
HAL Id: hal-00565945
https://hal.science/hal-00565945v1

Submitted on 15 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Selecting an Optimal Number of Clusters for Color
Image Segmentation

Hoel Le Capitaine, Carl Frelicot

To cite this version:
Hoel Le Capitaine, Carl Frelicot. On Selecting an Optimal Number of Clusters for Color Image
Segmentation. Proceedings of the 2010 20th International Conference on Pattern Recognition, 2010,
Istanbul, Turkey. pp.3388–3391. �hal-00565945�

https://hal.science/hal-00565945v1
https://hal.archives-ouvertes.fr


On selecting an optimal number of clusters for color image segmentation

Hoel Le Capitaine
MIA Laboratory, University of La Rochelle

La Rochelle, France
Email: hoel.le capitaine@univ-lr.fr

Carl Frélicot
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Abstract—This paper addresses the problem of region-based
color image segmentation using a fuzzy clustering algorithm,
e.g. a spatial version of fuzzy c-means, in order to partition
the image into clusters corresponding to homogeneous regions.
We propose to determine the optimal number of clusters, and
so the number of regions, by using a new cluster validity
index computed on fuzzy partitions. Experimental results and
comparison with other existing methods show the validity and
the efficiency of the proposed method.
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I. INTRODUCTION

Region-based image segmentation consists in partitioning
an image into non-intersecting regions such that pixels
within a region are homogeneous and pixels from adjacent
regions are not. Fuzzy clustering algorithms have become
popular, e.g. fuzzy c-means (FCM) [1]. Like any unsuper-
vised algorithm, it requires the number of clusters to be set
by the user. This makes FCM unsuited for segmenting image
databases unless this number is automatically determined.
Cluster validity indexes (CVIs) come to this end and once
an optimal number of clusters for a dataset is obtained, the
corresponding fuzzy partition is selected as the optimal one
[2], [3], [4]. Usual FCM and its spatial version [5] we use
are presented in section II. In section III, we recall basic
definitions on fuzzy aggregation operators [6] and present
a CVI to be used in an automatic segmentation process.
Experimental results are given in section IV, comparison to
other unsupervised segmentation algorithms is provided. We
finally conclude and draw some perspectives in section V.

II. FUZZY CLUSTERING AND IMAGE SEGMENTATION

Clustering is an instance of unsupervised classification
which aims at finding a structure of groups in a set of n
p-dimensional points X = {x1, ...,xn}. In this framework,
the label vectors uk = u(xk) do not exist and clustering
algorithms can be used to obtain them from X . For instance,
the fuzzy c-means (FCM) algorithm [1] partitions X into
c > 1 clusters by minimizing the following objective
function

Jm(U, V ) =
n∑

k=1

c∑
i=1

um
ik ||xk − vi||2 (1)

where uik is the membership degree of xk to the ith cluster
represented by its centroid vi ∈ Rp. Centroids are gathered
into a (c×p) matrix V = [v1, ...,vc]. Degrees uik are subject
to
∑c

i=1 uik = 1 for all xk in X and to 0 <
∑n

k=1 uik < n
(∀i = 1, · · · , c). In addition, they are elements of the
fuzzy c−partition matrix U (c × n). The so-called fuzzifier
m > 1 is a weighting exponent which makes the resulting
partition more or less fuzzy [4]. The higher m is, the softer
the clusters’ boundaries are. Minimization of Jm(U, V ) is
obtained by iteratively and alternatively updating (U, V ).
Application to image segmentation consists in taking X as
the entire set of pixels xk in a color space, say R3, and obtain
r regions given by (U, V ), where r ≥ c since several non
adjacent regions in the image can have the same centroid in
the color space. Unfortunately, FCM fails when noisy pixels
are present so a filtering process is required. An alternative is
to add spatial constraints in order to smooth heterogeneous
pixel values effect within a region, e.g. the simple sFCM
algorithm [5] where the degrees of neighboring pixels are
used to modify U during the updating step as follows :

uik =
up

ikhq
ik∑c

j=1 up
jkhq

jk

(2)

where h is a spatial function and (p, q) are parameters which
control the relative importance of ujk and hjk so that the
smoothing effect due to the neighborhood increases with q.
The general form of h is given by hik =

∑
j∈N (xk) uij ,

where N (xk) is the set of neighboring pixels, e.g. a square
window centered on xk. Note that sFCM reduces to FCM
when (p, q) = (1, 0).

III. THE CLUSTER VALIDITY INDEX

For the CV application, we are interested in aggregation
functions that map a collection u in [0, 1] to a value in [0, 1],
formally a vector u = t(u1, · · · , uc) 7→ A(u). Among
the frequently used aggregation operators, one finds the
class triangular norms (t-norms) and conorms (t-conorms).
They have been introduced to characterize the general multi-
valued logic AND and OR operations and are widely used
in fuzzy logic and fuzzy set theory to implement con-
junctive and disjunctive operators respectively. A t-norm
is a commutative, associative and monotone function >
having for neutral element 1. Alternatively, its dual operator,



the t-conorm, is a commutative, associative and monotone
function ⊥ having for neutral element 0. Examples of norms
couples are given in Table I for two operands, see [6] for
a large survey, including parameterized families. The dual
couple is generally associated with a strong fuzzy negation
defined as N(v) = 1 − v and mentioned as the triple
(>,⊥, N).

Table I
USUAL TRIANGULAR NORM COUPLES

Standard u1>Su2 = min(u1, u2)
u1⊥Su2 = max(u1, u2)

Algebraic u1>Au2 = u1 u2

u1⊥Au2 = u1 + u2 − u1 u2

Łukasiewicz u1>Lu2 = max(u1 + u2 − 1, 0)
u1⊥Lu2 = min(u1 + u2, 1)

Given a fuzzy clustering (U, V ) of X , each uik defines
the similarity of the object xk to the prototype vi, or
the degree to which xk satisfies the ith group description.
Using the membership vector uk = t(u1k, · · · , uck) (kth

column of U ), the standard t-conorm (max operator) is
commonly used to select the most appropriate group the
object should be assigned to. However, such an exclusive
partitioning is not efficient because lower values interact
with the greatest value, meaning that xk satisfies more than
one group description. Therefore, it is adequate to aggregate
the values in uk in order to assess to which extend xk

belongs or not to several clusters and how many. We propose
to use the fuzzy OR operator (fOR-l for short) defined in
[7] for supervised classification with reject options purpose.
This operator evaluates degrees of similarity at a given order
(l) by combination of t-norms. Let P be the power set of
C = {1, 2, ..., c} and Pl = {A ∈ P : |A| = l} where |A|
denotes the cardinality of subset A, then the fOR-l associates

to uk a single value
l

⊥(uk) ∈ [0, 1] defined by:

l

⊥(uk) =
l

⊥
i=1,··· ,c

uik = >
A∈Pl−1

(
⊥

j∈C\A
ujk

)
(3)

It must be viewed as some kind of generalization of the

“lth highest” value, l ∈ C. Using standard t-norms,
l

⊥(uk)
is exactly the lth highest element of uk (see [7]).

Validating the provided clustering (U, V ) of X consists
in assessing whether the resulting partition reflects the data
structure or not. Due to the unsupervision, the user does not
have any prior knowledge on c whereas it is required by
clustering algorithms such as FCM. Most of works on CV
focus on the number of clusters problem. A reliable CVI
for FCM must consider both compactness and separation
of the resulting fuzzy c-partition U . If only the former is
considered, the best partition consists of as many clusters as
points. On the other hand, if only the latter is considered,

the best partition consists of a single cluster. So it is well
established that a CVI has to combine both measures to
be efficient. Separation measures generally take distances
between centroids into account but it is seldom sufficient to
interpret the geometrical structure of the data, and therefore
the separation between clusters, see [3] for examples on the
limitations of these approaches.
We propose to use, for each point xk, two measures that
overcome these drawbacks: a fuzzy overlap measure which
evaluates the degree of overlap of a specified number (l)
of fuzzy clusters and a fuzzy separation measure which
indicates the degree of overlap of the most probable cluster,
i.e. the one corresponding to the highest membership degree,
with respect to the c − 1 other ones. A low value of this
latter measure will denote a large separation of the most
probable cluster from the others. Despites the ability to
deal with overlapping clusters is now considered to be a
major quality of a CVI [8], most of works are based on
an intuitive representation of overlap. An overlap measure
between l fuzzy clusters for each point xk of X described
by its membership vector uk can be obtained by (3). By

successively computing
l

⊥(uk) for different values of l, we
get a combination of l-order overlap degrees for xk. In order
to determine the overall degree of overlap for a given point,
it is adequate to determine which orders induce high overlap.
The most satisfied order(s) can be quantified by the fuzzy
disjunction of the l-order overlap measures (l = 2, c), so we
define the overall overlap measure of a point xk by:

O⊥(uk, c) =
1

⊥
l=2,c

 l

⊥
i=1,c

uik

 (4)

In [2], Bezdek and Pal show that inter cluster separation
plays a more important role in cluster validity than
diameters. We propose to introduce such a measure by
quantifying the fuzzy separation of each point xk with
1

⊥(uk), which is the overlap measure within one fuzzy
cluster, i.e. its separation from the other fuzzy clusters,
since uk sums up to one. This aggregation corresponds to
the fuzzy disjunction of membership degrees for a given
point xk, which selects the most probable cluster. We define
the fuzzy separation of xk with respect to the c clusters as:

S⊥(uk, c) =
1

⊥


1

⊥
i=1,c

uik, · · · ,
1

⊥
i=1,c

uik︸ ︷︷ ︸
c−1 times

 (5)

Since a small value of the overlapping degree O⊥(uk, c) and
a large value of the separation one S⊥(uk, c) indicates that
the highest membership degree of xk corresponds to a well
separated and not overlapping cluster, we finally define the
l-order Overlap and Separation Index (OSI) taking values



in [0, 1] as the average value of the ratios of both measures:

OSI⊥(c) =
1
n

n∑
k=1

O⊥(uk, c)
S⊥(uk, c)

(6)

Running sFCM for c in a range [cmin, cmax] and selecting
the value cbest which minimizes (6) allows to segment an
image in rbest corresponding homogeneous regions.

IV. COLOR IMAGE SEGMENTATION RESULTS

Various studies have shown that many color spaces pro-
posed for computer graphic applications are not well adapted
to image processing. As pointed out in [9], a convenient
representation should yield distances and provides inde-
pendence between chromatic and achromatic components.
For this reason and comparison purpose, we use the CIE-
lab color space, see [10] for details and comparisons. We
test the proposed segmentation approach on the Berkeley
segmentation database [11] which consists in 300 color
images. For each image, a set of benchmark results provided
by human observers is given. Performance is evaluated by
computing the consistency of the segmentations against the
human ones using some classical criteria:
- the Probabilistic Rand Index (PRI) which counts the
number of pixels whose labels are the same for both seg-
mentations,
- the Variation of Information (VoI) which averages the
conditional entropy of one segmentation given the other one,
- the Global Consistency Error (GCE) which evaluates
to which extent one segmentation can be viewed as a
refinement of another.
Many unsupervised image segmentation algorithms have

Table II
PERFORMANCES ON THE BERKELEY DATABASE (BOLD VALUE IS THE

BEST SCORE).

Method PRI VoI GCE rank

1) Mean-shift [12] 0.755 2.477 0.259 5.33
N-cuts [13] 0.722 2.932 0.218 5.33

2) CTM [14] 0.756 2.464 0.176 2.66
FCR [10] 0.761 2.440 0.242 3.66

3) sFCM + XB 0.631 2.412 0.219 5
sFCM + K 0.642 2.325 0.211 3.66
sFCM + OSI⊥S

0.751 2.283 0.198 2.33

been proposed so far. Since comparison cannot be done with
all of them, we choose to compare the proposed method to
three couples of methods:
1) Two algorithms that are widely used in the segmen-
tation literature, which complexity is comparable to the
CV approach: the Mean-shift [12] and N-cuts [13]. Mean-
shift is a robust effective mode-seeking algorithm based
on nonparametric kernel density estimation. The optimal
number of modes, depending on some resolution param-
eters, is automatically performed so segmentation consists

in associating the pixels to the closest local mode. N-cuts
(Normalized-cuts) is a graph-theoretic method taking each
pixel as a node and connecting each pair of pixels by an
edge so that the weight on the edge reflects the likelihood
that the two pixels belong to the same region. Segmentation
is obtained by cutting the edges less than an optimal value,
solving an eigenvalue problem. For both algorithms, internal
parameters are set to their default values.
2) Two more sophisticated and somehow new methods:
the Compression-based Texture Merging [14] and Fusion
of Clustering Results [10]. CTM is based on local features
assumed to be drawn from a mixture of (possibly degenerate)
Gaussians. Component parameters are estimated using the
lossy minimum description length and the segmentation is
the one that minimizes the number of bits needed to code
the segmented data, subject to a given distortion. FCR fuses
segmentation maps obtained through the k-means clustering
of histograms computed on various color spaces.
3) sFCM associated with two popular CVis: the Kwon (K)
and Xie-Beni (XB) indexes, see [3] for definitions.
For the CV approach, sFCM is used with a square window
7 × 7 for the neighborhood and (p, q) = (0, 2) so that
the smoothing effect is large enough to remove small pixel
variations and the computational time is reasonable.
Results reported in Table II show that the proposed method
(sFCM + OSI⊥S

) obtains the overall best mean rank, the best
score for VoI, and it outperforms the other CV approaches
(group 3) whatever the performance measure. It also gives
better results than the non clustering methods (group 1) for
two measures. Compared to the more highly sophisticated
methods (group 2), it gives quite satisfactory in-between
scores. Note that for sFCM associated with the presented
CVI, only the results obtained using the standard norms
which aggregate cautiously are given. Using algebraic and
Łukasiewicz norms sometimes produce over- and under-
segmented results respectively, because they involve input
values interactions and are Archimedean (>(u1, u1) < u1)
whereas standard ones are not.

V. CONCLUSION

A non-parametric segmentation method based on a cluster
validity index, provided fuzzy partitions of pixels in a given
color space is proposed. It is associated to a spatial version
of the fuzzy c-means algorithms in order to take into account
neighboring pixels. The index allows to select a number of
clusters that are as separated and non overlapping as possible
and to use it to segment an image in homogeneous regions.
Results show the efficiency of the proposed approach, com-
pared to other unsupervised segmentation algorithms.
We intend to adapt it to the color space selection problem to
compare it to other sophisticated methods. In a future work,
we will intensively study how mathematical properties of
triangular norms affect the selected partition, and therefore
the segmentation.



Figure 1. Images segmented by sFCM+OSI⊥S
.
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