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Abstract

The approach of Obukhov assuming a constant skewness was used to obtain analytical corrections to the scaling
of the second order structure function, starting from Kolmogorov’s 4/5 law. These corrections can be used in
model applications in which explicit expressions, rather than numerical solutions are needed. The comparison
with an interpolation formula proposed by Batchelor, showed that the latter gives surprisingly precise results.
The modification of the same method to obtain analytical corrections to the scaling law, taking into account the
possible corrections induced by intermittency, is also proposed.

1. Introduction

The scaling of structure functions is a basic problem in the study of turbulence. The second and third
order longitudinal structure function of the velocity u are respectively defined as

Du(r) = {(u(z1 +7) = u(z1))?) (1)
Du(r) = {(u(@1 + ) — u(21))?) (2)

with u the velocity component in the z;-direction and (-) denoting an ensemble average. In the inertial
range of high Reynolds number turbulence, these structure functions were proposed to scale as [1,2]:

Dy(r) ~ (er)?/? (3)
Duyy(r) ~ e, (4)
with the dissipation defined as
— 57.141 3ui (5)
°= 67'] 67@ ’
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Figure 1. Schematic of the velocity increment skewness in isotropic turbulence. Two plateaus are expected at very large
Reynolds number: one for r < n the other for n < r < L

and v the kinematic viscosity. Later, Kolmogorov [3] proposed a correction to the scaling of Dy;(r), taking
into account the increasingly intermittent character of the energy flux e s(r) when the scale r is decreased.
This correction is however small and disputed. For example, several authors argued that the anomalous
scaling (as observed experimentally by e.g. [4]) may stem from a finite Reynolds number effect [5,6], and
it was proposed that the 2/3 law may be satisfied when the Reynolds number tends to infinity. The
second relation is an exact relation, which can be derived from the Navier-Stokes equations, be it only in
the limit of very large Reynolds number. Indeed, for stationary isotropic incompressible turbulence one

can derive

dDy (r 4
Dm(?‘) = Gl/$ — gET. (6)

For scales much larger than the viscous scale, the first term on the right hand side vanishes so that (4)
is obtained. Equation (6) relates the second and third order structure functions. So if Dy;(r) or the
skewness

Si(r) = Du(r)/ (Du(r))*” (7)

is known, the second order structure function can be computed using (6). A first attempt is substituting
a constant skewness, as was proposed by Obukhov [7] (see also [8], chapter 22, or [9]). Indeed, in the
inertial range, from (3) and (4) it is clear that the skewness of the longitudinal velocity increment should
be a constant (in the absence of intermittency corrections). For r < n, with 7 the viscous cut-off scale,
the flow can be considered as smooth, so that the velocity increments scale linearly with the separation
distance. This gives the trivial scaling

D”(T‘) ~ 7“2 (8)
Dm(T‘) ~ 7”3 (9)

so that also at small scales the skewness should be a constant. Around 7, the skewness is however not
constant, since the plateaus at small and large » do not have the same value, as sketched in Figure 1. Let
us call these two values Si(0) and Sk(00). These two values are relatively close, differing by approximately
a factor two. Note that intermittency corrections change this discussion slightly, both at small and large,
scales, but we will postpone this discussion to section 4.
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In order to well represent the transition of the scaling exponent from 2 to 2/3, Batchelor proposed an
interpolation formula for the structure function [10], and this result has been widely used and adapted
[11-13]:

02 512/37
1+ (Cn/r)’]
with v = (1/6)1/4 the Kolmogorov velocity, = v3/4e~1/4 is the Kolmogorov scale, and C' is a constant.

This form was proposed because of its simplicity, not because of any underlying physics. It is in reasonable
agreement with experiments.

In the present communication we present results on the transition region of the second-order structure
function between the inertial range and the viscous range. The method is based on an extension of the
work by Obukhov. Indeed, we use the assumption of a constant skewness for for r < pand n < r < L
as a zeroth order solution. Then, starting from the inertial range we apply a perturbation method to
evaluate the influence of the viscous damping. In the viscous range, we use Taylor-expansions to obtain
an approximation of the influence of the non-constant skewness. Analytical expressions for the scaling
exponent in both ranges are obtained. Results are compared to the Batchelor formula and a possible
modification taking into account anomalous scaling is proposed.

2. Analytical expressions for the scaling of Dy (r)

In homogeneous isotropic turbulence, The Kolmorogov equation (6), can be written as a function of

Dy (r) and the skewness:

D 4
S Dl = 600 L, (11)

We will in this section consider the two regions in which the skewness is constant at high Reynolds
numbers, and compute analytically the corrections to the scaling of Dy (r), when r approaches 7.

2.1. Corrections to the scaling in the dissipative range

In the dissipative range, we define the following normalized quantities r,, = r/n, Dy (ry) = Dy (nry) /v?, D} (ry) =
dD,(ry,)/dry,. Using Eq. (11), this leads to

4
6D, — =1y — Sk(ry)D3/? = 0. (12)
Suppose Si(ry,) = Sk(0) in the dissipative range, and let w = D}]/Q. Eq. (12) can then be rewritten as
4
12ww’ — =Ty — Sk(0)w® = 0. (13)
When 7, tends to zero, from Taylor expansions we have
o0
w = Z airy, (14)
i=0
in which a; are unknown coefficients. Then the terms in Eq. (13) can be expressed:

ww' = a%Tn + 3a1a2r,2, + (4dara3 + 2a§)rf’, + (baiaq + 5a2a3)r% + .. (15)

w3 = ail)’Tf; + 3a%a2rf] + (3a1a3 + 3&%&3)7‘757 + .. (16)
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Substituting Eqgs. (15) and (16) into (13), and comparing the same order terms of r,, we finally have

_ 1 . Sk(o)?“s—l- vV 15Sk(0)27"5+ S (0)3 7 1335,(0)* 9 (17)
VIs T 720 7T 345600 7' 11059200 7 ' 4777574400015 "
and the structure function is
D (r ): ir2 Sk(o) r Sk(0)2 76 Sk(0)3 r8 67Sk(0)4 P10 (18)
TTT15T T 360415 T 129600 7 3317760415 7 89579520000 7
The local scaling exponent n is defined as
- dlogD,, _ dD,, 7"_77' (19)
dlogry, dr, D,
We compute its value from (18) to obtain, with 4" order precision:
1 N S1(0) 2 Sk(0)2r4 S (0)3 6 67S55(0)* 8
Lo | 15 180VI5 " 43200 7 829440V/15 " © 17915904000 " (20)
1 Si(0) 2 Sk(0)? e Sp(0? 675K(0)*

15 360v/15 " 129600 " ' 331776015 7 89579520000 "

Note that the corrections to the value 2 are a function of the longitudinal velocity derivative skewness

54(0).
2.2. Viscous corrections to the inertial range

From Eq. (11), using the assumption of a constant skewness, one can also obtain

dSk(T) d -3 lel(T) 4
=— (D 12 [ pr—l — 2 =0. 21
dr dr u(r) Y ar 55 1)
Introducing the Taylor micro-scale A = ugy/15v/e, where ug = /2k/3 is the characteristic velocity,
Dy (A dD
and ry = r/\, Da(ry) = %, Di\(ry) = %, the equation can be written as
0 A
30 (1) Dapy — a5 (1) DR 1 6raD4 — 4Dy = 0 22
X AN — X X TOoraDy — A=Y ( )
Considering the Reynolds number
Roy _ M0A _ 1 (/\>2 (23)
e = ——= —_ 5
A v V15 \n
we can rewrite Eq. (22) as
V1 V1
30—5D>\D£\’ — 45—5Df\2 +6r\Dy\ —4D) = 0. (24)
Re)\ Re>\

When the Reynolds number is large, i.e. 6 = v/15/Rey < 1, the perturbation method can be applied.
In this case the differential equation (24) is rewritten as

306D\DY — 456D% + 6r\D) — 4Dy =0, (25)
and the general solution can be expanded using ¢:
n=0
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Substituting (26) into (25), the 0" order equation for § is

67‘>\D£\O — 4D>\0 =0. (27)
The general solution which is found is

Dio(ry) = Agrd?. (28)
The coefficient Ay can be determined by using the skewness value when ry — co. We easily obtain

Ag = 15%Re}?Cy, (29)
in which

_4 2/3
Cy = 30
= (55 o

is a constant which does not depend on the Reynolds number. Note that the value of skewness Si(o0) is
usually not the same as Si(0).
Similarly, we can write the 15! order equation for d:

30Dxo DYy — 45D% + 6r\Dy; — 4Dyq = 0. (31)
From the solution of Dy, i.e. Eq. (28), the solution of Dy; can be obtained:
10A2
Dai(r) = —— /g + Ay, (32)
3r
Since Dy should tend to 0 when x — oo, we have the coefficient A1 = 0, thus
1043
Dii(z) = —Ls (33)
Ty

Note that when 2 — 0, this 1% order solution can not been applied. It means that the perturbative
solution is not correct when the two-point distance r is very small, i.e. in the dissipative range.
Therefore, the general solution with 1%¢ order precision can be written as

10 _
Da(ry) = Agry/® — 5 A (34)
It might seem strange at first sight that the constant Ay depends on the Reynolds number. This comes

from the fact that the increment distance is normalized by the Taylor scale, which is also a function of
the Reynolds number. This dependence vanishes if we write the expression as a function of r,;:

D, (ry) = 007“%/3 02 72/3. (35)
Higher order solutions can also been solved using the same method. For instance the solution with 4"
order precision is
10 125 4750 290000
_ 2/3 2 —2/3 3,.—2 —10/3 5,—14/3
Dy(ry) = Cory/* = S Ciry?* — —=Ciiry 2 = ——=Cr, ™ —r Cora " (36)
The scaling exponent with 4th order precision is
- 125 _ 23750 - 2030000 -
5 (1 + C’ 4/3 _CQT 8/3 | 20008y, 12/3 , <05UUU0 " 0 Gt 16/3
10 _ _ 4750 _ 290000 _
3 1 ?Corn 4/3 Cg 8/3 = SV, 12/3 = Ciry 16/3

The scaling exponent is always larger than 2/3, and tends to 2/3 when z — oo. It is in agreement
with the arguments by Barenblatt [14], who argues that the anomalous scaling with exponents slightly
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Figure 2. Comparison between the numerical solution and the analytical solutions in the dissipative range. In each figure,
the perturbative solutions have 15 to 4t order precisions, the numbers in the figure denote the orders respectively. (a)
Structure function. (b) Scaling exponents

larger than 2/3 observed in several works, is an artefact simply due to the effect of viscosity. However
in Barenblatt’s paper, only a general expression is derived by using dimensional analysis, in which the
coefficients are not determined. In the present work we obtain a quantitative correction stemming from
the effect of molecular viscosity.

3. Comparison of the corrections with existing results
3.1. Comparison to the approrimation of a constant skewness

In order to verify the analytical corrections, we compare them with the exact numerical solution of the
original differential equation (12), i.e. the approximation of a constant skewness.

The comparison in the dissipative range is shown in Fig. (2). The value of the skewness is fixed at
Si(0) = —0.45. Both structure functions and local scaling exponents are shown for different orders of the
expansion. When r is small, the analytical solutions are in good agreement with the numerical solution.
The 15 order solution is satisfied in the range about 0 < r,, < 6, and for the 4" order solution it is about
0<mr, <10.

Figure 3 shows comparisons between the numerical solution and the perturbative solutions when r >
7. The skewness value is fixed as Si(o0) = —0.2. The perturbative solutions are close to the numerical
solution of the constant skewness equation. The solution of 15! order precision coincides when r/n > 60,
and the solution of 4*" order precision is in good agreement when /7 > 25.

Note that the parameters can change with different values of the skewness. The skewness value in
the dissipative range Si(0) can be obtained from spectral theory such as the direct interaction approx-
imation [15] or experimental results [16], but there is no analytical result for the transition between
dissipative range and inertial range. We mention however the work by Tatarskii, who suggested an ad hoc
interpolation formula between the value of the longitudinal velocity derivative skewness and the skewness
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Figure 3. Comparisons between the numerical solution and the perturbative solutions when r > n. In each figure, the
perturbative solutions have 15 to 4*" order precisions, from left to right respectively. (a) Structure functions. (b) Scaling
exponents. The horizontal line is the constant value 2/3.

in the inertial range [9].

3.2. Comparison with Batchelor’s formula

When 7, is small, Batchelor’s formula (8) can be expanded using Taylor series:
_ 4 10 80
D, =2C 4/37“727 — gC 4/37“$ + ?C 16/37‘2 — gCQQ/Srg + .. (38)

Comparing Eq. (38) with (18), the 2 terms yields 20~%/3 = 1/15, i.e. C = 30%3/* ~ 13. C' is therefore
not a free constant. This formula with constant value C' = 13 has been applied widely in many studies
e.g. [11,12]. Indeed this constant value satisfies well the behavior of D, in the dissipation range. Here
we will focus on the performance of Batchelor’s formula to estimate the scaling exponent n.
Comparing Eq. (38) with the analytical solution of scaling exponent (20), and ignoring the high-order
terms, we can obtain:
6C2 —8r2  48V/15 + 45 (0)r}

= , 39
3C2 = 2ry 2415 + S5, (0)r2 (39)
and the constant value C' can be solved to yield:
V15
C=4—-5——= (40)

Sk(0)

So the correction to the scaling exponent, given by (20) is a function of the velocity derivative skewness,
whereas the first order correction given by Batchelor’s formula is a function of C. Taking the correct
value C' = 13 corresponds to a velocity derivative skewness Si(0) & —0.38. This is actually rather close
to the value obtained in experiments, even though experimental scatter is large [17]. To illustrate, if we
use Si(0) = —0.45, and from Eq. (40) we obtain C =~ 11.7.
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Figure 4. Comparisons between Batchelor’s formula and: (a) numerical solutions of constant skewness. (b) analytical
solutions of constant skewness. The horizontal line is constant 2/3.

In Fig. 4, Batchelor’s interpolation formula (8) is compared with the numerical and analytical solutions
of constant skewness. In the dissipative range we fix S = —0.45 and in the inertial range Sy = —0.2. Both
results of C' = 13 and C' = 11.7 are shown, and C' = 11.7 is in better agreement with the S = —0.45
solution in the dissipative range (see the enlarged subfigure). From Fig. 4 (a), we can conclude that
Batchelor’s formula denotes a transition between the solutions of different values of the skewness. The
formula with C = 11.7 is in good agreement with the S = —0.45 solution in the dissipative range, and
also in agreement with the Sy = —0.2 solution in the range r/n > 30, i.e. the inertial range. Also our
analytical expression are in good agreement with the constant skewness assumption in these two ranges
respectively, as shown in Fig. 4 (b).

The comparison of the structure functions given by Batchelor’s formula and the analytical expressions
of constant skewness are shown in Fig. 5. There is a small difference at the small scales, since we changed
the value of C' and the relation D, ~ 7"727 /15 is no longer satisfied. It means that Batchelor’s formula does
not agree simultaneously with the analytical expression obtained for Dy (r) using the constant skewness
assumption and with the corrections to the scaling exponent given by the same approach, unless Si(0) =
0.38. We admit however that the difference is small, and that Batchelor’s formula does a surprisingly
good job. If an explicit expression for the scaling exponent is needed our expression (40) can supply this
as a function of S;(0).

In Fig. 6 it is observed how Batchelor’s formula performs in the beginning of the inertial range.
For small values of r/n the scaling exponent is close to the prediction given by the assumption that
S = —0.2. For larger values it approaches the solution for Sy = —0.45. So Batchelor’s formula for the
scaling exponent corresponds to the case in which the skewness transitions between two values around
r/n =~ 100.
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Figure 5. Comparisons of the structure functions, between Batchelor’s formula the numerical solutions of constant skewness.

——=a—— 4th order perturbative solution of Sk=-0.45
——8—— 4th order perturbative solution of Sk=-0.2
0.74 - Batchelor's formula of C=11.5

0.66 1 L il

100 200 300 400 500

Figure 6. Comparisons between Batchelor’s formula the analytical solutions of constant skewness, in inertial range. The
horizontal line is the constant value 2/3.

4. Modifications to take into account anomalous scaling

As stated in the introduction, intermittency corrections to the scaling of Dy;(r) might exist. We do not
want to argue in favour or against these corrections, which is an issue beyond the scope of the present
paper. We will just outline how the above results change if Dy (r) scales as

Du(T‘) ~ 762 (41)
with (o # 2/3. If we replace the assumption Sk(r) = Dm/Dlg’/2 = constant by the assumption
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Sk*(r) = Dlll/Dlll/C(Q) = constant, (42)

the proposed perturbation method can now equally well be applied to equation (6), changing only the
numerical values.

5. Conclusion

In the present work the approach of Obukhov assuming a constant skewness was used to obtain analyt-
ical corrections to the scaling of the second order structure function, starting from Kolmogorov’s 4/5 law.
These corrections can be used in model applications in which explicit expressions, rather than numerical
solutions are needed.

In the far dissipation range and in the inertial range, these expressions should give a relatively adequate
representation of the structure function and the scaling exponent. The comparison with an interpolation
formula proposed by Batchelor, showed that the latter gives surprisingly precise results. It is shown that
Batchelor’s formula in the dissipation range coincides to first order, with the assumption of a constant
skewness, with the particular value Si(0) = 0.38. In the beginning of the inertial range, the scaling
exponent, does not coincide with the assumption of a constant skewness.

The modification of the same method to obtain analytical corrections to the scaling law, taking into
account the possible corrections induced by intermittency, was also proposed.
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