
HAL Id: hal-00566005
https://hal.science/hal-00566005v1

Submitted on 28 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chaotic mixing efficiency in different geometries of
Hele-Shaw cells

Aurélien Beuf, Jean-Noël Gence, Philippe Carrière, Florence Raynal

To cite this version:
Aurélien Beuf, Jean-Noël Gence, Philippe Carrière, Florence Raynal. Chaotic mixing efficiency in
different geometries of Hele-Shaw cells. International Journal of Heat and Mass Transfer, 2010, 53
(4), pp.684-693. �10.1016/j.ijheatmasstransfer.2009.10.024�. �hal-00566005�

https://hal.science/hal-00566005v1
https://hal.archives-ouvertes.fr


Chaotic mixing efficiency in different geometries of

Hele-Shaw cells.
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October 2, 2009

Abstract

Flows in Hele-Shaw cells are generally laminar, and can be in a
first approximation considered as quasi two-dimensional. Therefore,
the only way to mix efficiently inside the cell is to generate a peri-
odic flow and thus create chaos. Here we study the influence of the
geometry of the cell on mixing efficiency: to this aim, we use three
different geometries of the cell (circle, square and rectangle) and we
numerically test them by using two protocols of mixing: the first pro-
tocol uses syringes, the second uses pumps. In a view of simplicity,
this Hele-Shaw flow is modeled as two-dimensional, allowing us to an-
alytically determine the velocity field corresponding to the different
shapes. The results are then analyzed in terms of Poincaré sections
(appearance, filling rate, homogeneity), and the Lyapunov exponents
are calculated. We numerically show that the rectangular geometry
leads to a better mixing, but also that the aspect ratio of the rectangle
plays unexpectedly no important role on mixing.
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Nomenclature

c distance from the center to a corner (square and rectangle)
D diffusion coefficient
h height of the Hele-Shaw cell
hK Kolmogorov entropy
i natural base of complex numbers
K(k) Jacobi function
L side of a square chamber
Pt=t0 Poincaré section for initial time t0
q flow-rate
R radius of the circular cell
S surface of the horizontal section of the cell
t time
T period of the flow-field
T ∗ dimensionless period of the flow-field
w parameter measuring the distance between a point and the center
wc(z) complex velocity field at complex point z
x, y coordinates in a plane
z complex coordinate, z = x + iy

α dimensionless pulse volume
β parameter for the position a source with respect to the center
γ aspect ratio parameter for the rectangle
λ Lyapunov exponent
µ fraction of covered area
τ(w) function for the time needed for a point to go from source to sink
ξ intermediate parameter

1 Introduction

Microfluidic devices are widely used in nowadays’ biotechnology, for appli-
cations ranging from transport of material in microchannels, sorting of cells,
DNA analysis, etc. When chemical reactions come into play (e.g. in many
such systems), efficient mixing is required in order to homogenize the so-
lution, so as to favour the meeting of reactants. However, the Reynolds
number of flows at the microscale are small, generally of the order of unity
or smaller, so that Stokes flows should be commonly expected [1].

It is now well-known that chaotic advection is the best way to mix effi-
ciently in laminar flows [2, 3, 4, 5], all the more reason for microfluidic flows.
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Stroock et al. proposed a famous chaotic mixer adapted to microdevices,
the so-called staggered herringbone mixer (SHM) [6], dedicated to mixing in
microchannels. A typical microchannel has height and width of the order of
50−100 µm, and length of a few centimeters, i.e. two small dimensions and
the third one large compared to the others. In a smooth channel the mixing
of material between streams in the flow is purely diffusive, so that the length
of channel required for mixing can be prohibitely long. The SHM consists in
adding specific bas-relief structures (ridges) on the floor of the channel, lead-
ing to chaotic trajectories; the mixing length is therefore greatly reduced.
In this article we deal with mixing in a different microfluidic configuration,
the Hele-Shaw flows, where the height is small (typically 25 − 50 µm) and
the length and width are “large”, of the order of the centimeter.

Hele-Shaw flows can, in a first approximation, be considered as two-
dimensional. In those conditions, the only way to achieve chaotic advection
is to make the flow non stationary; indeed, time-periodicity is enough.

We previously proposed two time-periodic protocols of mixing, one using
two pairs of syringes, the other operating with pumps, and showed that they
could exhibit chaotic trajectories in a square geometry [7, 8]. Other chaotic
protocols in a Hele-Shaw cell were proposed by two other teams: MC Quain
et al. [9] proposed a stirring protocol using pulsed pairs of syringe-driven
source−sink systems in a rectangular chamber and tested it in a view of
DNA chip hybridization: they showed that hybridization was significantly
improved; then Stremler et al. [10, 11] carried out the 2D mathematical
analysis of mixing in their flow while the experimental analysis was done by
Cola et al. [12]. Another work of importance was done by Hertzsch et al. [13]
who showed that flows generated by pulsed source-sink pairs could be studied
as linked twist maps; therefore they could relate the flow to mathematically
precise notions of chaotic mixing, and proposed a new design to generate a
well-mixed flow; they compared our protocol A, together with the protocol
by Stremler et al., with their new protocol and showed that their protocol,
which has mathematical properties in favor of better mixing, was indeed
best in a circular geometry (see also Sturman et al. [14] for more details on
the mathematical background).

The idea of this article is not to compare all the protocols of stirring
proposed in the literature for Hele-Shaw cells, but to test whether or not
the shape of the chamber influences the quality of mixing. To this end, we
use our two previous protocols [7, 8], which have been shown to exhibit very
different mixing abilities. Fluid flow is created thanks to four vertical pipes
located near the corners, which inject or extract fluid, and therefore act as
sources or sinks. Indeed, those protocols can be considered as variants of
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the pulsed source−sink chaotic mixer first proposed by Aref and Jones [15].

1. The first protocol (called protocol A in the following) relies on periodic
injection of fluid thanks to four reversible syringes : during one period
T , four steps of same duration occur (figure 1(a)).

2. The second protocol (protocol B) operates with two mono-directional
pumps switched alternately. For this protocol, only two steps of same
duration occur during T (figure 1(b)).

In all the following, like in our previous works [7, 8], the flow rate q, the
height h, and the horizontal section S are chosen such that q/hS = 0.18 s−1;
the shape of the cell is whether a circle, a square of side L (like in our
previous works), or a rectangle of lateral sides γL and L/γ, where we took
different values for γ > 1, so that the total surface is, in all cases, equal to
S.

2 Numerical tools

2.1 Numerical model

The velocity field is modeled as purely two-dimensional in a first approxi-
mation, using the depth-averaged horizontal velocity field, which, in a Hele-
Shaw flow, satisfies the Euler equation. Indeed, the aim of this work is to
test the influence of the shape of the domain, and for this purpose such a
2D model is much more flexible than the calculation of the whole 3D-flow,
for which a change of geometry requires a new computational grid, together
with heavy calculations. In our case the flow between a source and a sink is
calculated analytically in a circular geometry using the Milne–Thomson the-
orem [16]. It is then very easy to obtain the flow in the square or rectangular
geometry using a Schwarz-Christoffel transformation [16]. All the analyti-
cal details of the 2D calculations are given in appendix A. The streamlines
obtained with our model for a source-sink flow are shown in figure 2 for
different geometries of the chamber. The trajectories are calculated there-
after using a standard fourth order Runge-Kutta integration. Like in the
3D-simulations, our calculations have been performed without taking into
account molecular diffusion.

In our 2D-model, we impose that a particle entering in a sink reen-
ters the flow domain on the same streamline. The underlying aim is to
avoid adding artificial mixing other than that imposed by chaotic advec-
tion. With this hypothesis, a fluid particle at a given location at the end
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of an injection/extraction stage of protocol A, which is swallowed inside a
pipe during the next stage comes back at exactly the same location when
the sink is turned again into a source. In a laboratory experiment or in the
3D calculations however, the flow-field is not expected to be exactly zero in
the non-active pipes: because of the flow inside the cell, friction causes in
those pipes the formation of a large sequence of eddies, each exponentially
weaker than its predecessor as height grows [17, 18]. Of course this effect
is very weak; but since the streamlines are very tight inside an active pipe,
a change in a fluid particle location during the “inactive” stage, leads the
fluid particle to come back nearly, but not exactly at the same location.
Even though this effect is small, it may affect regular regions visible on the
2D Poincaré sections after integration of fluid particle trajectories on very
long times, as we will see later. Therefore, because our 2D-model neglects
the weak mixing inside the non-active pipes, it is likely to mix less than in
reality.

Note that long time integration of trajectories is also more easily available
with the 2D-model than with a 3D flow on a computational grid, since the
probalility that a fluid particle ends on a boundary is very low in the former
case: first the flow-field is known analytically, and therefore satisfies exactly
the incompressibility constraint, and second the velocity, which is a solution
of the Euler equation, is not zero on the boundaries.

2.2 Correspondence between parameters from different au-
thors

It is clear that the efficiency of mixing does not depend on the value of
the Reynolds number inside the pipes and inside the chamber, as long as
it remains small. Therefore, for a given geometry and a given protocol, the
important non dimensional parameter is the dimensionless pulse volume α,

α =
qT

hS
, (1)

which represents the volume of fluid displaced during one period compared
to the volume of the chamber. Although α is defined for the 3D flow, one can
easily switch from volumes to surfaces by dividing by the – constant – height
h of the chamber. Therefore, α can be used identically as its 2D equivalent,
the dimensionless pulse area, equal to the surface of fluid displaced during
one period compared to the surface of the chamber.

In a view of comparison with our previous works where we used the
dimensional period of the flow T instead of α, note that those two parameters
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are linked by the relation α = 0.18 T (T in seconds) with our set of
parameters.

While Stremler and Cola also used α, Hertzsch et al. used a non di-
mensional period – denoted here T ∗ – defined as T ∗ = qT/2πa2, where the
distance between the source and the sink is equal to 2a; in their simulations,
the radius of the circular chamber is equal to R, chosen as R = 2a, which
leads to the relation α = T ∗/2.

2.3 Tools of chaos

Mixing efficiency is then analyzed with the usual tools of chaos: Poincaré
sections and Lyapunov exponents. In a time-periodic flow, the Poincaré
section of a given trajectory is obtained by plotting on the same graph
all the positions of the initial point taken every period. A good mixing is
obtained when the Poincaré section of a single trajectory covers the whole
surface, in the most homogeneous way and the smallest period possible.

Mixing can also be analyzed quantitatively using the Lyapunov expo-
nent λ, expressed in seconds−1, which measures the asymptotic exponential
stretching between two nearby trajectories (rate of separation). Classically
in a 2D-incompressible flow, the sum of the two Lyapunov exponents is
zero, so that we only need to calculate the largest Lyapunov exponent (in
opposition to our previous works in 3D-flows where we determined the three
Lyapunov exponents [19]). We check that the calculation is sufficiently con-
verged by taking different initial points inside the stochastic region; the
simulation is stopped when all Lyapunov exponents have converged towards
the same value.

In the square and rectangular geometry, it is also possible to calculate
the ”filling rate” of the Poincaré section, i.e. the fraction of surface covered,
so as to obtain a quantitative rather than visual information (for a discussion
on how to measure the filling rate of an ensemble of points, see [20]). We can
therefore investigate the use of the topological or Kolmogorov entropy hK

through the same estimation as Stremler and Cola [11], as the product of the
fraction of the phase space covered by a single chaotic trajectory multiplied
by the corresponding Lyapunov exponent (see [21], section Definitions and
basic concepts page 305). Mixing is supposed to be all the more efficient as
the topological entropy is high.
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2.4 Validation of the 2D model

It is important first to validate the 2D model properly. Indeed, our 2D
model uses the depth-averaged horizontal velocity field, whereas the hor-
izontal velocity profile is almost everywhere parabolic. This implies that
a fluid particle located at middle-height moves faster than what we com-
pute, while another one located for example near the bottom can be much
slower. Therefore, we could fear some important discrepancies between our
2D results and our 3D calculations.

Note also that, since a Poincaré section accumulates the positions of a
fluid particle after each period, and since a fluid particle can change depth,
the 3D Poincaré section is a 3D set of points, and a regular region is likely
to be hidden by points located above and below this region (corresponding
to points with different velocities), which is not possible in the 2D case.

On figure 3 are compared 3D (left) and 2D (right) Poincaré sections,
together for protocol A for three values of α, and for protocol B for a very
small α – the comparison for protocol B and large values of α is of little
interest, since points are almost randomly spread in the whole domain.

Concerning protocol B (figures 3(a) and (b)), the matching is very good.
For protocol A α = 0.36 (figures 3 (c) and (d)), the situation is also very
similar: the peripheral region of the domain, more dense, corresponds to a
chaotic zone, while the region inside is a nearly regular region For protocol
A, α = 0.72 (figures 3(e) and (f)) , the chaotic area (area full of points) and
large regular island (empty area or area having ”elliptical trajectories”) have
comparable shape, size, and location. The regular islands located around
the large one are very thin, and therefore can hardly be detected in the 3D
calculations, as explained before.

For larger values of α (for instance α = 1.8 on figures 3(g) and (h)),
some very large regular regions are present in the 2D case, that are not
visible in the 3D case. At first sight, the correspondence may appear quite
bad. However, a careful analysis shows that the 2D Poincaré section is
indeed informative in the present case: let us consider the large island which
repeats identically at three occurrences in the section (bottom, right and top,
denoted by regions A, B and C on figure 12). A point in one of these islands
is in fact a periodic point, and enters and leaves the different pipes eight
times before it comes back to its initial position seven periods later, see
appendix B (we remind that a complete period is made of four stages). As
explained before, some mixing occurs inside the pipe, even when non active.
This explains why these zones are not visible in the 3D section.

The trapezoidal-shaped island on the left is, on the other hand, never
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swallowed inside a pipe, but moves in the domain with time (this is indeed
the same regular region as the large island seen on figure 3(f) and at the
middle of figure 3(d), which grows in size and is slightly displaced towards
the left with increasing period). Therefore, we should expect a fluid particle
trapped inside this region to remain there for many periods before leav-
ing; this is indeed the case, as can be seen on figure 3(g), where a curve
corresponding to the trapezoidal area is visible. It is also noticeable that
both this region and the central region are less visited than the rest of the
domain (less points in the section), in accordance with the corresponding
regular regions in the 2D section (figure 3(h)). Therefore, even in this case,
we recover special features of the 2D section in the 3D calculations. Note
that in a real experiment, because of molecular diffusion, the mixing will be
even more rapid than in the 3D calculations.

Since we present Lyapunov exponents as a quantitative tool, we could
wonder whether the hypothesis of a quasi 2D flow does not alter quantita-
tively this parameter. On figure 4 are presented with symbols the Lyapunov
exponents obtained with our model flow versus the dimensionless pulse area
α. As a view of comparison are plotted with lines the results obtained
with the full 3D calculations in a square chamber [8]; the dotted line corre-
sponds to protocol A and is to be compared with the empty square symbols
(2D flow), while the solid line (protocol B) shall be compared with the
full square symbols: somewhat surprisingly, the comparison shows almost
perfect matching, except for very small values of α, when the horizontal dis-
persion by the flow is weak, so that 3D effects cannot be neglected anymore.

We therefore conclude that this 2D-velocity field model is adapted for a
complete study of the problem.

3 Results

3.1 Poincaré sections and Lyapunov exponents

Poincaré sections are usually the most straightforward tools for characteriz-
ing chaos, because of the visual information they provide. In figures 5 and
6 are shown Poincaré sections of protocols A and B respectively, for three
values of α, namely α = 0.18, α = 0.72 and α = 1.8, (corresponding to the
periods T = 1 s, T = 4 s and T = 10 s from our previous work).

The circular, square or rectangular domains have been plotted with the
same area so as to be able to compare them visually – in the case of the circle,
although this is not obvious, we indeed have S = πR2 = L2, with R the
radius of the circle, which implies that the diameter is 2R/L =

√
4π ' 1.13.
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As expected [8], we recover with our 2D-model that mixing is much more
efficient with protocol B compared to protocol A in the square geometry;
this result can obviously be extended to different geometries of the chamber.

A more surprising result is the influence of the geometry of the chamber:
the fact is not straightforward concerning protocol B, since mixing is quite
good, even if not perfect in the square geometry (some small regular regions
still persist, figures 6 (e) and (h), but which are much too small to be seen
in a 3D computation or an experiment). However, mixing is as good in the
rectangle as in the circle. The results are much more striking concerning
protocol A, since mixing is not very good, neither in the circle nor in the
square: the very robust regular region for protocol A, α = 0.72, seen in the
3D or 2D calculations (figures 3(e) and (f))

of the square geometry, also present in the circular geometry (figure 5
(d)), has totally disappeared in the rectangular geometry. For the largest
value of α studied, α = 1.8 (also protocol A), the very large islands seen
in the circle and the square (figures 5(g) and (h)) have a much more lim-
ited extent in the rectangular geometry. In fact, we performed many 2D
calculations, but we could hardly find cases with regular regions (except
for protocol A and large values of α, where a fluid particle at the center is
always swallowed into a sink after a source/sink phase, and always comes
back to its initial position when the sink is turned into a source again) –
although we will show two particular cases (one for each protocol) where
some small islands are indeed still present–.

We wanted to know whether the fact that mixing was best in the rectan-
gular geometry was robust with respect to the aspect ratio of the rectangle,
or else if the 2:1 aspect ratio was a particular case: on figure 7 are shown
different Poincaré sections, for the same case protocol A, α = 0.72, from the
square geometry to rectangles with aspect ratii ranging from 3:2 to 4:1. In
all rectangular Poincaré sections, the regular island is not present (although
all of them present the same star-shaped region where the repartition of
points is not completely homogeneous), as if the topology of chaos did de-
pend much on the geometry (circular, square or rectangular) but not on the
aspect ratio of the rectangle either. A similar conclusion can be drawn when
looking at figure 8, where the small regular islands seen both for protocol
A with α = 1.44 or protocol B with α = 1.8 are topologically similar in the
2:1 and 3:1 rectangles.

We could calculate the Lyapunov exponent for both protocols and each
geometry (circle, square, rectangle 2:1). The results are shown on figure
9, where the black symbols represent protocol B, while the empty symbols
are for protocol A: surprisingly, although the Lyapunov exponent depends
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much on the protocol, it seems not to depend much on the geometry —it is
slightly above in the rectangular case for α < 1.44, but is also slightly below
for α > 1.44, although the Poincaré sections always show a much better
chaos—. Moreover, the maximum of the Lyapunov exponent (the smallest
value of α tested, α ' 0.045 for protocol B, and α ' 0.09 for protocol A)
is not representative of a good mixing: the stirring is important, but in a
restricted chaotic domain. We can conclude that the Lyapunov exponent is
quite robust with respect to the protocol; however, as expected the Lyapunov
exponent is not the relevant quantity to decide between different geometries.

3.2 Topological entropy

As mentioned at the end of the previous section, there is a need to find
a different quantitative parameter which could help decide on whether the
rectangular geometry indeed leads to more efficient mixing than square or
circular shapes. We propose to try to use the topological entropy, calculated
as the fraction of surface covered by a single trajectory, multiplied by the
corresponding Lyapunov exponent [21]. As seen before, the Lyapunov expo-
nent depends poorly on the geometry of the chamber, so that the topological
entropies for different geometries should follow more or less the behavior of
the filling rate of the sections. However, for very small values of α the filling
rate is low, even for protocol B, while for the same protocol the Lyapunov
exponent is a decreasing function of α (figure 9); therefore we could won-
der whether the product of the filling rate by the Lyapunov exponent would
present a maximum that could be interpreted as an indicator of the optimum
of α.

On figure 10(a) is shown the filling rate of the Poincaré section as a
function of the dimensionless pulse area α, for both protocols in the square
and rectangle 2:1, calculated using a single fluid particle followed for 10.000
periods. In accordance with the aspect of the Poincaré section, the filling
rate is nearly always higher in the rectangular geometry. When multiplied
by the Lyapunov exponent, the topological entropy is obtained, as shown in
figure 10(b): concerning protocol B, no maximum was found, neither in the
square nor in the rectangle; as for the Lyapunov exponent, the quantity is
decreasing with increasing α, greater for the rectangle than for the square
for α < 1.44, and lower thereafter. It is clear though that the smallest values
of α are not those associated with the best chaos, as seen on figures 6(a),
(b) and (c) for protocol B, α = 0.18. In the case of protocol A however,
a maximum exists for the topological entropy, located at α ' 0.36 for the
square (which corresponding Poincaré section can be seen on figure 3(d)),
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and α ' 0.72 for the rectangle (figure 5(f)). This may indeed correspond
to an optimal period for mixing in the rectangle, but inspection of figure
3(d) reveals that this is not obvious in the case of the square. Moreover, the
topological entropy does not differ much from square to rectangle, although
the filling rate proves that chaos is much more extended in the rectangle for
this protocol. Therefore, the use of the topological entropy, even if giving
some interesting quantitative information, is not totally convincing. . . .

3.3 Discussion

The protocols have approximately the same symmetries for the different
geometries: in the case of protocol A the equations of the trajectories in
the 2D or 3D flow are invariant under the change of variables t −→ −t,
x −→ x, y −→ −y, z −→ z. This implies that the Poincaré sections Pt=0,
corresponding to the accumulated periodic positions of particles, starting at
t = 0, are invariant under reflection in the plane y = 0. In the square, a
translation in time t −→ t+T/4 leaves the flow unchanged after rotation of
angle −π/2, and the Poincaré section Pt=T/4 is obtained from the Poincaré
section Pt=0 by a rotation of angle −π/2; this is of course not true anymore
in the rectangle, but if now we consider the translation in time t −→ t+T/2,
two consecutive rotations of angle −π/2 are equivalent to a rotation of angle
π, which is also a point symmetry. One can check that this last symmetry
is also present in the rectangular geometry. In the case of protocol B, the
invariance of particle trajectories under t −→ −t, x −→ −x, y −→ y,
z −→ z implies that the Poincaré sections Pt=0 are invariant with respect
to reflection in the plane x = 0. The translation in time t −→ t+T/2 leaves
the flow unchanged after reflexion in the plane y = 0, which implies that the
Poincaré section Pt=T/2 is, in all the geometries studied here, obtained from
the Poincaré section Pt=0 by reflection in y. Therefore, the improvement of
results seen in the Poincaré sections in the rectangle does not result from a
breaking of symmetry in the combined effect of protocol and new geometry.

Recently, Hertzsch et al. showed that flows generated by source-sink
pairs could be studied as “Linked Twist Map” (LTM) [13]. The central idea
of their article was to construct crossed periodic flows having properties as
close as possible to those of an ideal model, i.e., (I) crossing of streamlines
as orthogonal as possible, and (II) velocity field as close to monotonous
as possible. We propose to test properties (I) and (II) on our different
geometries.

On figure 11 are shown superimposed streamlines for the two source-sink
pairs for the different geometries. In all cases the streamlines are close to
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tangential near the boundaries. In the central region however, the greatest
transversality is found in the circular and square geometry, where stream-
lines are close to orthogonality, whereas mixing is much more efficient in the
rectangle. In the case of the rectangle 3:1 (figure 11(d)), the situation is
even worse, since the streamlines in the central region are nearly tangential.
Loss of transversality works here in favor of mixing, rather than against it.

We now try to find out whether the flow-field in the rectangular geometry
is more monotonous than in the square or the circle. It is quite difficult
to compare velocity profiles since the flow is not unidirectional, but we can
compare the time needed to go from the source to the sink on each streamline
instead. To this end, let us come back to figure 2 where streamlines of a
source-sink pair are shown for the different geometries: for a given phase
with a source-sink pair, let us consider the segment joining the two other
corners, that we will chose as our axis of reference. We graduate it from −c
to +c, where c is the distance from the center to one corner, and we denote by
τ(w) the time needed to join the sink starting from the source (−c ≤ w ≤ c).
In the circle and the square, the streamlines are symmetric with respect to
any line joining a source and a sink; therefore τ(w) is a symmetric function,
and is absolutely not monotonic. In the off diameter source-sink model
proposed by Hertzsch et al. in a circle [13], τ(w) is dissymetric, and much
closer to a monotonic function. In the rectangle however, although the
two symmetries with respect to the lines joining a source-sink pair do not
hold, the streamlines are clearly symmetric with respect to the center. This
implies that τ(w) is, as for the circle or the square, a symmetric function,
therefore not monotonic either...

We conclude that the only reason for the improvement of mixing in the
rectangular geometry is the loss of symmetry of the streamlines themselves.
The line joining the source and the sink is no more a streamline of the cor-
responding flow. Instead, the streamline that goes through the center point
wanders from one side of this line to the other, all the more as the rectangle
has a large aspect ratio. This last point could explain also why, although
superimposed streamlines are even more tangential when the aspect ratio of
the rectangle is increased, mixing remains good, and the Poincaré section
mostly unchanged.

4 Summary and conclusion

In this article we tested the influence of the geometry of Hele-Shaw cells on
the quality of chaotic mixing, using two different mixing protocols that relied
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on chaotic advection. In a view of fast design, we used a 2D model consisting
in the depth-average velocity field: it could be easily calculated analytically
for a source-sink flow, first in a circle, and in a square or rectangle there-
after with a Schwarz-Christoffel transformation. The model was validated
using various Poincaré sections in a square, that qualitatively matched our
previous 3D calculations. As a more quantitative tool, 2D and 3D Lya-
punov exponents were also compared, with good agreement. We thus could
show that mixing in the rectangular geometry was nearly always best (better
filling of the Poincaré sections, usually higher Lyapunov exponents, higher
topological entropy), whatever the protocol used. The result did not depend
much on the aspect ratio of the rectangle.

We tried to find out whether the improvement in mixing in the rectangle
could be relied to loss of symmetry in the protocols compared to squared
or circular geometry, with no success. Then we searched for properties pro-
posed by Hertzsch et al. in order to approach more ergodic systems, namely
increase in transversality of superimposed streamlines, and monotonicity of
the velocity profile, but this study revealed that the profile was no more
monotonic in the rectangle than in the square or the circle, and that, on the
contrary, the streamlines were even less perpendicular. We then concluded
that the only reason for this improvement was the loss of symmetry in the
streamlines for a source-sink flow in the rectangular geometry: whereas in
the square or the circle the streamlines have two axes of symmetry, in the
rectangle only a point symmetry remains. More specifically, the straight line
joining the source and the sink is no more a streamline in the rectangle.

This improvement in mixing in the rectangular geometry is all the more
important in practice as a straightforward application of mixing in Hele-
Shaw cells is the enhancement of reliability of DNA chips technology, and
that most DNA chips are manufactured on microscope lids, which have a
rectangular shape.

A Velocity field

In order to obtain the flow in the squared or rectangular domain, the velocity
field is first easily calculated in a circular chamber using the Milne-Thomson
theorem. Let vx(x, y) and vy(x, y) the components of the velocity-field at
point (x, y). The complex velocity-field wc(z) is

wc(z) = vx(x, y)− i vy(x, y) (2)
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where i is the natural base of complex numbers, defined as i2 = −1, and
z = x+ i y. In a circular cavity of radius R, the flow of rate q created by one
pair source/sink in opposition at length βR from the center of the cavity is:

wc(z) =
q

2π

(
1

z + βR
− 1

z − βR
+

1
z + R/β

− 1
z −R/β

)
(3)

Then a Schwarz-Christoffel function g, adapted to the transformation of
a circle into a square or rectangle, is calculated [16, 22]: let k and ξ be
solutions of equation:

K(k)
a

=
K(
√

1− k2)
b

=
ξ

2
, (4)

where K is a Jacobi function[23] and a and b the lengths of sides of the
squared (or rectangular) cavity. Then g is defined as:

g(z) =
sn(ξz/2, k) dn(ξz/2, k)

cn(ξz/2, k)
, (5)

where sn, cn and dn are elliptical functions [23].
Finally, the velocity field wr(z) inside a square (or rectangular) shape is

defined as:
wr(z) = wc(g(z))× dg

dz
. (6)

B Study of the period-7 periodic point in figure
3(d)

We describe here briefly how the regular region that wanders in the whole
squared domain in figure 3(d) returns to its initial position after 7 periods,
while only three identical regions are seen on the Poincaré section. Consider
figure 12: crosses I, II, III and IV represent the pipes. Protocol A consists
in four stages per period; during the first one, denoted by stage 1 (resp. 2,
3 and 4), the active couple is I and its opposite hole, the sink being I
(resp. II, III and IV ). For this set of parameter, a fluid particle located in
regular region A (respectively D) is mapped into B (respectively C) during
this stage, and a fluid particle located at B or C is swallowed into pipe I.
We remind that a fluid particle swallowed into a pipe comes back at the
same location when the sink is turned into a source again. We can therefore
follow a fluid particle initially in regular region A, knowing that each period
is composed of the four stages 1, 2, 3 and 4.
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1st period: A −→ B −→ pipe II −→ pipe II −→ B.
2nd period: B −→ pipe I −→ pipe I −→ B −→ C.
3rd period: C −→ pipe I −→ pipe I −→ C −→ pipe IV .
4th period: pipe IV −→ pipe IV −→ C −→ D −→ pipe IV .
5th period: pipe IV −→ pipe IV −→ D −→ pipe III −→ pipe III.
6th period: pipe III −→ D −→ A −→ pipe III −→ pipe III.
7th period: pipe III −→ A −→ pipe II −→ pipe II −→ A.
Therefore, there are indeed seven identical regular regions in the Poincaré
section, three of which are visible in the section, two inside pipe IV , two
others inside pipe III.
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(a) (b)

Figure 1: (a) : Alternating injection scheme for protocol A. Each quarter-
period step of the protocol involves two opposite syringes (the black ones
in step 1 and 3, the grey ones in steps 2 and 4), the two other ones being
inactive. (b) : Same for protocol B. Each half-period step of the protocol
involves one of the pumps, the other being inactive. One pump always
pushes the fluid in the same direction, or else is inactive. Note : the DNA
chip is symbolized by the central black square.

Figure 2: Streamlines for a source-sink flow in the different geometries of
the chamber.
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(g) (h)

(e) (f)

(c) (d)

(a) (b)

Figure 3: Comparison between Poincaré sections with 3D velocity flow (left)
and 2D model velocity flow (right). Top (a) and (b): Protocol B, α = 0.09;
(c) and (d): Protocol A, α = 0.36; (e and f) Protocol A, α = 0.72; bottom
(g) and (h): Protocol A, α = 1.8.
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Figure 4: Comparison of Lyapunov exponents from 2D and 3D calculations
in the squared geometry. (�) protocol A, 2D calculations, (�) protocol B,
2D calculations. The lines correspond to the Lyapunov exponents obtained
in our previous work with complete 3D calculations [8]: (. . . ) , proto-
col A;(—) protocol B.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Poincaré sections : comparison circular/squared/rectangular ge-
ometry of the chamber with protocol A (syringes) for α = 0.18 (above),
α = 0.72 (middle) and α = 1.8 (below).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Poincaré sections : comparison circular/squared/rectangular ge-
ometry of the chamber with protocol B (pumps) for α = 0.18 (above),
α = 0.72 (middle) and α = 1.8 (below).
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(a) (b) (c)

(d) (e)

Figure 7: Comparison of different aspect ratii from squared to rectangular
geometry, for protocol A, α = 0.72: (a), square; (b), rectangle 3:2; (c),
rectangle 2:1; (d), rectangle 3:1; (e), rectangle 4:1.

(a) (b)

(c) (d)

Figure 8: Poincaré sections : comparison 2:1 / 3:1 rectangular chamber for
protocol A with α = 1.44 ( (a) and (b) ), protocol B with α = 2.52 ( (c) and
(d) ). We chose in purpose cases where small regular regions did exist.
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Figure 9: Lyapunov exponent λ. Full symbols: protocol B; empty symbols:
protocol A. Squared symbols: squared geometry; circles: circular geometry;
triangles: rectangular geometry. Therefore: (O) rectangle + protocol A, (H)
rectangle + protocol B, (�) square + protocol A, (�) square + protocol B,
(◦) circle + protocol A, (•) circle + protocol B.
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Figure 10: (a) : Filling rate µ and (b) : Topological entropy hK = µ × λ
(in seconds−1) as a function of α. Full symbols: protocol B; empty symbols:
protocol A. Squared symbols: squared geometry; triangles: rectangular ge-
ometry. Therefore: (O) rectangle + protocol A, (H) rectangle + protocol B,
(�) square + protocol A, (�) square + protocol B.
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(a) (b)

(c) (d)

Figure 11: Superpositions of streamlines created independently by the two
source-sink pairs.
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Figure 12: Sketch of the velocity field for the Poincaré section corresponding
to protocol A, α = 1.8 in the square: during stage 1 (respectively 2, 3 or
4), the sink is the hole located at cross I (respectively II, III or IV ), the
source is the hole located at the cross
at the opposite corner.
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