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ABSTRACT
The two components of combustion noise, namely the direct noise induced by heat release
fluctuations in the flow and the indirect noise caused by acceleration of entropy perturbations
through mean flow gradients resulting in acoustic radiation, are examined by considering
different types of inhomogeneous wave equations deduced from the balance equations of fluid
dynamics. This is accomplished by adapting acoustic analogies initially derived by Lighthill
(1952), Phillips (1960) and Lilley (1972) for non-reactive flows to the reacting case. This
reformulation is based on a standard set of assumptions borrowed from combustion. It is shown
that a consistent formulation of a wave operator and its associated source terms is required.

1. INTRODUCTION
Among the many noise sources associated with aero-engines the contribution of
combustion noise is not easy to assess. In a typical noise source breakdown of
commercial aircraft this component only represents a few percent of the total noise
emitted at take-off [43]. However this contribution lies in the low frequency range and it
is only weakly attenuated by liners inside the nacelle duct. It is also known that the
separation between combustion and jet noise components is difficult to make in practice,
as shown by Hoch et al. [41], Muthukrishnan et al. [59], Parthasarathy et al. [62] or
more recently by Harper-Bourne et al. [39] and Blacodon [6]. Noise induced by
combustion actually originates from two distinct processes. The first, designated as core
noise or direct combustion noise is associated with the rate of heat release fluctuations
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inside the combustor. The second, indirect combustion noise is generated when entropy
spots essentially temperature fluctuations produced by combustion are accelerated
through an inhomogeneous mean flow field radiating acoustic waves. This mechanism
occurs for example in the turbine blade rows when this assembly is traversed by
fluctuations generated by combustion. The increase of fluctuations in the flow at the
nozzle exit may reach intensity levels of about 10% with strengthened velocity
correlations as pointed out by Plett & Summerfield [67] or by Cumpsty & Marble. [22]
As a result, a dipolar lip noise can dominate the radiated far field at low exhaust
velocities, as argued by Ffowcs Williams & Gordon [34], in a frequency range similar to
that of subsonic noise. Some of the first identifications of entropy noise as a potential
noise source is due to Candel [13] and Marble & Candel [54] who demonstrated this
mechanism by considering the convection of entropy waves in a one-dimensional
compact nozzle. Models of the interaction between entropy fluctuations and turbine
blade rows were developed during the same period by Pickett [65] and by Cumpsty et al.
[23, 24] using actuator disk theory in idealized configurations. Other theoretical
investigation were established in the framework of an acoustic analogy to include
acoustic-flow interactions, like refraction and scattering of sound waves, refer to Lilley
[52], Morfey [57] and to Ffowcs Williams & Howe [32] among others. A natural link can
indeed be drawn between the study of temperature effects in aeroacoustics and indirect
combustion noise.

Combustion noise is relatively less well documented than other topics in aeroacoustics
like aerodynamic noise [8,20,38,81]. The effort in computational aeroacoustics
[3,17,84] has also been focused on non-reactive flows. An extended effort has been
made to examine the mechanisms of combustion instabilities in which noise generated
by combustion is closely coupled by the acoustics of the system inducing large amplitude
oscillations with many detrimental effects. Many studies also consider the passive and
active control of these processes and applications to high performance devices like gas
turbines, aero- and rocket engines. This question has a long history with an early
instability criterion devised by Rayleigh [72]. Some historical references may be found
in Feldman [30] or in Pierce [66]. Combustion instabilities are not considered in the
present article, and the reader can refer to Ducruix et al. [27], Dowling & Morgans [26],
Culick [21] or to Candel et al. [12] for recent comprehensive reviews. Initial experiments
and theoretical studies have shown that noise generated by turbulent flames is
characterized by a broadband spectrum [16,75,77,78] without discrete frequency peaks
when there is no instability due to an acoustic coupling or to an external forcing. The
spectrum is comparable with that of the fine-scale mixing noise of subsonic turbulent
jets. In the simplest configurations, noise is generated by the unsteady rate of heat release
induced by combustion which leads to a monopolar and isotropic sound radiation in the
low frequency range, for Strouhal numbers less than 0.5, as demonstrated in the early
experiments work carried out by Thomas and Williams [82] and in the theoretical results
derived by Strahle [79,80] from Lighthill’s analogy [49].

The present paper attempts a synthesis of combustion noise based on the most
common aeroacoustic theories, which can be derived by starting from the balance of
fluid dynamics and extracting an inhomogeneous wave equation. The next section
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gathers the balance equations for a reacting gas mixture. Direct and indirect combustion
noise are then discussed by extending Lighthill’s analogy in Section 3. Noise generated
by a spherically expanding laminar flame is also briefly revisited. Flow-acoustic
interactions are illustrated in Section 4 and an extension of Phillips’ equation is derived
for reacting flows. The low Mach number limit is also considered. Lilley’s equation is
finally derived for combustion noise in Section 5. An hybrid approach based on
linearized Euler’s equations and a discussion of the set of acoustic perturbation
equations [11] used in several recent studies of combustion noise are also reported in
this section. A derivation of an alternative form of the energy equation, [12,68] of
classical wave equations of Phillips [64] and Lilley [53], as well as of a wave equation
associated with linearized Euler’s equations are carried out in the appendixes.

2. REACTIVE FLOW CONSERVATION EQUATIONS
The equations which govern a gas-phase reacting flow can be found in several textbooks
[61,68,85] and only some of the key expressions need to be included in what follows.
The balance of mass, momentum and energy can be written in the following form

(1)

(2)

(3)

where d/dt = ∂t + u · ∇ is the material derivative. The previous expressions involve
the density ρ, velocity u, pressure p, viscous stress tensor τ, total energy et = e +
(l/2)u2 and heat flux q. For simplicity, there is no external force, neither radiation nor
external heat sources. Conservation of chemical species k is expressed by

(4)

where Yk is the mass fraction of species k, ·ωk is the reaction rate, which is determined
from Arrhenius-like laws and Jk is the diffusion flux resulting from the diffusion
velocities of the different species in the mixture, Jk = ρYkvk where vk is the diffusion
velocity of species k. It is assumed that all species behave like perfect gases so that the
mixture follows a perfect gas law
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where γ = cp/cv is the ratio of specific heats at constant pressure and volume, T is the
temperature, c is the local speed of sound and r = R/W is the specific gas constant,
with R the universal gas constant and W the mean molar weight of the mixture. The last
two relations in (5) will be used to simplify equations in what follows. The balance of
energy (3) can also be written using the enthapy h of the mixture, which yields

(6)

and a straightforward calculation reported in Appendix A leads to the following
equivalent expression

(7)

where ·ωT is the heat release per unit volume, expressed in watts per cubic meter,
produced by combustion. The reader familiar with acoustic analogies will recognize in
Eq. (7) the combination dρ/dt − (l/c2)dp/dt useful for deriving wave equations.

3. COMBUSTION NOISE THROUGH LIGHTHILL’S ANALOGY
Lighthill’s theory of aerodynamic noise [49] is now considered as the starting point of
aeroacoustics as a research topic. Rather than directly solving fluid dynamics equations
(1) to (3) to calculate aerodynamic sound, an equivalent problem is obtained in the form
of a wave equation with a source term. The solution is then derived using an appropriate
Green function. Applying the material derivative to mass conservation equation and
substracting the divergence of the momentum conservation equation, the resulting
expression d(l)/dt −∇·(2) = 0 yields,

This expression is completed to obtain the Dalembertian operator on the left-hand
side, which yields for the density

(8)

or equivalently for the pressure,
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In these two expressions (8) and (9), the velocity c∞ is an arbitrary constant, as
recently illustrated by Peake [63] for the propagation of a normal shock wave. In many
practical applications and especially in jet noise analysis, c∞ is taken to be the speed of
sound in the medium at rest or at infinity, This gives a physical meaning to the wave
operator [3, 9] which describes propagation in the medium surrounding the free jet.
The first term on the right-hand side of equation (9) represents the contribution of the
Reynolds and viscous stresses. Combustion noise is included in the second source term,
a point which is nicely illustrated by Ffowcs Williams [31] or Lilley [51,52]. By noting
that density is a function of two variables, the pressure and the specific enthalpy ρ =
ρ(p, h) for instance, the differentiation of ρ leads to

for a perfect gas. Therefore, the residue of dρ− (l/c2)dp corresponds to the heat added
to the fluid particule per unit mass. This result will be found later in a more formal way.
It is convenient to introduce at this step an excess density ρe as proposed by Morfey [57], 

(10)

Indeed, an estimator of the deviation from the adiabatic relation dρ = dp/c2
∞, which

holds for acoustical perturbations in a medium at rest, is then obtained. The integral
solution of Eq. (9) can therefore be written as a convolution product of the source term,
given by

with the free-space Green function G
0
(x, t) = δ(t − x/c∞)/(4πx), that is

(11)

The integration is taken over the region V containing sources, i.e. for which S ≠ 0,
and at the retarded time t − ξ/c∞ corresponding to the travelling time from the source
y to the observer x , as illustrated in Fig. 1. As underlined in the two reviews by Crighton
[20] and by Ffowcs Williams, [19] subtle formulations of this integral solution can be
developed in the far field as x >> y, or also by using properties of the convolution
product and applying the differential operator to either the Green function or the source
term. A physical interpretation of this solution (11) will be discussed later in this
section.
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In what follows, a canonical and general expression of Lighthill’s analogy for a
reactive turbulent flow is derived without any approximation. To this end, the main
source term ∂2ρe/∂t2 is developed using relation (7). The time derivative of excess
density is first written as [19,31,57]

by using the balance of mass (1). Substituting ρe by its definition (10) gives

Using the balance of energy Eq. (7), one gets
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Figure 1: Sketch illustrating Lighthill’s integral solution given by Eq. (14). By
neglecting aerodynamic noise, the source term in the volume V basically
represents the contribution of the direct combustion noise associated with
the unsteady rate of heat release ∂t

·ωT and of the entropy noise associated
with the term ∂t∇ ·(ρeu) ≠ 0.



Finally, and without introducing any approximation, the source term S appearing in
the integral solution (11) can be written as follows

(13)

This is an exact reformulation of the fluid dynamics equations for a reacting flow.
The two first terms on the right-hand side of Eq. (13) are associated with
aerodynamic noise as already mentioned, and as it can also be seen by noting that
the viscous term is generally very small with respect to the double divergence of the
Reynolds stress tensor ∇ · ∇ · (ρuu), especially for turbulent flows at high Reynolds
numbers [46,56]. This expression is the starting point of the derivation of the
classical eighth power scaling law obtained by Lighthill [49] for subsonic jet noise.
The terms in the second line represent various types of processes. The main
contribution is expected to come from the fluctuating heat release directly produced
by combustion, namely

where Eq. (5) has been used. Terms appearing in the third line are mainly linked to the
flow inhomogeneities with respect to the propagation medium. This flow-acoustic
interaction disappears for iso-baric combustion. The last term in the fourth line
represents acceleration of density inhomogeneities, and represents the main contribution
to indirect combustion noise [19].

Classical assumptions such as a constant molecular weight of the mixture,
negligeable diffusion flux terms and a quasi-isobaric flow at low Mach number
M = u/c∞<< 1, can be used to simplify the source term expression (13). Noise is then
generated by the unsteady heat release rate induced by combustion, and the far field
pressure is given by
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where the origin is taken inside the source volume S, see Fig. 1. Moreover, assuming a
heat ratio independent of temperature provides ρ∞/(ρc2) = 1/c 2

∞ for isobaric
combustion one finds

(15)

Expression (15) can be found in the work of Strahle [79,80] for instance. It is also
discussed by Dowling [19]. Other approximations can be found in the literature
[31,33,83]. Scaling rules can also be derived [16,40,75,79] for the thermo-acoustic
efficiency ηta, defined as the ratio between the radiated acoustic power and the thermal
power released in the flow, with typically ηta ∼ 10−6 − 10−5 for combustion systems in
the absence of instabilities. The noise mechanism involved in Eq. (15) represents a
monopolar source, which is usually compact indicating that the typical correlation
length of the source is small with respect to the acoustic wavelength, and as a result, the
variation of the retarded time can be neglected during integration, which implies that 
t−ξ/c∞ is replaced by t − x/c∞.

3.1. An example of direct combustion noise
One of the fundamental experiment dealing with combustion noise was carried out by
Thomas & Williams. [82] A mixture of air and ethylene is confined within a soap
bubble, and combustion is ignited by a spark. A spherical flame front of radius rf (t)
slowly propagates, as shown in Fig. 2. The quasi-steady pressure on either side of the
flame is assumed constant, yielding ρ∞T∞ = ρbTb . Noise generated by combustion is
measured by a microphone in a small anechoic room whereas the laminar flame is
monitored through an optical Schlieren system.

The current volume of burnt gas is vb = (4/3)πr 3
f and the initial volume occupied

by these fresh mixture was vb/E, where E = ρ∞/ρb is the density ratio of the unburnt
to burnt gas or the volumetric expansion ratio, with typically 7 ≤ E ≤ 10 for
hydrocarbons. The volume increase is thus given by δV = (4/3)πr 3

f (1 −1/E), and the
rate of volume variation during flame propagation is

To numerically estimate the noise radiated by combustion, the authors used a
compact monopolar source model to obtain the following expression for the far field
pressure,
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The pressure signal deduced from Eq. (16) through the measurement of rf and the
pressure detected by the microphone were found to be in good agreement [82].
Expression (16) can also be retrieved directly from Lighthill’s analogy (14), as proposed
by Howe [42]. The heat release can indeed be written as follows

is the volumetric rate of consumption of the combustible, ·mv = d(v
b
/E)/dt. After

rearrangement and by using Eq. (5), the pressure in the far-field is given by

(17)

in agreement with expression (16). Introducing the flame velocity ul relative to fresh
mixture, defined as ul = (1/E)drf/dt with ·mv = Aul and where A is the flame surface,
the acoustic power can be written as

As a result, the leading term provides a scaling law Wa ∼ u4

l corresponding to the
noise emitted by a compact monopole source as expected.
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Figure 2: Noise generated by a spherically expanding flame, refer to Thomas &
Williams.82 A mixture of air and ethylene is used as premixed
combustible gas within a soap bubble, yielding basically C2H4 + 3 O2 →
2 CO2 + 2 H2O. Density and speed of sound of the ambient medium as
well as the mixture are ρ∞ and c∞ whereas those of burn gas are denoted
ρb and cb.
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3.2. Measurement of combustion noise sources
The acoustic signature of flames can be used as a non intrusive diagnostic tool to obtain
the combustion heat release distribution by solving an inverse problem [70]. Optical
techniques are however more widely employed, as exemplified in a reference
experimental work by Hurle et al. [44]. Experimentally, the volumetric rate of
combustion m· v which appears in Eq. (17) is found to be directly proportional to the
light-emission intensity I radiated by excited radicals like CH*, C

2
or OH* which are

only present in the reaction region [12]. Thus, the relation ∂tm· v = k∂tI where k is a
constant and the integral solution (17) can then be applied to estimate combustion noise
[74,76]. This question is discussed for example by Schuller et al. [73] in the case of
noise generated by an excited impinging premixed jet flame. The present identification
approach however rests on the assumption that the main noise source term is associated
with the unsteady rate of heat release. Bui et al. [11] have recently investigated this
assumption, and have shown that this term does not fully account for combustion noise
radiation in the high frequency range, at Strouhal numbers exceeding 0.5.

4. COMBUSTION NOISE THROUGH PHILLIPS’ ANALOGY
4.1. Flow-acoustic interactions
Lighthill’s analogy yielding the integral solution (11) with the source term (13), is
attractive since the noise generation problem consists of determining equivalent
sources embedded in a uniform medium of sound speed c∞ at rest. Therefore,
interactions between the turbulent flow and the sound field generated by this flow, such
as convection, refraction or diffraction, are necessarily included in the source term.

To illustrate this point, consider the case of a turbulent flow surrounded by a uniform
mean flow U∞x1, as shown in Fig. 3, the primitive formulation of Lighthill’s analogy
given by Eq. (8) and a source term S = ∂xi∂xj(ρuiuj) associated with aerodynamic noise.
Introducing the following decomposition ρ = ρ∞ + ρ̆ and ui = U∞δ1i + ŭi in the source
term, one gets

It is straightforward to show that Lighthill’s equation can be exactly written in the
form [2]

The last two terms on the right-hand side can be combined with the first term on the
left-hand side to retrieve a convected wave operator
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which governs sound propagation in this particular case. In other words, the terms
describing mean flow - acoustic interactions are contained in the source term and
density fluctuations can not be neglected when considering acoustic terms, as
emphasized by Lilley [50] for instance. These linear terms can be estimated via a
compressible simulation of the turbulent flow, and Lighthill’s equation can be solved
using the whole volume between the turbulent source region Vt and the observer, since
the term (∂tt − c2

∞ ∇
2)ρ is never zero. This enlightening but academic exercice has been

carried out by Bogey et al. [9] to recover vortex pairing noise generated by a mixing
layer. It is worth noting at this point that the computation of the compressible linear
source terms requires the knowledge of the acoustic field, that is the solution of the
problem itself [3]. In order to conserve a localized source volume, the turbulent volume
Vt in the present case, flow-acoustic interactions must be removed from the source term,
by simply using the suitable convected wave equation. However the derivation of a wave
equation governing sound propagation in an arbitrary mean flow remains a difficult and
controversial task in aeroacoustics.

4.2. Phillips’ equation for reacting flows
The first significant step to include flow-acoustic interaction in the wave operator is due
to Phillips [64], and the corresponding derivation is reproduced in Appendix B for a non
reacting flow, see Eq. (46). For a reacting flow, the balance of mass is combined with
the balance of energy (7) to give
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Following Phillips’ developements for the non reacting case [64], the inhomogeneous
convected wave equation may be written as

where the variable π is linked to the logarithm of the pressure by the relation π =

(1/γ) ln(p/p∞). This wave equation was introduced by Chiu & Summerfield [14]
and Kotake [48] for combustion noise, and can also be found in the exact present
form in Poinsot and Veynante [68] or Candel et al. [12]. It is often assumed that
molecular transport terms can be neglected for sound generation [46,48,56], which
thus leads to a simplified version of Eq. (19),

(20)

The first term on the right-hand side represents aerodynamic noise, and density no
longer appears in this source term [20]. As a result, the ambiguity mentioned in the
previous section about flow-acoustic interactions is apparently removed by the
convected wave operator. Unfortunately, as shown by Lilley [53], all these interactions
are not included on the left-hand side of this equation, and flow effects on acoustics are
still contained in the linear part of the first source term. The second source term
represents combustion noise through the unsteady heat release, and the third term
corresponds to the noise generated by the fluctuation of the molecular weight of the
mixture during combustion [12,83].

A key point regarding Eq. (20) is the interpretation of the wave operator in the
framework of an acoustic analogy, as already discussed for Lighthill’s equation. A first
step consists in identifying a wave equation governing sound propagation, such as the
Dalembertian for Lighthill’s analogy or the convected wave operator (18). The wave
operator associated with Phillips’ equation is now replaced by

where –D/
–Dt = ∂t +

–U · ∇ is the material derivative along the mean flow, and by noting
that for small perturbations, π′ � p′ /(γp∞). A classical assumption in combustion is
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also to assume a low Mach number flow, which can be used to remove the convective
part of the material derivative, and the ambiguity on the aerodynamic source term. In
this way, the wave operator is reduced to

(21)

or equivalently in a more familiar form, see Goldstein [38] or Pierce [66], to

This last equation is widely used for underwater and atmospheric long-range sound
propagation in an inhomogeneous medium at rest. Linear contributions of source terms
in Eq. (13), attributed to flow - acoustic interactions, are now included in the wave
operator L

2
and can be explicitly calculated. There is however no known analytical

Green function associated with this wave operator, and so no integral formulation giving
the far field pressure.

Kaltenbacher et al. [45] considered Phillips’ equation (20) with the simplified wave
operator given by Eq. (21) to develop a numerical approach in the low Mach number
limit for combustion noise. These is used to develop a finite-element method of solution
in order to tackle noise generation problems in complex geometries.

4.3. Low mach number limit of Phillip’s equation
In the low Mach number limit, allowing to approximate the material derivative by the
time derivative only, Eq. (20) becomes

Another interpretation of Phillips’ equation can then be proposed by forming the
Dalembertian on the left-hand side of this equation, which yields after some rearrangements,

(22)

As mentioned by Candel et al. [12], this expression is already derived by Howe
[42], see his Eq. (6.4.2), by neglecting the fluctuations of the molar composition of
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the mixture during combustion. Eq. (22) can be compared to Lighthill’s Eq. (13) in
the low Mach number flow limit, and by recalling that molecular transports have also
been neglected to obtain Eq. (22). Thus, the three source terms in the second line of
Eq. (22), that is aerodynamic noise, combustion noise and the noise induced by
variations of the mean molecular weight of the mixture, can be easily identified. The
first source term in the first line is also present in Eq. (13). This is however not the
case for the second term.

At this step, it can be observed that the indirect combustion noise is represented
by the two first source terms on the right-hand side in Eq. (22). By comparison with
Eq. (13) obtained from Lighthill’s analogy, acceleration of excess density through
the term ∇ · ∂t(ρeu) seems rearranged in a different manner. This result can be
explained by noting that in Lighthill’s analogy, the low Mach number limit is applied
to a source term including linear propagation terms. Generation and propagation are
however better separated in Phillips’s approach, and it thus seems more consistent to
use Eq. (22).

5. LILLEY’S EQUATION
Following the developments included in Appendix C, it is straightforward to obtain
Lilley’s equation for a reacting gas mixture. This equation writes

(23)

and the meaning of the different terms on the right-hand side of this equation has
already been discussed in previous sections. This equation plays a fundamental role
in aeroacoustics by providing a way to separate sound propagation effects from sound
generation, as explained by Doak [25] and Goldstein [38] among others.

5.1. Interpretation of the wave operator
To begin with Lilley’s equation, it is again important to correctly interpret the wave
operator on the left-hand side of Eq. (23). And a key point to do that is first to recognize
that the Euler equations linearized around an arbitrarily steady flow govern sound
propagation in this flow [7,25,38,66]. From these equations given in Appendix D, an
homogeneous wave equation can only be derived for a sheared mean flow, that is u–i =
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functions of transverse coordinates, the mean pressure then being constant. Noting
D–t ≡ ∂t + u–

1
∂x1

the material derivative along the mean flow, linearized Euler’s
equations reduce to

(24)

Possible source terms (Sρ, Sm, Se) are also introduced in these equations to elaborate
an hybrid acoustic approach in the next section. From the homogeneous system, the
substitution of different variables for the benefit of the fluctuating pressure then leads to

(25)

By convention in what follows, the summation is performed over l = 2, 3 for the
l indice, that is for the transverse directions with respect to the mean velocity u–

1
.

Comparison between Eq. (23) and Eq. (25) shows that at leading-order, the wave
operator of Lilley’s equation is the correct wave operator containing all mean flow -
acoustic interactions [25,38]. Therefore, acoustic source terms can be clearly defined in
this context. Historically, Eq. (25) was introduced by Pridmore-Brown [69] in a slightly
different form obtained by taking the Fourier transform in homogeneous directions 
t and x

1
.

5.2. An hybrid approach based on linearized Euler equations
Since the linearized Euler equations (LEE) include all mean flow - acoustic
interactions by construction, a natural approach then consists in forcing the
homogeneous LEE system (52) with suitable source terms. The exact linear wave
operator L

0
can be derived for a sheared mean flow, and by comparison with Lilley’s

equation (23), it is clear that source terms can formally be identified. One of the first
applications of this numerical strategy can be found in Béchara et al. [4] for
predicting subsonic jet noise.

In what follows, expressions of source terms associated with aerodynamic and
combustion noise are derived for LEE. Taking into account of source terms in system
(52), the fluctuating pressure p′ satisfies the following inhomogeneous wave equation,
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This equation can not directly be compared to Lilley’s equation (23). In following
the original study of Lilley [53], the starting point is again to consider Phillips’ equation

(27)

where the expression of ΛPh is explicitly given by Eq. (19). Therefore, by introducing
the decomposition of variables around the sheared mean flow, and by noting that π = π–
+ π′ with π– = 0 for the considered mean flow, one gets

(28)

No linearization is introduced in the previous expression and the term Λ1 contains
higher order terms in the perturbation variable π′. Using Eq. (45), the third-order
differential equation based on Lilley’s wave operator L

0
can then be formed to obtain,

where Λ2 includes all higher order terms in the perturbation variables [53]. In this
expression, the two first source terms correspond to aerodynamic noise,

(29)

and by identification with Eq. (26), one gets the expression of Sm,
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complete discussion of Lilley’s equation including the recent works of Goldstein
[35–37] can be found in Musafir [58].

A similar reasoning for combustion noise leads to the following expression for Λ
co,

(31)

by only retaining the main contribution and neglecting all molecular transport terms and
variations of the molar composition. By identification, the monopole source term in
(52) therefore takes the following form,

(32)

Finally, LEE system (52) associated with source terms (30) and (32) defines an
acoustic-analogy approach, which exactly corresponds to Lilley’s equation at leading
order for a sheared mean flow, i.e. the fluctuating pressure satisfies the wave equation
L

0
[p′] = Λ

ae
+ Λ

co·

The linearized Euler equations do not only describe acoustic perturbations, because
they can also be interpreted as a generalization of Rayleigh’s equation for
compressible flows [3,25,38]. As a result, instability waves of the Kelvin-Helmholtz
type [1] are also solutions of LEE. These solutions can be removed by solving the
linearized Euler equations in the frequency domain, as shown by Rao & Morris [71]
or by Karabasov et al. [47]. Another way to tackle this problem is to simplify LEE
system using high-frequency assumptions, as proposed by Bogey et al. [10] in
calculations of noise generated by vortex pairings in a mixing layer, see also the
discussion by Bailly & Bogey [3] not reproduced here.

5.3. Acoustic perturbation equations
Bui et al. [11] propose to use the acoustic perturbation equations (APE) system
combined with source tepms in order to investigate combustion noise. The
homogeneous APE system is used by the authors [29] to describe wave propagation in
the presence of a mean flow without exciting vortical or entropy waves, and the source
terms are derived from the conservation equations for reacting flows. The set of
equations (APE-2 variant) to solve is

(33)

and the complete expression of the source terms may be found in Bui et al. [11]. As
illustration, the dominant source term in qm used for predicting aerodynamic noise is
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based on the Lamb vector, namely qm � –(ω × u)′. The homogeneous system (33)
describes sound propagation in an irrotational mean flow, and the APE may be
interpreted as an extension of the theory of vortex sound [29,42,55]. A stable system is
then obtained for hydrodynamic perturbations under this assumption, as discussed in
Möhring [55] for instance. All refraction effects are however not included in the
homogeneous system (33), as documented numerically by results of the third
computational aeroacoustics workshop [1,60] or theoretically by comparison with LEE.
As in Lighthill’s analogy, an exact solution of the problem could be retrieved by using
equivalent source terms on the right-hand side of the APE system, but acoustic
interactions are then included in these source terms and should be computed in advance.

For isobaric combustion in the low Mach number limit, Bui et al. [11] have retained
a simplified formulation of their APE-RF source terms, given by

whereas qc � 0 and qm � 0. This source term is directly computed from an
incompressible LES simulation of turbulent reacting flow, and good results are reported
by comparison with experimental data regarding a turbulent non-preximed flame. It
seems interesting to note that qe is directly linked to the heat release through Eq. (42),
that is qe = (γ – 1)ω·T = Se, under the same assumptions.

6. CONCLUDING REMARKS
This article considers the derivation of inhomogeneous wave equations which can be
applied to the analysis of combustion noise from reacting flows. This is used to identify
noise sources, and formulate a suitable hybrid approach combining a wave operator and
source terms. A specific point in combustion is the presence of strong temperature
and pressure gradients, which generate strong interactions with the fluctuating fields
and produce additional noise. This indirect combustion noise usually dominates core
noise in aircraft engines. Several numerical studies have already been performed in this
framework, and the developments of computational aeroacoustics should continue to
support these advances in the future. Finally, the relative importance of the different
source terms can be estimated by comparison with direct noise computation. This has
been successfully applied to aerodynamic noise and should also be done carefully for
combustion noise.
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A. DERIVATION OF AN ALTERNATIVE EXPRESSION FOR THE
ENERGY CONSERVATION

The energy balance (3) can be written in the following form [68]

(34)

by introducing the enthalpy of the mixture h. This enthalpy variable is defined as the
sum of two contributions, associated with temperature changes and with the formation
of species respectively,

where hs is the sensible enthalpy of the mixture, ∆h0
f,k is the enthalpy of formation of

species k, hs,k the sensible enthalpy of species k. Furthermore, dhs,k = cp,kdT where cp,k
is the specific heat of species k at constant pressure and T the temperature. In Eq. (34),
the heat flux q is the sum of the Fourier law and an additional term taking into account
heat transfer by species diffusion, namely

(35)

where λ is the thermal diffusivity, hk = hs,k + ∆h0
f,k and vk is the diffusion velocity of

species k. Details about all theses quantities can be found in Poinsot & Veynante [68] for
instance.

Equation (34) is the starting point for the following developments, with the aim of
deriving a relation for the term dp/dt – c2dρ/dt. First, dh/dt is developed using the
definition of enthalpy, yielding

(36)
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By noting that the temperature is a function of T = T(ρ, p, Yk), its exact differential
is given by

(37)

for a perfect gas in which Wk is the molar weight of species k and the following relation
r = R/W = RΣkYk/Wk has been also used for simplifications. The last term in
Eq. (37) may be rearranged in a simple way. Indeed, it follows from the definition of
the gas constant r that

(38)

Therefore, by substituting Eq. (37) into Eq. (34), and by using the two relations (37)
and (38), one gets

(39)

By introducing the heat release per unit volume ω·T due to combustion from Eq. (4),
the underlined term denoted (a) hereafter reduces to

(40)

Furthermore, the molecular diffusion terms may be written as follows

(41)

Finally, combining Eq. (39), Eq. (40) and Eq. (41) leads to

(42)
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The conservation of energy may thus be expressed as Eq. (3), or as Eq. (34), or
equivalently [12,68] as Eq. (42). Note that Eq. (42) is denoted by Eq. (7) in the main text to
simplify reading. The well known isentropic relation dp/dt = c2dρ/dt is found for an ideal
perfect gas. It should also be noted in passing that the definition of the heat release used in
this work, [68] is ω·T = – Σk(hs,k + ∆h0

f,k)ω
·
k· The term ρ Σk Ykcp,k vk · ∇T is associated with

diffusion of species with different enthalpies whereas the last term ρd(lnr)/dt is associated
with the change of the mean molar weight of the mixture during combustion, see also Candel
et al. [12] for a more detailed discussion. Simplified formulations of Eq. (42) can be found
in the litterature [14,15,19,48,83] under different approximations including isobaric,
isomolar or low Mach number reacting flow assumptions.

B. PHILLIPS’ EQUATION FOR A NON-REACTING FLOW
As a starting point, one considers the balance of mass (1), momentum (2) and energy
for a perfect gas written as

(43)

where s represents the entropy of the fluid. From the balance of mass, it follows that

A new variable π based on the logarithm of the pressure is introduced by Phillips64

which allows to reformulate the set of equations as

(44)

(45)

A wave equation can then be obtained by considering the arrangement d(44)/dt
– ∇ · (45) = 0 in order to remove the linear velocity term, which yields
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Noting that the partial derivative ∂xi
does not commute with the material derivative

d/dt, that is

the convected wave equation of Phillips [64] is finally obtained

(46)

This equation is discussed in Section 4.

C. LILLEY’ EQUATION FOR A NON-REACTING FLOW
As shown in section 4, all the mean flow effects on sound propagation are not included
in Eq. (46). For a sheared mean flow, the compressible linear part of the source term
∇u : ∇u is indeed associated with refraction effects. The first inhomogeneous wave
equation describing sound propagation in a shear flow with consistent source terms on
the right-hand side was established by Lilley. [53] Following the derivation based on the
linearized Euler equations, the material derivative is again applied to Eq. (46), to obtain

The first term on the right-hand side can then be developed as follows,

by using Eq. (44) of the balance of momentum. Finally, another exact reformulation of
the Navier-Stokes equations can be achieved in the form

(47)

as originally proposed by Lilley [53] (1972), and reformulated by Doak [25,58].
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D. THE LINEARIZED EULER EQUATIONS
The Euler equations linearized around an arbitrarily steady flow govern sound
propagation in this flow [7,38,66]. A non-conservative form of these linearized Euler
Equations is

(48)

(49)

(50)

for an ideal perfect gas, where ρ = ρ– + ρ′,u = u– + u′ and p = p– + p′ and by using
the following convention, ∇ · (ρ–u′u–) i = ∂xj

(ρ–u′iu–j). For the present study, it is more
convenient to work with the pressure fluctuation. Furthermore, from Eq. (50) and
Eq. (48), and by noting that γp– = ρ–c–2,

(51)

where c—2′ � c–2(p′/p– – ρ′/ρ–). This relation can also be obtained by linearization of dp/dt
= c2dρ/dt.

From these equations (48)–(51), an homogeneous wave equation can be derived for a
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the material derivative along the mean flow,
system (48)–(50) then reduces to
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Possible source terms (Sρ,Sm,Se) are also introduced in these equations, in
connection with section 5.2 to elaborate an acoutic analogy based on linearized Euler’s
Equations. Then, by taking the usual combination D–t (52) – ∇ · (53), it follows that
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which can be simplified by noting that for the considered sheared mean flow field,

where summation over indice l is performed for the transverse directions l = 2,3.

Furthemore, the combination of Eq. (54) and (52) leads to

after rearranging the different terms. The convected wave equation (55) can then be
written as

(56)

In addition, considering Eq. (53) for the transverse velocity component l, and
multiplying each side by the mean density gradient, it follows that

which enables us to write the convected wave equation (57) as

(57)

Then, using the two identities,

and furthermore, by noting that

the following inhomogeneous wave equation is finally obtained by applying the
material derivative operator D–t to Eq. (57),

(58)

This wave equation, derived from linearized Euler’s Equations by assuming a
stratified mean flow field, is discussed in sections 5.1 and 5.2.
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