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The stability of a pressure driven flow in an electrically conducting fluid heated from below and
subjected to a spanwise constant magnetic field is investigated through a linear stability analysis.
The numerical calculations show that such a magnetic field only affects the longitudinal stationary
modes �L�, which are stabilized, and has no effect on the transverse traveling modes �T�. A direct
consequence is the expansion of the domain where the transverse traveling �T� modes prevail. This
expansion is controlled by the strength of the spanwise magnetic field, expressed through the
Hartmann number �Ha, ratio of magnetic to viscous dissipation forces�. Moreover, when Ha exceeds
a limiting value depending on the Prandtl number, the �T� modes become the only dominant modes
in the whole Re range. Particular attention was dedicated to the oblique modes �O� corresponding
to fully three-dimensional disturbances in order to verify that they never become the dominant
modes when the magnetic field is applied, similarly to what was found without magnetic field. From
a practical point of view, these results could be of a great interest since it is known that the
optimization of several processes involving the Poiseuille–Rayleigh–Bénard flow is achieved when
the traveling �T� modes prevail. © 2010 American Institute of Physics. �doi:10.1063/1.3327287�

I. INTRODUCTION

Among the thermoconvective flows, the Poiseuille–
Rayleigh–Bénard �PRB� configuration is a particularly inter-
esting system from both fundamental and practical points of
view. Such flow is involved in many industrial and earth-
science problems. A crucial aspect of the PRB flow is its
transition toward instability. The investigation of the instabil-
ity problem appears to be significantly important because the
instabilities of the PRB flows directly affect various techno-
logical and engineering problems such as chemical vapor
deposition �CVD�1,2 and the cooling of electronic devices.3–6

Generally, in these processes, the traveling transverse modes
�T� are preferred to the stationary longitudinal modes �L�. In
CVD applications, the �L� modes are responsible for the for-
mation of undesirable striations parallel to the channel
axis.7–10 Furthermore, the stationary character of the �L�
modes does not allow the optimization of the heat transfer
during the cooling of electronic equipments. For the im-
provement of mass and heat transfer in such processes, it is
then necessary to find out a way to control these instabilities
and promote the transverse traveling �T� modes in the range
of the operating parameters.

To our knowledge, in the framework of magnetohydro-
dynamics, only Fakhfakh et al.11 have considered the effects
of a magnetic field on the instabilities occurring in the PRB
system. For Pr=0.001, it has been shown that a vertical mag-
netic field stabilizes both �T� and �L� modes. The authors11

also showed that the critical Reynolds number for the
dominantly growing �T� modes increases with increasing
Hartmann number and is an order of magnitude higher than

the operating Reynolds number for CVD12,13 and the cooling
of electronic devices.14,15 This results in a narrower range of
Reynolds numbers where the �T� modes dominate. As an
example, Fakhfakh et al.11 showed that the traveling �T�
modes prevail from Re=5490 to Re=5772, i.e., in a Re
range �Re=282, for Ha=0 �case without magnetic field� and
from Re=43962 to Re=43975, i.e., in a Re range �Re=13,
for Ha=2.5. These results clearly indicate that the vertical
magnetic field is not the appropriate solution to make the �T�
modes dominate, especially for experimental and industrial
situations generally characterized by moderate values of the
Reynolds number.

Kaddeche et al.16 showed that a magnetic field, either
parallel or perpendicular to the basic flow, allows a selective
stabilization of the transverse and the longitudinal modes
occurring in the Hadley flow �flow induced by a horizontal
temperature gradient�. For these particular horizontal orien-
tations, their results highlight that the magnetic field has no
effect on the instabilities when its direction is parallel to the
marginal cell axis and has an optimal stabilizing effect when
its direction is perpendicular to the marginal cell axis. Thus,
the use of a spanwise magnetic field �which would only sta-
bilize the �L� modes� could be a way to promote the traveling
�T� modes in the PRB system. This is what we want to study
in this paper. We will investigate the effect of a constant
spanwise magnetic field on both �T� and �L� modes which
appear in a PRB flow in an infinite layer of an electrically
conducting fluid. A detailed description of the domains
where such �T� or �L� modes are dominant will be given. The
case of oblique modes �corresponding to fully three-
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dimensional disturbances� will be considered in order to
check that they are never dominant. Finally, an energy analy-
sis will be performed to get a deeper physical understanding
of the instability mechanisms.

II. PROBLEM FORMULATION

A. Governing equations and basic flow

We consider an extended fluid layer of height H confined
between two horizontal rigid plates. A constant pressure gra-
dient acting in the x direction drives a plane Poiseuille flow
between the plates. This flow is heated from below by im-

posing a positive temperature difference �T̄ between the up-

per plate maintained at the temperature T̄u and the lower

plate maintained at T̄l. The fluid is assumed to be Newtonian
with constant kinematic viscosity � and thermal diffusivity �.
According to the Boussinesq approximation, the fluid density
is considered as constant, except in the buoyancy term where

it depends linearly on temperature, �=�m�1−��T̄− T̄m��,
where � is the thermal expansion coefficient, T̄m is the mean

temperature, T̄m= �T̄u+ T̄l� /2, and �m is the value of the den-

sity at T̄m. The fluid is electrically conducting with a constant
electric conductivity �e and subject to an external constant
magnetic field, B� =BeB�. Moreau17 showed that in most labo-
ratory experiments using molten metals, the induced mag-
netic field is negligible so that the applied magnetic field can
be considered as the effective magnetic field. Considering

H /2, Umax, H /2Umax, �mUmax
2 , �T̄, and BUmaxH /2 �Umax is

the velocity at midheight in the channel� as scale quantities
for length, velocity, time, pressure, temperature, and electric
potential, respectively, the dimensionless governing equa-
tions can be written as

�� · V� = 0, �1�

�V�

�t
+ �V� · �� �V� = − �� P +

1

Re
�2V� +

Ra

8Re2Pr
Tez� +

Ha2

Re
J�

� eB� , �2�

�T

�t
+ �V� · �� �T =

1

RePr
�2T , �3�

�� · J� = 0, �4�

where the dimensionless variables are the velocity vector
V� = �U ,V ,W�, the pressure P, the temperature T �defined as

T= �T̄− T̄u� /�T̄�, and the induced electric current density J�.
The nondimensional parameters arising from the scaling of
the equations are the Reynolds number Re �Re=HUmax /2��,
the Rayleigh number Ra �Ra=g��T̄H3 /���, the Prandtl
number Pr �Pr=� /��, and the Hartmann number Ha
�Ha=B�H /2���e /�m��. The dimensionless electric current
density J� appearing in the Lorentz force �Ha2 /Re�J� �eB� in
Eq. �2� is given by Ohm’s law for a moving fluid,

J� = − �� � + V� � eB� , �5�

where � is the dimensionless electric potential. Combining
the continuity equation for J� �Eq. �4�� and Ohm’s law �Eq.
�5��, we obtain the dimensionless equation governing the
electric potential �,

�2� = eB� . ��� � V� � . �6�

The nondimensional basic steady state in the extended
layer can easily be obtained without magnetic field. It corre-
sponds to a parabolic z profile for the x component of the
velocity vector �throughflow V0

��z�=U0�z�ex�� and to a linear z
profile for the temperature. For z between 	1 and 1, this
basic state can be expressed as

U0�z� = 1 − z2, �7�

T0�z� = 0.5�1 − z� . �8�

If we now consider the spanwise magnetic field �eB�=ey��, it
can be shown that due to the current conservation in the z
direction, the potential induced current −�� �=−�d�0 /dz�ez�
will balance the directly induced current V� �eB�=U0ez� so that
the Lorentz force has no effect on the flow and the basic
steady state is unchanged. �Note that for a vertical magnetic
field, in contrast, there is a braking effect of the magnetic
field on the flow.11�

B. Numerical approach

We analyze the linear stability of the basic state �7� and
�8� with respect to infinitesimal disturbances. The general
solution of the problem is written as

�V� ,P,T,�� = �V0
�,P0,T0,�0� + �v� ,p,
,�� , �9�

where �v� , p ,
 ,�� are the velocity, pressure, temperature, and
electric potential perturbations, respectively. After substitu-
tion of Eq. �9� into the governing equations. �1�–�6�
and linearization with respect to the small perturbations, we
obtain

�� · v� = 0, �10�

�v�
�t

+ �V0
� · �� �v� + �v� · �� �V0

�

= − �� p +
1

Re
�2v� +

Ra

8Re2Pr

ez� +

Ha2

Re
j� � eB� , �11�

j� = − �� � + v� � eB� , �12�

�


�t
+ V0
� · �� 
 + v� · �� T0 =

1

RePr
�2
 , �13�

�2� = eB� · ��� � v�� , �14�

where V� 0= �U0 ,0 ,0�. In an extended layer, the disturbances
can be expressed as normal modes in both x and y directions,
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�v� ,p,
,�� = �v� ,p,
,���z�ei�kxx+kyy�+�t, �15�

where kx and ky are real wavenumbers in the longitudinal, x,
and transverse, y, directions, respectively, and �=�r+ i�i is
a complex eigenvalue. The real part �r represents an ampli-
fication rate and the imaginary part �i an oscillation
frequency. The linearized equations �10�–�14� can be rewrit-
ten as

ikxu + ikyv + Dw = 0, �16�

�D2 − �kx
2 + ky

2�
Re

− ikxU0�z��u − DU0�z�w − ikxp

+
Ha2

Re
�− u + D�� = �u , �17�

�D2 − �kx
2 + ky

2�
Re

− ikxU0�z��v − ikyp = �v , �18�

�D2 − �kx
2 + ky

2�
Re

− ikxU0�z��w − Dp

+
Ra

8Re2Pr

 +

Ha2

Re
�− w − ikx�� = �w , �19�

�D2 − �kx
2 + ky

2�
RePr

− ikxU0�z��
 − DT0�z�w = �
 , �20�

�D2 − �kx
2 + ky

2��� = u − ikxw , �21�

where D=d /dz. A generalized eigenvalue problem is ob-
tained: LX=�MX, where X= �v��z� , p�z� ,
�z� ,��z��, L is a
linear operator depending on Pr, Re, Ra, Ha, kx, and ky, and
M is a constant linear operator. This eigenvalue problem is
discretized with the spectral Tau Chebyshev method and
solved by the QZ algorithm of the NAG library.16 From the
thresholds Ra0�Pr,Re,Ha,kx ,ky� for which an eigenvalue has
a real part equal to zero, whereas all the other eigenvalues
have negative real parts, the critical Rayleigh number Rac

is obtained by minimization with respect to kx and ky:
Rac=inf�kx,ky��R2Ra0�Pr,Re,Ha,kx ,ky�.

Our model is developed in the case of an infinite fluid
domain. A question is raised about its validity for transver-
sally confined situations. According to Burr and Müller,18 if
the fluid is confined in the transverse direction by vertical
walls perpendicular to the magnetic field, there will be
damping effects. More precisely, the damping will depend on
the electrical conductivity of these walls; Burr and Müller18

showed that for electrically insulated walls, the damping is
less effective and decreases as the distance between the two
walls increases, whereas for electrically well conducting

walls, the damping is stronger and independent of the dis-
tance between the two walls. Our model is then strictly valid
as the limit �for large widths� of transversally confined situ-
ations only for electrically insulating lateral walls.

C. Energy balance

Important information concerning the physical mecha-
nisms involved in the development of the instabilities can be
obtained from the calculation of the kinetic energy budget at
critical parameter values. For that, the linearized Navier–
Stokes equation �11� is multiplied by v��, the complex conju-
gate of v� , integrated along z, and then reduced to its real
part. The resulting equation of energy budget expresses the
rate of change of the fluctuating kinetic energy K defined as
K=�−1

1 �v� ·v�� /2�dz,

Re	

−1

1 �v�
�t

· v��dz� =
�K

�t
= 2�rK = Ks + Kd + Kb + Km,

�22�

with

Ks = − Re	

−1

1

w
�U0

�z
u�dz� , �23�

Kd = Re	 1

Re



−1

1

�2v� · v��dz� , �24�

Kb = Re	 Ra

8Re2Pr



−1

1


w�dz� , �25�

Km = Re�Ha2

Re



−1

1

�j� � eB�� · v��dz� . �26�

Ks represents the production of fluctuating kinetic energy by
shear of the basic flow, Kd represents the viscous dissipation
of fluctuating kinetic energy, Kb represents the production of
fluctuating kinetic energy by buoyancy, and Km represents
the dissipation of fluctuating kinetic energy by the magnetic
forces. In these expressions, Re and the superscript � denote
the real part and the complex conjugate, respectively.

At threshold, the eigenvector used to calculate the en-
ergy budget is critical, i.e., associated with an eigenvalue of
zero real part. This implies that �K /�t is equal to zero. More-
over, since the eigenvectors are defined to within a multipli-
cative constant, this will also affect the different energy con-
tributions. As a consequence, it is better to normalize the
energy budget �22�, and we use for that −Kd= �Kd�, which is
always positive. A new equation involving the normalized
energy terms Es, Eb, and Em is thus obtained,

Es + Eb + Em = 1. �27�

The magnetic term Em can also be split into two contribu-
tions, Em,B connected to the magnetic force �v� �eB���eB�
due to the directly induced current and Em,� connected to
the magnetic force −�� ��eB� resulting from the electric
potential.
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III. LINEAR STABILITY RESULTS

We first consider the neutral stability curves correspond-
ing to the modes which are dominant in the PRB flow with-
out magnetic field, i.e., the oscillatory transverse �T� modes
and the stationary longitudinal �L� modes. The neutral
curves giving Ra0 as a function of kx for the �T� modes for
different values of the Prandtl and Hartmann numbers and at
Re=2000 are plotted in Fig. 1. We see that the spanwise
magnetic field has no effect on the neutral curves for the �T�
modes, as for each Prandtl number value these neutral curves
do not change with an increase in Ha and remain identical to
those obtained without magnetic field at Ha=0. In contrast,
the Prandtl number Pr has a clear effect on these neutral
curves. When Pr is increased, the curves are moved to larger
Ra values, and their aspect is modified with the creation of
new local minimums. For small Pr values, only one mini-
mum is observed for a wavenumber kx close to 1; for larger
Pr values �Pr
0.004�, another local minimum appears at
larger wavenumbers; and finally for Pr�0.1 a third local
minimum occurs at smaller wavenumbers. The existence of
such multiple local minimums, which indicate the presence
of different types of transverse unstable modes �T�, was al-
ready mentioned by Fujimura and Kelly19 in their study
without magnetic field. These different transverse modes will
be labeled as �T1�, �T2�, and �T3�, following their order of
appearance when Pr is increased. Note that at Re=2000 and
in the range of Pr studied, the �T3� mode never becomes the
dominant mode, whereas the �T2� mode becomes dominant
when Pr exceeds a value that is between 0.05 and 0.1.

The neutral curves giving Ra0 as a function of ky for the
�L� modes for different values of the Prandtl, Reynolds, and
Hartmann numbers are plotted in Fig. 2. We see that these
neutral curves are independent of the Prandtl and Reynolds
numbers but very sensitive to the action of the spanwise
magnetic field. When Ha is increased, the curves �with a
single minimum which moves to smaller wavenumbers� are
strongly moved to large values of Ra. This indicates a strong
stabilization of these stationary longitudinal �L� modes by
the spanwise magnetic field, with an increase in the marginal

cell size. Scaling laws can be derived for these variations
in Rac and ky,c in the large Ha range. It is thus found that
Rac
Ha2 and ky,c
Ha−0.5. The scaling law in Ha2 for Rac is
similar to that found by Chandrasekhar20 in the study of the
pure Rayleigh–Bénard situation in the presence of a vertical
magnetic field. The scaling laws for the critical wavenum-
bers, however, are different: a decrease is obtained in our
case with a spanwise magnetic field, whereas an increase
�ky,c
Ha1/3� is obtained by Chandrasekhar for a vertical
magnetic field.

The selective effect of the spanwise magnetic field on
the transverse �T� modes and longitudinal �L� modes can also
be stated by simple analytical derivations. If we take the curl
of the linearized Navier–Stokes equation �11�, the magnetic
force term is changed to

Ha2

Re
�� � �j� � eB�� . �28�

Taking into account current conservation and the fact that the
magnetic field is constant, we can write

�� � �j� � eB�� = j���� · eB�� − �j� · �� �eB� − eB���� · j�� + �eB� · �� �j�

= �eB� · �� �j�. �29�

With �� = ikxex�+ ikyey�+ez�D and eB�=ey� �spanwise magnetic
field�, we finally obtain

�� � �j� � eB�� = ikyj�. �30�

Applying Eq. �30� to the �T� modes �kx�0 and ky =0�, we
obtain

�� � �j� � eB�� = 0� �31�

so that j��eB�, which can be expressed as a gradient and
introduced in a modified pressure, has no effect on these
modes. In contrast, for the �L� modes �kx=0 and ky �0�, we
obtain

FIG. 1. Neutral stability curves �Ra0 vs kx� for the transverse �T� modes in
the PRB flow for different values of the Prandtl number Pr at Re=2000.
These curves have been found not to depend on the Hartmann number.

FIG. 2. Neutral stability curves �Ra0 vs ky� for the longitudinal �L� modes in
the PRB flow for different values of the Hartmann number Ha. These curves
have been found not to depend on the Prandtl and Reynolds numbers.
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�� � �j� � eB�� � 0� , �32�

indicating that the magnetic force is active in this case. This
approach confirms that the spanwise magnetic field has a
stabilizing effect on the longitudinal �L� modes but no effect
on the transverse �T� modes.

In the following, we will see how this selective effect of
the spanwise magnetic field will affect the dominant critical
modes. Three values of the Prandtl number will be succes-
sively chosen.

A. Critical curves for Pr=0.001

The critical curves for Pr=0.001 are given in Fig. 3
through the plots of the critical Rayleigh number Rac as a
function of the Reynolds number Re for different values of
the Hartmann number Ha. Our investigations for Pr=0.001
have shown that the neutral stability curves for the �T�
modes present a single minimum in the range of Re studied.
Only one type of transverse instabilities, namely, the �T1�
modes, will affect the fluid layer. As shown in Sec. III, the
transverse modes are not affected by the magnetic field.
The critical values of Ra for the �T1� instability then remain
independent of Ha but will depend on Re. As shown in
Fig. 3, Rac increases with Re, reaches a maximum of
Rac,max=9432.64 at Remax=2320.27, and then decreases
when Re is further increased, until Rac=0 which is reached
for Re0=5772.22. This value Re0 is the critical Reynolds
number for an isothermal plane Poiseuille flow �onset of
Tollmien–Schlichting waves�.

Concerning the �L� modes, they are not affected by the
Poiseuille flow, and the critical curves are then horizontal
lines in the �Re,Ra� plane. They are, however, stabilized by
the action of the spanwise magnetic field so that these hori-
zontal lines will move up when Ha will be increased �Fig. 3�.

We can now compare the critical thresholds of the �T1�
and �L� modes in order to see how the dominant modes
change when Ha is increased. Note first that without mag-
netic field �the case Ha=0�, the critical curves corresponding
to the �T1� and �L� modes in the �Re,Ra� plane intersect at a

single crossing point denoted by �Re� ,Ra��. For Pr=0.001,
we have found that this point corresponds to Re�=5490.55
and Ra�=1707.76, as already mentioned by Fujimura and
Kelly19 and Fakhfakh et al.11 In contrast, in the presence of a
spanwise magnetic field �at the condition that the Hartmann
number remains smaller than a limit value Halim�, the �T1�
and �L� critical curves will intersect at two different points.
These points are denoted by �ReL ,RaL� and �ReR ,RaR� with
ReL�ReR. According to Fig. 3, it is clear that ReL�Remax

�ReR and that RaL=RaR=Rac�Ha�, where Rac�Ha� is the
critical Rayleigh number for the �L� modes, which only de-
pends on Ha.

Figure 3 clearly shows the domains �Re ranges� where
each mode is dominant. Without magnetic field, the �L�
modes are dominant in a large range of Re values, 0�Re
�Re�=5490.55, whereas the �T1� modes are dominant only
very locally, close to Re0, Re�=5490.55�Re�Re0

=5772.22. Because of the selective effect of the spanwise
magnetic field, which only stabilizes the �L� modes, the Re
range where these �L� modes are dominant will progressively
shrink as Ha is increased, which will automatically induce an
increase in the domain where the �T1� modes are dominant.
As shown in Fig. 3, for a given value of Ha�Halim, the �L�
modes are now dominant only in the range of ReL�Re
�ReR, whereas the �T1� modes are dominant for 0�Re
�ReL and ReR�Re�Re0. Moreover, when Ha is increased
up to Halim, the increase in Rac will induce both the increase
in ReL and the decrease in ReR. For example, for Ha=5,
Rac=2185.22, ReL=61.982, and ReR=5404.42, and for
Ha=10, Rac=3462.19, ReL=164.243, and ReR=5155.12 �see
Table I�. The extent of the domain where the �L� modes are
dominant, which is measured by �Re=ReR−ReL, will then
decrease from 5342.44 to 4990.88 when Ha is increased
from five to ten. The decrease in �Re with the increase in
Ha is shown in details in Table I. When Ha tends toward
Halim=22.881, the crossing points �ReL ,RaL� and �ReR ,RaR�
get closer until they merge at Halim, which corresponds to
�Re=0. Beyond Halim, the �L� modes are no more dominant,

FIG. 3. Variation in the critical Rayleigh number Rac as a function of Re for
the transverse �T1� modes and the longitudinal �L� modes in the PRB flow
for Pr=0.001 and different values of the Hartmann number Ha. Only the
thresholds for the �L� modes depend on Ha.

TABLE I. Variation with Ha of the domain where the �L� modes are domi-
nant for Pr=0.001. For each value of Ha are given the Re extent of this
domain �left border ReL, right border ReR, and extent �Re� and the critical
Rayleigh number Rac.

Ha Rac ReL ReR �Re

1 1727.66 11.706 5486.81 5475.10

2 1786.91 23.551 5476.33 5452.78

5 2185.22 61.982 5404.42 5342.44

8 2870.39 113.593 5274.52 5160.93

10 3462.19 164.243 5155.12 4990.88

12 4151.04 233.674 5006.22 4772.55

15 5354.59 387.240 4713.33 4326.09

18 6753.37 643.082 4295.14 3652.05

20 7791.43 929.888 3888.66 2958.77

21 8341.70 1147.24 3609.05 2461.81

22 8912.68 1477.32 3216.36 1739.04

22.881 9432.64 2320.27 2320.27 0
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and only the �T1� modes will be responsible for the destabi-
lization of the PRB flow from Re=0 to Re=Re0=5772.22.

The results obtained for Pr=0.001 show that by applying
a spanwise magnetic field and adjusting the value of Ha, it is
possible to select the type of instability which will be first
triggered in the PRB flow. In particular, a possibility is given
to get rid of the �L� modes, and in applications where Re
remains small, this can be obtained for relatively small mag-
netic field intensities.

B. Critical curves for Pr=0.01

The value Pr=0.01 corresponds to liquid sodium used as
a coolant in fast breeder fission reactors.21,22 We can first
note that for this value of Pr, as shown in Fig. 1, the neutral
stability curves for the transverse modes have two local
minimums instead of a single one for Pr=0.001. The �T2�
mode corresponding to the second minimum, however, never
becomes the most critical mode for the transverse instabili-
ties. Such a feature is illustrated in Fig. 4 where the critical
curves for Pr=0.01 are plotted for the longitudinal �L�
modes as well as for both �T1� and �T2� transverse modes. As
a consequence, the �T2� modes will not affect the competi-
tion between the transverse and longitudinal modes, which
will be similar to what was observed for Pr=0.001. For
Ha�Halim, the �T1� modes will be dominant in the Re
ranges, 0�Re�ReL and ReR�Re�Re0, while the �L�
modes will prevail for ReL�Re�ReR �Fig. 4�. Moreover,
for Ha
Halim, only the �T1� modes are involved in the de-
stabilization of the PRB flow. The characteristic values ReL

and ReR �functions of Ha� as well as Halim, however, have
changed compared to the case at Pr=0.001. This is due to the
stronger increase with Re of the critical curve for the �T1�
modes, with a peak value at Rac,max=94 051.2 compared to
Rac,max=9432.64 for Pr=0.001. Stronger values of Ha are
then necessary to decrease the Re range where the �L� modes
are dominant �Table II�, and the value of Halim has increased
to 89.471 compared to 22.881 for Pr=0.001.

C. Critical curves for Pr=0.1

For Pr=0.1, the neutral stability curves for the transverse
modes still have two local minimums �corresponding to the
�T1� and �T2� modes� as for Pr=0.01. This time, however, the
�T2� mode may become the dominant transverse mode, as
shown in Fig. 1 for Re=2000. Our calculations for Pr=0.1
have shown that this is the case for Re values in the range of
Rel=320.612�Re�Reh=2606.40, which correspond to Rac

varying between Ral=35 388.0 and Rah=590 020. This is
depicted in Fig. 5 where the critical curves for the �L�, �T1�,
and �T2� modes are plotted for Pr=0.1.

As in the previous cases, the stabilization of the �L�
mode by the spanwise magnetic field will change the order
of appearance of the different modes as Ha is increased. For
Pr=0.1, however, the situation is still different because of the
two transverse modes involved and the very strong increase
with Re of the thresholds for these transverse modes �the
peak value for the �T1� mode is now at Rac=650 065�. Four
intervals of Ha can be distinguished �Fig. 5�. Two of the limit
values are Hal and Hah, which are defined by Rac�Hal�=Ral

FIG. 4. Variation in the critical Rayleigh number Rac as a function of Re for
the transverse �T1� and �T2� modes and the longitudinal �L� modes in the
PRB flow for Pr=0.01 and different values of the Hartmann number Ha.
Only the thresholds for the �L� modes depend on Ha.

TABLE II. Variation with Ha of the domain where the �L� modes are domi-
nant for Pr=0.01. For each value of Ha are given the Re extent of this
domain �left border ReL, right border ReR, and extent �Re� and the critical
Rayleigh number Rac.

Ha Rac ReL ReR �Re

1 1727.66 11.795 5751.67 5739.88

10 3462.19 157.833 5731.08 5573.25

20 7791.43 467.889 5678.75 5210.86

30 14 218.6 764.384 5598.37 4833.98

40 22 676.8 1040.27 5487.10 4446.82

50 33 149.7 1318.58 5339.04 4020.46

60 45 630.2 1618.46 5143.57 3525.11

70 60 113.6 1965.93 4879.39 2913.46

80 76 597.5 2420.34 4490.51 2070.17

85 85 588.8 2750.57 4187.30 1436.73

89.471 94 051.2 3479.40 3479.40 0

FIG. 5. Variation in the critical Rayleigh number Rac as a function of Re for
the transverse �T1� and �T2� modes and the longitudinal �L� modes in the
PRB flow for Pr=0.1 and different values of the Hartmann number Ha. Only
the thresholds for the �L� modes depend on Ha.

034103-6 Fakhfakh et al. Phys. Fluids 22, 034103 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



and Rac�Hah�=Rah, respectively. For Ha�Hal=51.918 the
most unstable modes are the �T1� modes or the �L� modes,
and the domains of Re where they are dominant are defined
as previously from the values of ReL and ReR. For
Hal�Ha�Hah=235.663, the �T2� mode will also be in-
volved. In this case, we have to define the crossing point
�ReI ,RaI� between the stability curves for the �T2� and �L�
modes, which is such that ReL�ReI�ReR �see the case
Ha=100 in Fig. 5�. As a consequence, the �L� modes become
the dominant mode only for ReI�Re�ReR �Table III�,
whereas the transverse modes prevail outside this Re range,
the �T1� modes for 0�Re�Rel and ReR�Re�Re0 and the
�T2� modes for Rel�Re�ReI. Note that the extent of the
domain where the �T2� modes prevail, i.e., ReI−Rel, in-
creases with Ha due to the increase in ReI. For Hah�Ha
�Halim=247.757, the situation is still a little changed be-
cause the extent of the domain where the �T2� modes are
dominant becomes maximum �equal to Reh−Rel=2285.85�
and independent of Ha. Furthermore, the domain where the
�L� modes are the most critical still shrinks and corresponds
to ReL�Re�ReR, whereas the domain corresponding to the
�T1� modes is further increased by the addition of a new
narrow Re range, Reh�Re�ReL. Finally when Ha
Halim,
the PRB flow is only affected by the transverse modes: the
�T1� modes for 0�Re�Rel and Reh�Re�Re0 and the �T2�
modes for Rel�Re�Reh. Note that the variation with Ha of
the Re domain where the �L� modes prevail is also shown in
Table III.

For Pr=0.1, the spanwise magnetic field has still been
found to favor the onset of transverse instabilities in the PRB
flow. As shown in the introduction, this is an important point
for practical applications as CVD and electronic device cool-
ing. It has also been shown that the transverse �T2� modes,
which have higher critical wavenumbers and wave speeds
than the �T1� modes, are the preferred modes in some param-
eter range. Further numerical simulations performed for
larger Prandtl numbers �Pr
0.2� have shown that the domi-
nant unstable modes are globally similar to those corre-

sponding to the case Pr=0.1. As illustrated in Fig. 1 for
Pr=0.2, the neutral stability curves for the transverse modes
have now three local minimums corresponding to the three
transverse modes �T1�, �T2�, and �T3� which can develop
in a PRB flow. The �T3� mode, however, never becomes the
dominant mode for moderate Pr so that the competition
between the modes will only concern the longitudinal �L�
mode and the transverse �T1� and �T2� modes, as for
Pr=0.1. Note that the main modification will be the exten-
sion of the domain where the �T2� modes are dominant.

D. Fully three-dimensional disturbances

The previous results have clearly shown that the span-
wise magnetic field has a selective stabilizing effect by de-
laying the appearance of the longitudinal unstable �L� modes,
whereas the thresholds for the transverse �T� modes remain
unchanged in comparison with the case of Ha=0. A question
remains about the stabilization of the oblique �O� modes
which correspond to fully three-dimensional disturbances
�kx�0 and ky �0�.

In the usual PRB flow �without magnetic field�, as
shown by Gage and Reid23 and later used by Jung et al.24 and
Hu et al.,25 there is a Squire transformation which allows one
to deduce the critical curves for the oblique �O� modes from
the curves obtained for the transverse �T� modes. This Squire
transformation can be expressed as RaO=Ra, kxReO=kRe,
and k2=kx

2+ky
2, where Ra and Re are associated with the

transverse modes �with a wave vector k along x� and RaO and
ReO are associated with the oblique modes �for arbitrary ori-
entations of the wave vector determining arbitrary values of
kx and ky�. The critical curves obtained by the Squire trans-
formation for different oblique modes �kx=0.1, kx=0.5, and
ky =0.5� are plotted in Fig. 6 together with the critical curves
for the �L� and �T1� modes. �These curves have been verified
to exactly fit those obtained numerically.� We clearly see that
without magnetic field, the oblique modes are never the
dominant modes. It is difficult, however, to guess whether
these modes will become dominant when a spanwise mag-
netic field is applied. Moreover, there is no Squire transfor-
mation valid in the case with magnetic field.

Numerical calculations have then been performed to de-

TABLE III. Variation with Ha of the domain where the �L� modes are
dominant for Pr=0.1. For each value of Ha are given the Re extent of this
domain �left border ReL, right border ReR, and extent �Re� and the critical
Rayleigh number Rac.

Ha Rac ReL ReR �Re

20 7791.43 149.333 5758.48 5609.15

40 22 676.9 257.165 5732.42 5475.26

51.918 35 388.0 320.612 5709.94 5389.33

60 45 630.5 386.294a 5691.60 5305.31

100 115 559 771.243a 5561.76 4790.52

150 247 842 1365.67a 5288.34 3922.66

200 429 857 2062.87a 4815.69 2752.82

230 562 900 2517.44a 4305.45 1788.01

235.663 590 020 2606.40 4155.69 1549.29

240 611 218 2767.27 4011.46 1244.19

245 636 121 3026.85 3770.94 744.088

247.757 650 065 3400.30 3400.30 0

aReI �which is the true left border in this case� is given in place of ReL.

FIG. 6. Critical Rayleigh number Rac as a function of the Reynolds number
Re for the PRB flow without magnetic field �Ha=0�: longitudinal �L� mode
�kx=0�, transverse �T1� mode �ky =0�, and oblique �O� modes obtained
by the Squire transformation for fixed values of kx �kx=0.1 and 0.5� or ky

�ky =0.5�. The results are obtained for Pr=0.001.
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termine the critical thresholds for the oblique �O� modes. For
that, we solve the generalized eigenvalue system �16�–�21�
for kx fixed with a minimization with respect to ky or for ky

fixed with a minimization with respect to kx. We first present
some results obtained for Pr=0.001 and Ha=5 in Fig. 7. In
this figure, the critical curves for the �L� and �T1� modes are
plotted together with those for the oblique modes at kx=0.5
and at ky =0.5 in the neighborhood of the crossing point be-
tween the �T1� and �L� modes �ReL=61.982�. We clearly see
that the critical curves for the oblique modes intersect the
critical curve for the �T1� mode before that for the �L� mode.
This indicates that in this particular case, the two chosen
oblique modes are not the dominant modes. In order to check
this in a more general way, it is interesting to define the
intersection points between the curves for the �O� and �L�
modes �denoted as ReI,1� and between the curves for the �O�
and �T� modes �denoted as ReI,2�. As is clear from Fig. 7,
the oblique modes will not be the dominant modes if
ReI,1�ReL�ReI,2, i.e., ReI,1−ReL�0 and ReI,2−ReL�0. In
fact, it is enough to verify one of these inequalities, and we
have chosen to check the first one for oblique modes with
fixed ky and the second one for oblique modes with fixed kx.

The positions of the ReL, ReI,1, and ReI,2 points have
been determined through numerical calculations for a large
set of oblique modes �0�kx�1 and 0�ky �1� and for
different Hartmann and Prandtl numbers. The results for
Pr=0.001, expressed either as ReI,1−ReL as a function of ky

or as ReI,2−ReL as a function of kx, are given in Fig. 8 for
three values of the Hartmann number �Ha=0.5, 1, and 5�. We
clearly see that for all these cases, the values of ReI,1−ReL

remain negative, whereas those of ReI,2−ReL are positive.
Moreover, the values of �ReI,1−ReL� and ReI,2−ReL are the
smallest for slightly oblique modes �close to transverse or
close to longitudinal� and for small Hartmann numbers, and
they increase with kx, ky, and Ha. Similar curves have also
been obtained for Pr=0.01 and Pr=0.1; the main difference
is that the increase with kx, ky, and Ha is smaller when Pr is
increased. According to these results, it can be stated that the
oblique �O� modes corresponding to fully three-dimensional
disturbances never become the dominant modes. As a conse-

quence, the PRB flow subjected to a spanwise magnetic field
can only be perturbed by transverse �T� or longitudinal �L�
modes. This confirms the relevance of our previous discus-
sion focused on the �T� and �L� modes �Secs. III A–III C�.

IV. ENERGY ANALYSIS

The kinetic energy budget associated with the transverse
�T1� modes at critical values of Ra has been computed for the
case Pr=0.01 for increasing values of Re and different Hart-
mann numbers. Note that the transverse modes correspond to
two-dimensional instabilities which develop in the �x ,z�
plane, with no dependence on the y direction and v=0. The
variation with Re of the different energy terms is shown in
Figs. 9 and 10. We see in Fig. 9 that the magnetic energy
term Em remains zero, independently of Re, which is consis-
tent with the fact that the spanwise magnetic field has no
effect on these transverse instabilities. In fact, we see that
there is a perfect balance between the magnetic energy term
connected to the directly induced current Em,B and the mag-
netic energy term resulting from the electric potential Em,�. It
can be shown as a general result16 that the term Em,B is al-

FIG. 7. Critical Rayleigh number Rac as a function of the Reynolds number
Re for the PRB flow for Ha=5: longitudinal �L� mode �kx=0�, transverse
�T1� mode �ky =0�, and oblique �O� modes obtained for kx=0.5 and for
ky =0.5. This figure illustrates the definition of the Reynolds numbers ReI,1

�intersection between the �0� and �L� modes� and ReI,2 �intersection between
the �O� and �T� modes� and shows that ReI,1�ReL�ReI,2 in this case,
indicating that the oblique modes are not dominant modes. The results are
obtained for Pr=0.001.

FIG. 8. Reynolds number differences ReI,1−ReL and ReI,2−ReL �see defini-
tions in Fig. 7� as a function of ky and kx, respectively, for oblique modes in
the PRB flow with magnetic field. Thin lines correspond to ReI,1−ReL and
heavy lines to ReI,2−ReL. The plots are given for three values of Ha:
Ha=0.5 �solid curves�, Ha=1 �dashed curves�, and Ha=5 �long-and-short-
dashed curves�. Note that the values plotted have been increased by a factor
500 for Ha=0.5 and by a factor 150 for Ha=1. The results are obtained for
Pr=0.001.

FIG. 9. Variation in the magnetic energy term Em and its contributions Em,B

and Em,� as a function of the Reynolds number Re for the �T1� modes in the
PRB flow, for different values of Ha and Pr=0.01.
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ways stabilizing �Em,B�0�, the term Em,� always destabiliz-
ing �Em,�
0�, and the global term Em always stabilizing
�Em�0�. In our case, the destabilizing contribution Em,�

completely equilibrates the stabilizing contribution Em,B to
give Em=0. These two contributions decrease in intensity
when Re is increased, in connection with the changes that
affect the thermally induced instability when the shear flow
is applied. The change in the instability with Re can be
better understood through the variations in the buoyancy Eb

and shear Es energy terms given in Fig. 10. For Re=0,
the instability is thermally induced by buoyancy �Eb=1
and Es=0�. We see that for moderate Reynolds numbers
�0�Re�2450�, the shear term has a stabilizing influence
�Es�0�, which induces an increase in the destabilizing buoy-
ancy term in order to retain the energy balance necessary to
trigger the instability. Beyond Re=2450, however, the shear
energy term becomes positive so that both Es and Eb energy
terms are now destabilizing, the influence of Es �Eb� increas-
ing �decreasing� with increasing Re. Note that the maximum
value of the critical Rayleigh number for these �T1� modes
�Fig. 4 and Table II� is reached for equal Es and Eb contri-
butions �Es=Eb=0.5� at Re=3479.4. With a further increase
in Re, the shear energy term Es becomes dominant, until
Re0 where the instability becomes a pure shear instability
�Es=1 and Eb=0� corresponding to the Tollmien–Schlichting

waves. Note finally that, as expected, the variations with Re
of the Es and Eb energy terms are not affected by the span-
wise magnetic field.

The kinetic energy budget associated with the longitudi-
nal �L� modes at critical values of Ra has also been com-
puted for the case Pr=0.01 for increasing values of Re and
different Hartmann numbers. These longitudinal modes with
kx=0 correspond to instabilities that develop in the �y ,z�
plane, with no dependence on the x direction, but the u ve-
locity, forced by the term −DU0�z�w �see Eq. �17��, is not
zero. A quick look at Eqs. �16�–�21� �considered for kx=0�
shows that v, w, 
, and p are coupled together inside Eqs.
�16� and �18�–�20� �denoted as RB system�, whereas they are
independent of U0, u, and �. In contrast, u and � are coupled
together inside Eqs. �17� and �21� �denoted as S system� and
depend on U0 and w. The critical values of Ra for the �L�
modes are in fact only connected to the RB system, which
does not depend on the basic shear flow and depends on the
magnetic field only through the directly induced current. As
a consequence, it is interesting to write separately the kinetic
energy budget related to the velocity equations in the �y ,z�
plane �equations in the RB system� and the kinetic energy
budget related to the equation along the x direction �equation
in the S system�. Each budget is normalized by its own vis-
cous dissipation term, Kd,�y,z� for the velocity equations in the
�y ,z� plane and Kd,x for the velocity equation in the x direc-
tion. The results for these two kinetic energy budgets are
given in Table IV. Both of these budgets have been found
independent of Re, in contrast with the global budget ex-
pressed by Eq. �27� which would give a Re dependence. In
the �y ,z� plane, because the equations are independent of the
basic shear flow and of the electric potential, the budget will
be reduced to Eb+Em,B=1. There is obviously no depen-
dence with Re in this case, and the stabilizing influence of
the magnetic term Em,B will increase with Ha and induce an
increase in the destabilizing buoyancy energy term Eb to re-
tain the energy balance. In the x direction, in contrast, the
budget will depend on the basic shear flow but not on buoy-
ancy. For Re�0, this budget can be written as Es+Em,B

+Em,�=1. Despite the dependence on the basic shear flow,
this budget is still found independent of Re. This is due to
the normalization by Kd,x. In fact, before normalization, all
the terms in this budget have a same dependence with Re,
and this dependence disappears after normalization. To illus-

FIG. 10. Variation in the shear energy term Es and buoyancy energy term Eb

as a function of the Reynolds number Re for the �T1� modes in the PRB flow
at Pr=0.01. These energy terms do not depend on the Hartmann number.

TABLE IV. Energy budgets in the �y ,z� plane and in the x direction for the �L� modes in the PRB flow at
Pr=0.01 �different values of Ha and varying Re�. Each budget is normalized by its own viscous dissipation
term, Kd,�y,z� and Kd,x, respectively. The terms of buoyancy energy Eb and magnetic energy Em,B are involved in
the first budget; the terms of shear energy Es and magnetic energy Em,B and Em,� are involved in the second
budget. Both budgets are found independent of Re. The ratio between the two viscous dissipation terms,
Rd=Kd,x /Kd,�y,z�, however, increases as Re2.

Ha

�y ,z� plane x direction

RdEb Em,B Es Em,B Em,� Em

0 1 0 1 0 0 0 13.643�10−4Re2

10 1.863 	0.863 1.283 	2.189 1.906 	0.283 6.628�10−4Re2

20 3.257 	2.257 1.724 	9.222 8.498 	0.724 2.549�10−4Re2
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trate that, we have calculated Rd the ratio between the two
viscous dissipation terms, Rd=Kd,x /Kd,�y,z� �Table IV�. Rd in-
creases with Re as Re2, with a constant prefactor that can be
exactly determined and decreases as Ha is increased. This
Re2 dependence is connected to the following relationships
between the perturbations: u /v
u /w
u /

Re. Concern-
ing the budget in the x direction, the shear energy term Es

balances the viscous dissipation and the magnetic energy
term Em. Note that this Em term remains smaller than in the
�y ,z� plane, but it is obtained from large Em,B and �Em,��
contributions �more than ten times larger than Em for
Ha=20�. We have to recall that what occurs in the x direction
does not influence the values of Rac and the type of modes
that become unstable. The budget in the x direction then only
reflects what is induced in this direction by the critical modes
and the shear flow.

V. CONCLUSION

The magnetic field is usually used to delay the appear-
ance of instabilities in electrically conducting fluid flows.11,16

In the present work, we have shown that besides this stabi-
lizing effect, the magnetic field can be responsible for a se-
lective control of the instabilities. In the case where the flow
is subject to more than one single unstable mode, the mag-
netic field may have a different effect on these modes and
make one of them become dominant.

For the PRB flow, our study has highlighted that a judi-
ciously oriented magnetic field can be used to operate such a
selective control. It was well known that without magnetic
field �Ha=0�, the three-dimensional longitudinal stationary
modes were the dominant modes over a large range of
Reynolds numbers �0�Re�5490�, whereas the two-
dimensional transverse traveling modes were the dominant
modes only in a narrow interval �5490�Re�5772� in the
neighborhood of Re0=5772, the critical value of Re for the
isothermal Poiseuille flow. In contrast, our numerical calcu-
lations have shown that a spanwise magnetic field makes the
transverse traveling modes prevail over large ranges of
Reynolds number, for small Reynolds numbers �0�Re
�ReL� as well as for large Reynolds numbers �ReR�Re
�Re0�. The extent of these Reynolds number ranges is found
to increase with increasing Hartmann number. Moreover,
when the Hartmann number exceeds a limiting value Halim,
the transverse traveling modes are the only thermally in-
duced modes that affect the PRB flow. Note that this change
in the dominant modes with Ha depends on the Prandtl num-
ber and is slower for larger Pr values. This induces an in-
crease in Halim with Pr, which can be scaled as Halim
Pr0.5.
It has been finally checked that the oblique modes �with
arbitrary orientations of the wave vector� never become the
dominant modes when the spanwise magnetic field is
applied.

Such selective controls could be of a crucial importance
from a technological and industrial point of view. By allow-
ing the enhancement of both heat and mass transfers because

of the oscillatory character of the transverse modes, the se-
lective control presented in this study should contribute to
optimize the processes in which a PRB flow is involved.
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