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Multi-dimensional Optimal Order
Detection (MOOD) — A very high-order
Finite Volume Scheme for conservation
laws on unstructured meshes

S. Clain, S. Diot, and R. Loubère

Abstract TheMulti-dimensional Optimal Order Detection (MOOD) method
is an original Very High-Order Finite Volume (FV) method for conservation
laws on unstructured meshes. The method is based on an a posteriori degree
reduction of local polynomial reconstructions on cells where prescribed stabil-
ity conditions are not fulfilled. Numerical experiments on advection and Euler
equations problems are drawn to prove the efficiency and competitiveness of
the MOOD method.

Key words: MOOD, high-order, finite volume, unstructured meshes, limi-
tation, Euler equations, conservation laws

1 Introduction

The Multi-dimensional Optimal Order Detection has been introduced in [5]
as an original High-Order Finite Volume method for conservation laws on un-
structured meshes. As multi-dimensional MUSCL [3, 2, 7, 4] or ENO/WENO
methods [1, 6, 9], the MOOD method is based on a high-order space dis-
cretization with local polynomial reconstructions coupled with a high-order
TVD Runge-Kutta method for time discretization.

The main difference between classical high-order methods and the MOOD
one is that the limitation procedure is done a posteriori. Inside a time step,
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a first solution is computed with numerical fluxes evaluated from unlimited
high-order polynomial reconstructions. Then polynomial degrees are reduced
on cells where prescribed stability conditions are not fulfilled and the solution
is re-evaluated. That iterative procedure provides a solution which respects
the stability constraints.

The present article is devoted to an extension of the MOOD method to
a sixth-order space discretization on triangular meshes. Numericals tests for
the advection problem and Euler equations with gravity are given in last
section.

2 Framework

We consider the scalar hyperbolic equation defined on a bounded polygonal
domain Ω ⊂ R

2 written in its conservative form

∂tu+∇ · F (u) = 0, (1)

u(·, 0) = u0,

where u = u(x, t) is the unknow function with t > 0, x ∈ Ω, F is the
physical flux and u0 stands for the initial condition. We consider a triangular
tesselation of Ω where Ki is a generic triangle with centroid ci. Moreover nij

is the unit normal vector of edge eij from Ki to Kj and qrij , r = 1, 2, 3, are
the gaussian quadrature points of eij . Finally ν(i) (resp. ν(i)) is the index set
of cells which share an edge (resp. an edge or a node with Ki). This notation
is summarized in Fig. 1.

Fig. 1 Mesh notation. Index set ν(i) corresponds to blue cells with dots and ν(i)
corresponds to every non-white cells.
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We recall the generic first-order Finite Volume discretization of (1)

un+1
i = un

i −∆t
∑

j∈ν(i)

|eij |

|Ki|
G(un

i , u
n
j ,nij), (2)

where un
i is an approximation of the mean value of u on cell Ki at time tn

and |eij |, |Ki| stand for the edge length and the cell surface respectively. We
assume that the numerical flux G(un

i , u
n
j ,nij) satisfies the consistency and

monotonicity properties such that, under an adequate CFL condition, the
following Discrete Maximum Principle (DMP) is fulfilled

min
j∈ν(i)

(un
i , u

n
j ) ≤ un+1

i ≤ max
j∈ν(i)

(un
i , u

n
j ). (3)

Only few modifications of (2) are needed to get the following High-Order
Finite Volume scheme

un+1
i = un

i −∆t
∑

j∈ν(i)

|eij |

|Ki|

3∑

r=1

ξrG(un
ij,r, u

n
ji,r ,nij), (4)

namely the use of a sixth-order gaussian quadrature rule with weights ξr
(r = 1, 2, 3) and the replacement of un

i (resp. un
j ) by un

ij,r (resp. un
ji,r) which

is an approximation of u(qrij , t
n) from the high-order polynomial reconstruc-

tion on Ki (resp. Kj). Notice that the high-order scheme (4) corresponds
to a convex combination of the first-order one (2), that is important from a
practical point of view for an easy and effective implementation.

It is well known that methods based on high-order reconstructions without
limiting procedure produce spurious oscillations in the vicinity of disconti-
nuities. In order to prevent such oscillations, the today’s effective high-order
methods (MUSCL, WENO...) use a priori limitation procedures.
The Multi-dimensional Optimal Order Detection (MOOD) method breaks
away from this approach through an original effective iterative procedure
based on an a posteriori detection of such unphysical oscillations (see Fig.
2). The details of MOOD method are recalled in next section

Fig. 2 A simplistic view of the Multi-dimensional Optimal Order Detection concept.
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3 MOOD method

For the sake of clarity, we only consider a forwar Euler method and one
quadrature point per edge. Consequently we denote by uij (resp. uji) the
high-order approximation of u on edge eij from cell Ki (resp. Kj).

3.1 Basics

Polynomial reconstruction.

High-order approximations of the solution at quadrature points are manda-
tory. To this end, multi-dimensional polynomial reconstructions from mean
values are carried out. The reader should refer to [6, 5] for detailled presenta-
tion of such a technique. However the reconstructed polynomial of arbitrary
high-order dmax + 1 has the form

ũ(x, y) = ū +
∑

1≤α+β≤dmax

Rαβ

(
(x−cx)

α(y−cy)
β−

1

|K|

∫

K

(x−cx)
α(y−cy)

β dxdy

)
,

where (cx, cy) is the centroid of a generic cell K and Rαβ are the unknowns
polynomial coefficients.
In this way mean value on K is conserved and the truncation of all terms of
degree α+ β > d̄ produces a relevant approximation of u as a polynomial of
degree d̄ ≤ dmax.

CellPD and EdgePD.

We recall the fundamental notions introduced in [5].

• di is the Cell Polynomial Degree (CellPD) which represents the degree of
the polynomial reconstruction on cell Ki.

• dij and dji are the Edge Polynomial Degrees (EdgePD) which correspond
to the effective degrees used to respectively build uij and uji on both sides
of edge eij .

We now detail the MOOD method using both notions in the case of the
scalar problem (1).

3.2 Algorithm for the scalar case.

The MOODmethod consists of the following iterative procedure which details
the concept depicted in Fig. 2.
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1. CellPD initialization. Each CellPD is initialized with dmax.
2. EdgePD evaluation. Each EdgePD is set up as the minimum of the two

neighboring CellPD.
3. Quadrature points evaluation. Each uij is evaluated with the polyno-

mial reconstruction of degree dij .
4. Mean values update. The updated values u⋆

h are computed using the
finite volume scheme (4).

5. DMP test. The DMP criterion is checked on each cell Ki

min
j∈ν(i)

(un
i , u

n
j ) ≤ u⋆

i ≤ max
j∈ν(i)

(un
i , u

n
j ). (5)

If u⋆
i does not satisfy (5) the CellPD is decremented, di := max(0, di − 1).

6. Stopping criterion. If all cells satisfy the DMP property, the iterative
procedure stops with un+1

h = u⋆
h else go to Step 2.

Since only problematic cells and their neighbors in the compact stencil ν(i)
have to be checked and reupdated during the iterative MOOD procedure, the
computational cost is dramatically reduced.

3.3 Algorithm for the Euler equations case.

We now extend the MOOD method to the Euler system, namely

∂t




ρ

ρu

ρv

E


+ ∂x




ρu

ρu2 + p

ρuv

u(E + p)


+ ∂y




ρv

ρuv

ρv2 + p

v(E + p)


 = 0, (6)

where ρ, V = (u, v) and p are the density, velocity and pressure respectively
while the total energy per unit volume E is given by

E = ρ

(
1

2
V2 + e

)
, V2 = u2

1 + u2
2, e =

p

ρ(γ − 1)
,

where e is the specific internal energy and γ the ratio of specific heats.
The reconstruction is classicaly done on the primitive variables ρ, u, v, p

and we use the same CellPD and EdgePD for all variables in a cell. In other
words, the two notions are linked to cells and edges and not affected by the
number of variables. Furthermore steps 5 and 6 of the previous MOOD algo-
rithm are substituted with the following stages.
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5. Density DMP test. The DMP criterion is checked on the density

min
j∈ν(i)

(ρni , ρ
n
j ) ≤ ρ⋆i ≤ max

j∈ν(i)
(ρni , ρ

n
j ). (7)

If ρ⋆i does not satisfy (7) the CellPD is decremented, di := max(0, di − 1).
6. Pressure positivity test. The pressure positivity is checked and if p⋆i ≤ 0

and di has not been altered by step 5 then the CellPD is decremented,
di := max(0, di − 1).

7. Stopping criterion. If for all i ∈ Eel, di has not been altered by steps 5
and 6 then the iterative procedure stops with un+1

h = u⋆
h else go to step 2.

4 Numerical results

Scalar case

The reader should refer to [5] for a complete study on the effective conver-
gence rate. In this paper, we restrict the presentation to two representative
tests. We first deal with the classical Solid Body Rotation (see [5] for details)
test case for the advection problem.
We plot in Fig. 3 isolines top views of the solution obtained with the MOOD
method applied to different polynomial degrees and meshes. Method name,
triangles number and computational times are embedded in each figure. Time
is given in relative time units (r.t.u) where MOOD-P1 is taken as reference
with 100 r.t.u.
First solutions obtained on the 5190 cells mesh clearly show that the MOOD
method is able to handle high-order polynomials with a great improvement
of solutions while enforcing a strict DMP. Then the bottom line of Fig. 3
proves that it is more interesting to use polynomials of high degree compared
to refining the mesh.
Finally the computational cost inscrease is mainly due to the reconstruction
step. However since profiles are not smooth the DMP is often violated and
the iterative procedure cost more than in the smooth case. For example a
sixth-order unlimited version of the scheme costs 586 r.t.u., thus the iterative
procedure costs about a third of the total time of the MOOD-P5 computa-
tion. Nevertheless this cost remains competitive and could be improved by a
finer implementation.

Euler equations case

For the system case, a Rayleigh-Taylor Instability for the Euler equations
with gravity is considered. The reader should refer to [8] for complete de-
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scription of the test case.
The pattern of the unstructured symmetric triangular mesh used and the
density solutions on a 28800 triangles mesh for MOOD-P1, MOOD-P3 and
MOOD-P5 are plotted in Fig. 4. Computational time is given in r.t.u.
As for the scalar case the MOOD method is plainly able to improve the
solution through the use of high-order polynomial reconstructions. From a
computational cost point of view, computational times given in Fig. 4 prove
that the MOOD iterative procedure is effective since the time raise from a
degree to a bigger one is mainly due to the reconstruction cost itself.
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MOOD-P3 - 10142 triangles - 830 r.t.u.

Fig. 3 Solid Body Rotation — 10 isolines from 0 to 1. Time is given in r.t.u.

Fig. 4 Rayleigh-Taylor Instability — 5 isolines from 0.8 (dark) to 2.3 (light).


