c (curves (2)) and yc = 0.9 c (curves (3)) (xc ∈ [−4, 0])
predicted from (2.2) ( ) and reconstructed from the pressure jump on BS = 1000 blades
( ): (a) upstream of the cascade; (b) downstream of the cascade.

It can be used within a strip-theory approach of three-dimensional blade rows of
arbitrary geometry, for fan-noise applications. In this case, the artificial condition of
an infinite set of blades is replaced by the exact periodicity condition in cylindrical
coordinates; the calculation will then be simpler and less prone to numerical errors.
The remaining issue will then be the ability of the linear-cascade response function to
simulate the behaviour of the unsteady blade loading of a three-dimensional annular
cascade. First results by Posson & Roger (2007) have shown the accuracy of the
approach for high hub-to-tip ratio configurations. The discrepancies observed for
low hub-to-tip ratio have required some modifications of the model to introduce
the actual annular effect on the wave equation. The proposed correction is detailed
by Posson et al. (2010). They concluded that the correction is needed to get results
closer to the actual annular geometry, but discrepancies are still found in the rather
low-frequency harmonic test case considered in this reference.

5.2. Comparison with an isolated-airfoil response function

This section addresses the ability of the isolated-airfoil response function to reproduce
the acoustic field of a rectilinear blade row. This is achieved by replacing the cascade
pressure jump in the computations of § 5.1 by Amiet’s expression and by enforcing the
same inter-blade phase angle σ between the blades. Comparing the results in figure 13
for the test case of § 5.1 shows that the interference patterns are qualitatively similar.
This is expected since the correct phase shift is imposed. However, large errors are
observed on the local amplitude of the pressure field, typically overpredicted by at
most 43 % downstream and underpredicted upstream by at most 55 %, with a mean
relative error of 30 %.

The results of a second test case, defined in table 5, with a small solidity Γ = 0.45
and a small overlap 1− d = 0.20 (instead of 0.64) are shown in figures 14 and 15 for
two incident gusts with different inter-blade phase angles. The two cascade response
functions for the unsteady blade loading are found to be close to the isolated-
airfoil response function in figure 14. Yet varying the inter-blade phase angle notably
modifies the response. The difference between the two cascade responses is of the
same order of magnitude as the difference between the isolated-airfoil and cascade
responses.
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Sub-case h χ (deg.) M ωex σ kzc0
ϕ

(I) 2.2 20 0.2 5 π / 2 0 0
(II) 2.2 20 0.2 5 3π / 4 0 0

Table 5. Input parameters of the second case to compare the isolated-airfoil and the cascade
response functions when the overlap tends to zero (used in figure 15).
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Figure 13. Real part of the two-dimensional predicted acoustic pressure made
non-dimensional by the factor ρ0c

2
0 for an incident vortical gust of amplitude w0 = 0.01Uc on

a cascade with Γ = 1, χ = 20◦, M = 0.2, ωex = 5, kzc0
= 0, and σ = 3π/4. (a) External acoustic

field computed from the cascade pressure jump and with BS = 40 blades ; (b) external acoustic
field computed from the isolated-airfoil pressure jump and BS = 40 blades phased-shifted
by σ .
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Figure 14. Chordwise distributions of the real and imaginary parts of the unsteady blade
loading 1p0 made non-dimensional by the factor ρ0w0c0: L= 1p0/(ρ0w0c0) for cases defined
in table 5 from Amiet’s response function ( ) and from the analytical formulation of § 2
in sub-case (I) (σ = π/2) ( ) and in sub-case (II) (σ = 3π/4) ( ).

A pressure profile along the line yc/c = 3.025 is plotted in figure 15 for a quantitative
comparison of the radiated fields. First in case (I) (figure 15a), the solution obtained
with the isolated-airfoil response function is in good agreement with the cascade
solution. The cascade behaves consistently as the blade overlap tends to zero. The
more different patterns of case (II) (figure 15b) illustrate the dominant effect of the
inter-blade phase angle. But again the agreement of the pressure profiles in figure 15(b)
shows that the field is rather well reproduced using the single-airfoil theory despite
some discrepancies in amplitudes. As the relative blade-to-blade distance increases,
the isolated-airfoil response function can be used as an alternative whatever the
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Figure 15. Pressure profiles at y/c = 3.025 made non-dimensional by the factor ρ0c
2
0 for an

incident vortical gust of amplitude w0 = 0.01Uc on a cascade with Γ = 0.45, χ =20◦, M = 0.2,
ωex = 5, kzc0

=0 and (a) σ = π/2; (b) σ =3π/4. External acoustic field computed from the
cascade pressure jump and with BS = 1000 blades ( ) and external acoustic field computed
from the isolated-airfoil pressure jump and BS = 40 blades phased-shifted by σ ( ).

inter-blade phase angle might be. It should be noticed that σ = π/2 plays a particular
role as the corresponding gust amplitude is zero on a blade when it reaches its
maximum at the neighbouring blade. On the contrary, when the inter-blade phase
angle is 0 or π, the gust amplitudes are, respectively, in phase or out of phase,
introducing large interferences. The configuration σ = π/2 is therefore a particular
case where interferences are minimized and the cascade blades behave closer to an
isolated airfoil. The neighbouring blade ‘acts’ as a ‘ghost’ and the effective solidity is
halved.

6. Concluding remarks

Glegg’s model of a rectilinear cascade response has been re-addressed and a full
analytical solution has been derived for the acoustic field in the whole space, including
the inter-blade channels, and for the unsteady loading on the blades, based on an
extensive application of the residue theorem. The extended analytical solution has
been successfully compared to alternative rectilinear cascade models both in terms of
unsteady loading on blades and pressure field in the blade passage.

The unsteady blade loading has also been used as an equivalent source in the
sense of an acoustic analogy in a rectilinear configuration. The results confirm that it
ensures reliable sound predictions. Unsteady blade loadings could then be used within
a strip-theory approach for three-dimensional blade rows of arbitrary geometry for
fan-noise applications.

The unsteady blade loading and the radiated acoustic pressure field produced by the
gust–cascade interaction have been compared with a classical isolated-airfoil solution,
showing large differences in both quantities due to the cascade effect when the blade
overlap is significant. Nevertheless, when the blade overlap goes to zero with a small
or moderate solidity, the unsteady blade loading gets closer to the isolated-airfoil
response. This suggests that both models can be used as a continuation of each other
if needed.

The authors wish to acknowledge Snecma which supported the CIFRE PhD thesis
during which most of this study was conducted. They would also like to acknowledge
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GAUS, the acoustic groups of l’Université de Sherbrooke (QC, Canada) for supporting
the continuation of this work.

Appendix A. Analytical model formulation

A.1. Reminder of main parameters of Glegg’s cascade model

For convenience, the same quantities and notations as in Glegg’s (1999) model are

introduced and recalled:

M = Uc

c0
, β =

√
1−M2, ω = ωex − kzc0

Wc,

s =
√

d2 + h2, se =
√

d2 + β2h2, tanχe =
d

βh
,

κ = ω/(c0β
2), κ2

e = κ2 − (kzc0
/β)2, ξ = kxc

− κM,

δl = κM − ϑl−1, εl = κM + ϑl−1, ϑl =

√

κ2
e −

(
lπ

βh

)2

,

σ = kxc
d + kyc

h, fq =
σ +κMd−2πq√

d2 + β2h2
, η±q = −fq sinχe ± cos χe

√
κ2

e −f 2
q ,

λ±q = κM + η±q , ζ±q = ζ
(
λ
±
q

)
, ζ

(
kxc0

)
=

√
(ω + kxc

Uc)2/c
2
0 − k2

xc
− k2

zc
,

ρ = σ + κMd, dn =





2, if n = 0,

1, else,
Z = − iξ

π

[βh log (2 cos χe) + χed].





(A 1)
A new variable S±

q taking the values +1 and −1 is defined as follows, ensuring for

all integer q , ζ±q h =S±
q (λ±q d + σ − 2πq):

S+
q =

{
−1, if ζ+

q h = −
[
σ + λ

+
q d − 2πq

]
,

+1, if ζ+
q h = +

[
σ + λ

+
q d − 2πq

]
,

S−
q =

{
−1, if ζ−q h = −

[
σ + λ

−
q d − 2πq

]
,

+1, if ζ−q h = +
[
σ + λ

−
q d − 2πq

]
.





(A 2)

The function j , defined as

j
(
kxc

)
=

ζ sin ζh

4π(cos ζh− cos ξd + ρ)
, (A 3)

is split into the product of an analytical function J+ in the upper half-plane and an
analytical function J− in the lower half-plane, with

J+

(
kxc

)
=

β κe sin (β κe h) eZ

4π (cos (β κe h)− cos (ρ))

∞∏

l=0

(1− ξ/θl)

∞∏

q=−∞
(1− ξ/η−q )

, J−
(
kxc

)
=

e−Z

∞∏

l=0

(1− ξ/ϑl)

∞∏

q=−∞
(1− ξ/η+

q )

.

(A 4)
The variables δl and εl , for all l > 1, are the inter-blade channel wavenumbers, zeros
of J+ and J−, respectively. The four terms D(j ) of the Fourier transform of the jump
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of the velocity potential read

D(1)
(
kxc

)
=

−iw0

(2π)2
(
kxc

+ kxc0

)
J−

(
− kxc0

)
J+

(
kxc

) , (A 5)

D(2)
(
kxc

)
= −

∑

n>1

An exp(i(kxc
− δn)c) J−(δn)

i
(
ωg + kxc

Uc

) (
kxc
− δn

)
J−

(
kxc

) , (A 6)

D(3)
(
kxc

)
= −

∞∑

l=1

Bl J+(εl)(
kxc
− εl

)
J+

(
kxc

) , (A 7)

D(4)
(
kxc

)
= −

∞∑

n=1

Cn ei(kxc−δn)c J−(δn)

i
(
ωg + kxc

Uc

) (
kxc
− δn

)
J−

(
kxc

) , (A 8)

with ((A.26) of the reference paper)

An =
w0 (ωg + δnUc)

(2π)2
(
δn + kxc0

)
J ′+(δn) J−

(
− kxc0

) , n > 1. (A 9)

The value of A0 for sound generation is in fact zero by definition of kxc0
and ωg . The

coefficients Bn and Cn are also obtained as in Glegg’s model by

B = F · (A + C),

C = L · B,

}
(A 10)

where A =(An)n∈N, F= (Fl,n)(l,n)∈N∗2 , L =(Ll,n)(l,n)∈N∗2 with the same definition of Fl,n

and Ll,n as in (A.48) and (A.49) of the reference paper:

Fl,n = − J−(δn) exp(i(εl − δn)c)

i(ωg + εlUc) (εl − δn) J ′−(εl)
, Ll,n =

i(ωg + δlUc) J+(εn)

(εn − δl) J ′+(δl)
. (A 11)

Then D(λ+
q ) is given by

D(λ+
q ) =

−iw0

(2π)2
(
λ+

q + kxc0

)
J+(λ+

q ) J−
(
− kxc0

) −
∞∑

l=1

Bl J+(εl)

(λ+
q − εl) J+(λ+

q )

= D(1,3)(λ+
q ), ∀ q ∈ Z, (A 12)

and D(λ−q ) by

D(λ−q ) = −
∞∑

n=1

(An + Cn) exp(i(λ−q − δn)c) J−(δn)

i (ω + λ−q Ucc) (λ−q − δn) J−(λ−q )
= D(2,4)(λ−q ), ∀q ∈ Z. (A 13)

A.2. Acoustic potential in the inter-blade channel

A general form of the acoustic part φac of the scattered velocity potential φ is derived
by application of the residue theorem following the method presented in § 2. The
pressure-free part of the potential convected by the mean flow, φv , can be obtained
in a similar way but is not given here for the sake of conciseness.
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In patch (a) (0 6 xc 6 d):

φac,a(xc, yc) =
∑

q∈Z

φ+
ac,a,1,λ,q(xc, yc) +

∑

l>1

φ+
ac,a,1,l(xc, yc)

+
∑

n>1

(
φ+

ac,a,2,n(xc, yc) +
∑

l>1

[
φ+

ac,a,2,n,l(xc, yc) + φ−ac,ab,n,l(xc, yc)
]
)

. (A 14)

In patch (b) (d <xc <c):

φac,b(xc, yc) =
∑

n>1

φ+
ac,bc,n(xc, yc) +

∑

n>1

∑

l>1

[
φ+

ac,bc,n,l(xc, yc) + φ−ac,ab,n,l(xc, yc)
]
. (A 15)

In patch (c) (c 6 xc 6 c + d):

φac,c(xc, yc) =
∑

n>1

[
φ+

ac,bc,n(xc, yc) + φ−ac,c,2,n(xc, yc)
]
+

∑

q∈Z

φ−ac,c,2,λ,q(xc, yc)

+
∑

n>1

∑

l>1

[
φ+

ac,bc,n,l(xc, yc) + φ−ac,c,1,n,l(xc, yc)
]
. (A 16)

The different terms of the sums are defined as

φ+
ac,a,1,λ,q(xc, yc) = − i π ζ+

q D(λ+
q ) cos

(
ζ+
q yc

)
exp(i(σ + λ+

q d)) exp(−iλ+
q xc)

sin (λ+
q d + σ ) (ζ+

q d + S+
q hβ2η+

q )
,

φ+
ac,a,1,l(xc, yc) = +

i π Bl cos (ζ (εl) yc) exp(i(εl(d − xc) + σ ))

(cos (ζ (εl)h)− cos (εld + σ ))
,

φ+
ac,a,2,n(xc, yc) = − w0 J−(δn) cos (ζ (δn)yc) e−iδnxc

J−
(
− kxc0

) (
δn + kxc0

)
β2 h dn ϑn−1

,

φ+
ac,a,2,n,l(xc, yc) =

(2π)2 i Bl J+(εl) J−(δn) cos (ζ (δn)yc) e−iδnxc

(δn − εl) β2 h dn ϑn−1

,

φ−ac,ab,n,l(xc, yc)=
(2π)2 (An + Cn) J−(δn) J+(εl) exp(iεl(c − xc)− iδnc)

(ω + εlUc) (εl − δn)

× [cos (ζ (εl)yc) exp(i(εld + σ ))− cos (ζ (εl)(yc − h))]

β2 h θl−1 (−1)l−1dl

,

φ+
ac,bc,n(xc, yc) =

w0 J−(δn) [cos (ζ (δn)yc) exp(i(σ + δnd))−cos (ζ (δn)(yc−h))] e−iδnxc

J−
(
− kxc0

) (
δn + kxc0

)
β2 h ϑn−1 (−1)n−1 dn

,

φ+
ac,bc,n,l(xc, yc) = − (2π)2 i Bl J+(εl)

(δn − εl)

× J−(δn) [cos (ζ (δn)yc) exp(i(σ + δnd))− cos (ζ (δn)(yc − h))] e−iδnxc

β2 h ϑn−1 (−1)n−1 dn

,





(A 17)
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φ−ac,c,2,n(xc, yc) = +
π (An + Cn) cos (ζ (δn)(yc − h)) e−iδnxc

(ω + δnUc) (cos (ζ (δn)h)− cos (δnd + σ ))
,

φ−ac,c,1,n,l(xc, yc) =
(2π)2 (An+Cn)J−(δn)J+(εl) cos (ζ (εl)yc) exp(iεl(c+d−xc)−iδnc+iσ)

(ω + εlUc) (εl − δn) β2 h θl−1 (−1)l−1 dl

,

φ−ac,c,2,λ,q(xc, yc) = − i π D(2,4)(λ−q ) ζ−q cos
(
ζ−q (yc − h)

)
e−iλ−q xc

sin (λ−q d + σ ) (ζ−q d + S−q hβ2η−q )
.





(A 18)

A.3. Pressure jump on the blade

The expression for the pressure jump can then be derived from (2.13) and (2.16)
using the expressions of the acoustic potential (see (A 14)–(A 18)). It is then written
as follows, in terms of the factors listed below.

On segment I (0 < xc < min(c − d, d)):

1p0(xc) = (DP2 + DP3 + DP4 + DP5 + DP6) (xc). (A 19a)

If d < c/2 on segment II (d <xc <c − d):

1p0(xc) = (DP6 + DP8 + DP9) (xc). (A 19b)

If c/2 < d < c on segment II′ (c − d <xc <d):

1p0(xc) = (DP2 + DP3 + DP4 + DP5 + DP10 + DP11 + DP12) (xc). (A 19c)

On segment III (max(c − d, d) <xc <c):

1p0(xc) = (DP8 + DP9 + DP10 + DP11 + DP12) (xc). (A 19d )

The DPj terms read

DP2(xc) = −
∑

n>1

ρ0 iw0 J−(δn) (ω + δnUc) (2− exp(−i(σ + δnd + (n− 1)π)))

J−
(
− kxc0

) (
δn + kxc0

)
β2 h dn ϑn−1

e−iδnxc ,

DP3(xc) = −
∑

n>1

∑

l>1

ρ0 (2π)2 Bl J+(εl) J−(δn) (ω + δnUc)

(δn − εl) β2 h dn ϑn−1

× (2− exp(−i(σ + δnd + (n− 1)π))) e−iδnxc ,

DP4(xc) = +
∑

q∈Z

ρ0 π ζ+
q D(λ+

q ) exp(i(σ + λ+
q (d − xc))) (ω + λ+

q Uc)

sin (λ+
q d + σ ) (ζ+

q d +S+
q hβ2η+

q )
,

DP5(xc) = −
∑

l>1

ρ0 π Bl (ω + εlUc) exp(i(εl(d − xc) + σ ))

(−1)l−1 − cos (εld + σ )
,

DP6(xc) = −
∑

l>1

∑

n>0

2 ρ0 i (2π)2 (An + Cn) J+(εl) J−(δn) exp(i(εl(c − xc)− iδnc))

(εl − δn)

× 1− cos (σ + εld + (l − 1)π)

β2 h dl θl−1

,





(A 20a-e)
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DP8(xc)= −
∑

n>1

2 ρ0 i w0 (ω + δnUc) J−(δn)(
δn + kxc0

)
J−

(
− kxc0

)
β2 h dn ϑn−1

× (1− cos (σ + δnd + (n− 1)π)) e−iδnxc ,

DP9(xc)= −
∑

n>1

∑

l>1

2 ρ0 (2π)2 Bl J+(εl) J−(δn) (ω + δnUc)

(δn − εl)
e−iδnxc

× 1− cos (σ + δnd + (n− 1)π)

β2 h dn ϑn−1

,

DP10(xc) = +
∑

l>1

∑

n>0

ρ0 i (2π)2 (An + Cn) J+(εl) J−(δn) exp(i(εl(c − xc)− iδnc))

(εl − δn)

× exp(i(σ + εld + (l − 1)π))− 2

β2 h dl θl−1

,

DP11(xc) = −
∑

q∈Z

ρ0 π ζ−q D(2,4)(λ−q ) exp(−i(σ + λ−q (d + xc))) (ω + λ−q Uc)

sin (λ−q d + σ ) (ζ−q d +S−
q hβ2η−q )

,

DP12(xc) = −
∑

n>1

ρ0 i π (An + Cn) exp(−i(σ + δn(d + xc)))

(−1)n−1 − cos (δnd + σ )
.





(A 20f-j )

Appendix B. Particular case: d = 0 and σ ≡ 0[2 π]

B.1. Recasting of the original model

In the particular case where blades are not staggered (d = 0) and the oncoming gust
is in phase on all blades (σ ≡ 0[2π]), the whole model must be revisited, leading to
the following expressions:

j
(
kxc

)
= +

iζ

4π

∞∑

n=−∞
eiζ |nh| = − ζ

4π tan (ζh/2)
. (B1)

The function j is split into the product of an analytical function J+ in the upper
half-plane and an analytical function J− in the lower half-plane, with

J+

(
kxc

)
= −eZβ κe cos (β κe h/2)

4π sin (β κe h/2)

+∞∏

l=0

(1− ξ/θ2l+1)

+∞∏

q=1

(
1− ξ/θ2q

)
, J−(kxc

) =

e−Z

+∞∏

l=0

(1− ξ/ϑ2l+1)

+∞∏

q=1

(
1− ξ/ϑ2q

)
.

(B2)
The expression of D(1) is unchanged but D(2), D(3) and D(4) are now defined as

D(2)
(
kxc

)
= −

∑

l>0

A2l exp
(
i
(
kxc
− δ2l

)
c
)
J−(δ2l)

i
(
ω + kxc

U
) (

kxc
− δ2l

)
J−

(
kxc

) , (B3)
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with

A2l =





w0 (ω + δ2lU )

(2π)2
(
δ2l + kxc0

)
J−

(
− kxc0

)
J ′+(δ2l)

, ∀ l > 1,

w0

(
ω − kxc0

U
)

(2π)2 j
(
− kxc0

) , l = 0,

(B4)

D(3) = −
∞∑

q=1

B2q J+(ε2q)(
kxc
− ε2q

)
J+

(
kxc

) ,

D(4) = −
∞∑

p=0

C2l exp(i(kxc
− δ2l)c) J−(δ2l)

i
(
ω + kxc

U
) (

kxc
− δ2l

)
J−

(
kxc

) ,





(B5)

where the coefficients B = (B2q)q > 1 and C = (C2l)l > 1 are solutions of the matrix system

B = F · (A + C),

C = L · B,

}
(B6)

with A =(A2l)l > 1, F= (F )(q,p)∈N∗2 , L = (L)(q,p)∈N∗2 and

Fq,p = − J−(δ2l) exp(i(ε2q − δ2l)c)

i (ω + ε2qU ) (ε2q − δ2l) J ′−(ε2q)
, Lq,p =

i (ω + δ2qU ) J+(ε2l)

(ε2l − δ2q) J ′+(δ2q)
. (B7)

B.2. Acoustic potential in the inter-blade channel

The velocity potential is again given by

φ̂(xc, yc, zc, t) =

∫ ∞

−∞
D

(
kxc

)
Ac

(
kxc

, yc

)
exp

(
− ikxc

xc − iωex t + ikzc
zc

)
dkxc

, (B8)

but now

Ac

(
kxc

, yc

)
= −1

2

∑

n

sign(nh− yc) exp(iζ |nh− yc|) =
1

2

[
eiζyc

1− eiζh
+

e−iζyc

1− e−iζh

]

= − cos (ζyc)− cos (ζ (y − h))

2 [cos (ζh)− 1]
= −sin (ζ (yc − h/2))

2 sin (ζh/2)
. (B9)

The acoustic potential inside the inter-blade channel (patch (b) only), for all (xc, yc) ∈
[0, c]×R, is equal to

φac (xc, yc) =
∑

l>1

{
φ+

ac,b,1,l(xc, yc) +
∑

q>0

(
φ+

ac,b,l,q(xc, yc) + φ−ac,b,l,q(xc, yc)
)
}

, (B10)

with

φ−ac,b,l,q(xc, yc) =
8π

2

h

(
A2q +C2q

)
exp(i(ε2l(c− xc)− δ2qc)) J−(δ2q) J+(ε2l) cos (ζ (ε2l)yc)

(ω + ε2lU ) (ε2l − δ2l) ζ (ε2q)
,

φ+
ac,b,l,q(xc, yc) =

2(2π)2 B2q J+(ε2q) J−(δ2l) cos (ζ (δ2l)yc) e−iδ2lxc

(
δ2l − ε2q

)
ζ (δ2l) h

,

φ+
ac,b,1,l(xc, yc) =

2 w0 J−(δ2l) cos (ζ (δ2l)yc) e−iδ2lxc

J−
(
− kxc0

) (
δ2l + kxc0

)
ζ (δ2l) h

.





(B11)
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B.3. Pressure jump on the blade

Finally, the expression for the pressure jump can then be derived from the acoustic
potential and is written as

1p0(xc) = (DP6 + DP8 + DP9) (xc), (B12)

with

DP6(xc) =
16(π)2 ρ0 i

h

∑

l>1

∑

q>0

(A2q + C2q) J+(ε2l) J−(δ2q) exp(i(ε2l(c − xc)− iδ2qc))

(ε2l − δ2q) ζ (ε2l)
,

DP8(xc) = ρ0

4i

h

∑

l>1

w0 (ω + δ2lU ) J−(δ2l)(
δ2l + kxc0

)
J−

(
− kxc0

)
ζ (δ2l)

e−iδ2lxc ,

DP9(xc) = ρ0

4i(2π)2

h

∑

l>1

∑

q>1

B2q J+(ε2q) J−(δ2l) (ω + δ2lU )

(δ2l − ε2q) ζ (δ2l)
e−iδ2lxcc .





(B13)
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