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Abstract—Decision-making systems intend to copy human
reasoning which often consists in eliminating highly non prob-
able situations (e.g. diseases, suspects) rather than selecting
the most reliable ones. In this paper, we present the concept
of class-rejective rules for pattern recognition. Contrary to
usual reject option schemes where classes are selected when
they may correspond to the true class of the input pattern,
it allows to discard classes that can not be the true one.
Optimality of the rule is proven and an upper-bound for
the error probability is given. We also propose a criterion
to evaluate such class-rejective rules. Classification results on
artificial and real datasets are provided.

Keywords-bayesian classification; decision rules; loss struc-
ture; reject option; risk minimization;

I. INTRODUCTION AND MOTIVATION

Let Ω = {ω1, ..., ωc} be a set of classes with prior
probabilities p(ωi) and assume that, given a pattern x in
a feature space X , the conditional densities f(x|ωi) and
the mixture density f(x) =

∑c
i=1 p(ωi) f(x|ωi) can be

calculated (or estimated). The probability that x belongs to
class ωi is given by

p(ωi|x) =
p(ωi) f(x|ωi)

f(x)
. (1)

In the sequel, we assume that we use a Bayesian classifier,
and focus our study on posterior probabilities.

If risk(x) denotes the risk of taking a wrong decision for
x, the so-called Bayes decision rule, which assigns x to the
class of maximum posterior probability (1), minimizes the
error probability defined by

e =
∫

X

risk(x) f(x) dx. (2)

However, when some classes are not known or when classes
overlap in X , this rule may not be always efficient. Chow
modified it so that one can reject a pattern if its maximum
posterior probability is less than a user-defined threshold t
[1]. Chow’s rule minimizes (2) as a function of t which
specifies the reject probability and allows to assign x to
n? ∈ {1, c} classes. Ha proposed a class-selective rule which
minimizes (2) for an average number of selected classes n
[2]. It allows to assign x to n? ∈ [1, c] classes. In recent
years, research on reject option has focused on binary classi-
fication, see e.g. [3], [4], neglecting the multi-class case, with
the notable exception of [5], where ad-hoc transformations

are operated on both distance and density base classifiers.
In this paper, the multi-class case is considered without
requiring a specific transformation on output models.

We are interested in applications, e.g. diagnosis of dis-
eases or police investigation, where it can be more efficient
to first discard less reliable cases, e.g. diseases or suspects,
instead of selecting most reliable ones. To this aim, we
introduce the concept of class-rejective rules: classes are
eliminated and x is assigned to the remaining ones. In
order to obtain good performances with respect to the
costs associated with specific actions, one may reject as
much classes as possible, while preserving a low error rate.
Moreover, such a rule is able to reject all the c classes if
none of them corresponds to x, resulting to an usual distance
reject scheme [6].

II. DECISION RULE AND OPTIMALITY

Let αj = αj(x) be the action of selecting, for x, a subset
Sj of classes among the 2c possible ones, and L(αj |ωi) the
loss incurred by action αj when the true class of x is ωi.
The overall risk R to be minimized with respect to actions
αj is the average expected loss

R =
∫

X

R(αj |x) f(x) dx (3)

where R(αj |x) is the conditional risk defined by

R(αj |x) =
c∑

i=1

L
(
αj(x)|ωi

)
p(ωi|x). (4)

We define a loss structure modeling the specifical needs
of the class-rejection problem. Let Rj be the subset of rj
rejected classes and set L(αj |ωi) = Le(αj |ωi) + Lr(αj)
where Le(αj |ωi) and Lr(αj) denote respectively the loss
of eliminating the true class ωi and the loss of having
eliminated a few number of classes, when taking action αj .
We propose to define both losses as:

Le(αj |ωi) =
{
Ce if ωi ∈ Rj

0 otherwise (5)

Lr(αj) = Cr(c− rj) (6)

where Ce and Cr are user-defined positive costs depending
on the application but not on the decision rule. Thus, (4)



can be rewritten as

R(αj |x) = Ce

∑
ωi∈Rj

p(ωi|x) + Cr(c− rj). (7)

Since p(x) > 0 for all x, minimizing (3) is equivalent to
minimizing (4) or (7) over all possible numbers of rejected
classes r ∈ [0, c] and we have to solve

min
r∈[0,c]

{
min
rj=r

R(αj |x)
}
. (8)

For a fixed r, it is obvious that the solution of (8) is such that
Rj contains the r classes of lowest posterior probabilities.
Let us use the decreasing ordered sequence of posterior
probabilities such as p(ω(i)|x) ≥ p(ω(i+1)|x), ∀i = 1, c.
Then, the conditional risk (7) can be defined as a function
of the r worst classes by

R(r|x) = Ce

c∑
i=c−r+1

p(ω(i)|x) + Cr

(
c− r

)
. (9)

Setting t = Cr/Ce and simplifying by Ce, (8) becomes

min
r∈[0,c]

{
R(r|x)

}
= min

r∈[0,c]

{ c∑
i=c−r+1

p(ω(i)|x) + t (c− r)
}
.

(10)

The first term in the right-hand side of (10) is (not strictly)
convex because it sums increasing values and the second
term t(c− r) is a (not strictly) convex function, so R(r|x)
is convex. Therefore, if there is a unique solution r?, it
satisfies:

R(r? − 1|x) > R(r?|x) (11)
R(r? + 1|x) > R(r?|x). (12)

Using (10), it results in p(ω(c−r?+1)|x) < t and
p(ω(c−r?)|x) > t. Since p(ω(i)|x)’s are ordered, it ensues
the optimal number of rejected classes:

r?(x, t) = max
r∈[0,c]

{
r : p(ω(c−r+1)|x) < t

}
(13)

or, equivalently,

r?(x, t) = min
r∈[0,c]

{
r : p(ω(c−r)|x) > t

}
(14)

with p(ω(c+1)|x) = 0 and p(ω(0)|x) = 1 by convention.

What about several solutions for (10)? Since R(r|x) is
convex, multiple solutions are necessary consecutive and
taking the highest (respectively the lowest) only change ’>’
to ’≥’ in (11) (respectively (12)) and ’<’ to ’≤’ in (13)
(respectively ’>’ to ’≥’ in (14)).

With this formulation, the risk associated to the optimal
number of rejected classes r? can be written as

risk(x, r?) =
c∑

i=c−r?+1

p(ω(i)|x) (15)

Special values of the solution can be emphasized:
• r? = 0: x is associated to all classes as it would be

using Chow’s rule [1],
• r? = c − 1: x is rejected from all classes except one,

so the rule reduces to the Bayes decision rule and the
risk (15) is the Bayes one risk(x) = 1− p(ω(1)|x),

• r? = c: x is rejected from all (known) classes, i.e. it is
distance rejected in the sense of [6].

As a final proposition, let us give an upper-bound of the
induced probability error e(t). From (13) and the ordering
of p(ω(i)|x)’s, we have

t ≥ p(ω(c−r?+1)|x) ≥ ... ≥ p(ω(c)|x). (16)

Therefore,
c∑

i=c−r?+1

t ≥ p(ω(c−r?+1)|x) + ...+ p(ω(c)|x)

⇔ r? × t ≥ risk(x, r?). (17)

Integrating both sides, we finally get

t

∫
X

r?(x, t) f(x) dx ≥
∫

X

risk(x, r?) f(x) dx

⇔ t× r?(t) ≥ e(t) (18)

where r? is the average number of rejected classes.

III. EVALUATION OF CLASS-REJECTING RULES

In order to evaluate a decision rule whose parameters
are Θ, one generally use: the correct classification C(Θ),
the misclassification (or error) E(Θ) and the reject R(Θ)
probabilities or rates. Chow introduced the error-reject (ER)
trade-off (both should be minimized, see also [7]) and
proposed to analyze the so-called (E,R)−curve (E(Θ) vs.
R(Θ)) for all possible values of Θ = t to find the optimal
or an operational value for t [1]. When comparing rules,
the least the AUC (Area Under Curve) is, the better the
rule, see [8] for its description in ROC analysis. For class-
selective rules, e.g. Ha’s rule [2], an object is considered as
misclassified if the class it is issued from does not belong
to the subset of selected ones. Then, the (E,R) trade-off
is replaced by the (E, n) trade-off, where n is the average
number of selected classes, and the AUC(E, n) can be used
to compare rules [9].

For the new kind of class-rejective rules we introduce,
we set that an object is misclassified if the class it is
issued from belongs to the subset of rejected classes, and
we introduce the (E, r) trade-off which consists in jointly
minimizing E(Θ) and maximizing the average number of



rejected classes r(Θ). Given such rules, the best one is the
rule which has the least AUC(E, r):

min
available

rules

AUC(E, r) = min
available

rules

∫
D

E
(
r?(t)

)
dt (19)

where D is the definition domain for t. For a single Bayesian
classifier, we compare the (E, r) curves, which are the
counterparts of Chow’s error-reject trade off curves, obtained
using the available rules.

IV. EXPERIMENTAL RESULTS

With respect to AUC(E, r), we compare the new Optimal
Class-Rejective (OCR) rule to what we call the Bottom-r
Ranking (BrR) rule. By analogy to the top-n ranking rule
used by Ha [2], it simply consists in setting a constant
number of rejected classes r for the whole data set, i.e.
posterior probabilities are not considered. The error rate is
then computed by considering that the r lowest probabilities
correspond to the r rejected classes.

Both rules are tested on fourteen datasets whose character-
istics (number n of patterns, number p of features, number c
of classes, degree of overlap) are reported in Table I. Eleven
datasets are from the UCI ML-Repository [10], three are the
following synthetic ones:
• DH consisting of two overlapping Gaussian classes

with different covariance matrices according to the
Highleyman distribution, each composed of 800 obser-
vations in R2, see [11].

• D1 containing 2000 points drawn from two Gaus-
sian seven-dimensional distributions of 1000 points
each with means v1 = t(1, 0, ..., 0) and v2 =
t(−1, 0, ..., 0), and equal covariance matrices Σ1 =
Σ2 = I .

• D2 which contains 4000 points drawn from four
Gaussian bi-dimensional distributions of 1000 points
each. Their respective means are v1 = t(1, 1), v2 =
t(1,−1), v3 = t(−1, 1) and v4 = t(−1,−1), and their
covariance matrices are all equal Σ1 = Σ2 = Σ3 =
Σ4 = I .

Classes composing each real dataset are also assumed to
be Gaussian. Note that this does not limitate the OCR rule
which only need posterior probabilities to be computed using
(1) whatever the class-conditional density model.

The threshold t is varied within the range [0, 1] for the
OCR rule and the number of rejected classes is discretely
increased from 0 to c − 1 (to skip the distance reject case)
for the BrR rule. For both rules, error rates are computed
through a resubstitution procedure, and the performance is
given in Table II where best scores are indicated in bold.

These results show that the proposed OCR rule al-
ways outperforms the BrR rule. Looking at the
amount of overlap between classes, one can go deeper
into the analysis of the relative scores considering
their ratio AUC(BrR)/AUC(OCR) and their difference

Table I
DESCRIPTION OF THE TESTED DATASETS.

Dataset n p c Overlap
DH 1600 2 2 slight
D1 2000 7 2 moderate
D2 4000 2 4 strong

Ionosphere 351 34 2 strong
Forest 495411 10 2 strong
Vowel 528 10 11 moderate
Digits 10992 16 10 slight

Thyroid 215 5 3 slight
Iris 150 4 3 slight

Pima 768 9 2 strong
Statlog 6435 36 6 moderate
Glass 214 9 6 strong
Yeast 1484 8 10 strong

Page-blocks 5473 10 5 moderate

Table II
AUC(E, r) FOR THE OPTIMAL CLASS-REJECTIVE AND THE BOTTOM-r

RANKING RULES.

Dataset OCR Rule B-rR Rule
DH 0.0053 0.0262
D1 0.0406 0.0727
D2 0.1794 0.2373

Ionosphere 0.1644 0.3205
Forest 0.1309 0.1577
Vowel 0.0374 0.0473
Digits 0.0098 0.0319

Thyroid 0.0064 0.0302
Iris 0.0092 0.0200

Pima 0.1146 0.1628
Statlog 0.0959 0.1490
Glass 0.1133 0.1472
Yeast 0.7572 0.7716

Page-blocks 0.0906 0.0987

AUC(BrR) − AUC(OCR). The ratios are much more
important for datasets presenting a slight overlap of classes
{DH ,Digits,Thyroid,Iris} than for datasets presenting a
strong overlap {D2,Ionosphere,Forest,Pima,Glass,Yeast}.
The reason is that for better separated classes, there are
more patterns for which the maximum posterior probability
is much higher than the others, so the associated risk (and
implicitly the error) is lower for the OCR rule whereas this
is not taken into account for the BrR rule.

While the ratios are lower for datasets presenting a strong
overlap, the differences are much more important (except for
Yeast) than for datasets presenting better separated classes.
This means that the less the classes overlap, the less the
benefit is, as it is for any decision rule including a reject
option, e.g. [1], [6], [2].

Figure 1 shows the (E, r) curves obtained on the three
artificial datasets. One can see that for every average number
of rejected classes, the error rate obtained with the proposed
OCR rule is lower than the one obtained with the BrR rule.
Obviously, when the number of rejected classes is equal to
c − 1 (respectively 1,1 and 3 for D1, D2 and DH), the
error rate is the same for both rules as one could expect. As
pointed out in the previous section, this case corresponds to
the Bayes decision rule, so that both rules are the same one.
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Figure 1. (E, r) curves of both OCR and BrR rules curve obtained on the three artificial datasets (from left to right: DH , D1 and D2).

V. CONCLUSION

In this paper, we propose the new concept of class-
rejective decision rule for pattern recognition. Instead of
selecting the most probable classes, it allows to discard
(reject) the less probable ones. Its optimality with respect
to the error probability for an average number of rejected
classes is proven as well as an upper-bound to the error
probability. A measure to evaluate such rules is introduced,
similarly to the one used to evaluate class-selective decision
rules. Classification performance obtained on artificial and
real datasets show that it outperforms the rule which consists
in rejecting a constant number of classes. The proposed
rule can be used with any classifier, provided posterior
probabilities or equivalent values (e.g. membership degrees
from a fuzzy classifier) are available.
Future research will concern the study of a new mixed
class-selective-rejective decision rule which should jointly
optimize the number of selected and rejected classes over
the user-defined threshold definition domain. We also plan
to use this optimum decision rule for outliers detection, i.e.
patterns that do not match any of the known classes so that
they must be distance rejected. This problem, as well as its
variant for support vector machines, will be addressed using
hinge loss minimization [12]. It will be studied by taking
into account new results on AUC variants [13].
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