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A previously proposed version of thermodynamic perturbation theory, appropriate for sin-
gular pair interactions between particles, is applied to binary mixtures of hard spheres with
non-additive diameters. The critical non-additivity A¢ required to drive fluid-fluid phase sep-
aration is determined as a function of the ratio £ < 1 of the diameters of the two species.
Ac(€) is found to decrease with € and to go through a minimum for ¢ ~ 0.015 before in-
creasing sharply as £ — 0, irrespective of the total packing-fraction n of the mixture. These
results are the basis of an estimate of the range of size ratios for which a binary mixture
of additive hard spheres exhibit a fluid-fluid miscibility gap. This range is conjectured to be
0.01 <¢<0.1.

1. Introduction

Miscibility gaps are a very common occurrence in multi-component fluids or solids.
In simple, molecular fluids, demixing of species of comparable size is generally of
enthalpic origin, associated with preferential cohesive forces. In complex fluids, on
the other hand, in particular in colloidal dispersions, where species may differ con-
siderably in size, segregation is often entropy-driven, as illustrated by the familiar
depletion mechanism in colloid-polymer mixtures [1, 2]. The simplest model system
exhibiting entropy-driven phase separation is a binary mixture of hard spheres. If
the two species of spheres have non-additive diameters, i.e. if the distance of clos-
est approach between the centres of opposite species is larger than the sum of the
radii of the two species, a modest deviation from additivity leads to demixing into
two fluid phases of different composition [3]. Thus non-additivity, which is the rule,
rather than the exception, in most colloidal systems, is a common cause of entropic
phase separation. However even perfectly additive binary hard sphere mixtures are
now believed to phase separate, provided the ratio £ of the radii of small and large
spheres is sufficiently small and the partial packing fractions are sufficiently large
[4-9]. Fluid fluid phase separation has been shown to be preempted by the coexis-
tence of a low density fluid and a high density solid of very different compositions,
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so that fluid-fluid coexistence is thermodynamically only metastable [7]. However,
due to slow crystal nucleation kinetics, fluid-fluid coexistence may in fact be ob-
servable in appropriate colloidal mixtures where the unavoidable polydispersity of
the small and large species will slow down the nucleation even further.

The two mechanisms responsible for fluid-fluid phase separation in hard sphere
systems are thus non-additivity and size asymmetry, or a combination of both. For
perfectly additive mixtures, the size ratio £ necessary to drive phase separation
has been estimated to be of the order of 0.1 or less [7], while for larger ratios
(0.1 < & < 1), a critical degree of non-additivity A¢ (defined in section 2) is re-
quired to induce fluid-fluid demixing. The simulations in ref.[7] were mostly based
on an effective one-component representation of the additive binary mixture, us-
ing an effective depletion potential between the large spheres, but the results were
tested against explicit two-component simulations over a range of physical condi-
tions, and good agreement was found. Very recently additional results for effective
depletion potentials have been published [10]. In ref. [3] it was shown that Ac
decreases with £, and is expected to go to zero (additivity) as the size ratio ap-
proaches £ ~ 0.1. However in the limit £ — 0, the additive system reduces to a
mixtures of hard spheres and point particles (ideal gas). Such a system is not ex-
pected to phase separate because there is no entropic ”incentive”, in the form of an
increase of the volume accesible to the point particles. This intuitive statement is
confirmed by a simple free volume calculation similar to that of Lekkerkerker et al.
[11] for the Asakura-Oosawa (AO) model of colloid-polymer mixtures. These au-
thors calculated fluid-solid and fluid-fluid-solid phase diagrams for several values of
the non-additivity parameter A relative to the hard-sphere diameter . A thermo-
dynamically stable fluid-fluid phase separation occurs for A = 0.32 in reasonable
agreement with later experimental findings of the apperance of a fluid-fluid-solid
triple point in the phase diagram of colloid-polymer mixtures characterised by
A ~0.25 [12]. An elementary extension of their calculation (sketched in Appendix
B) shows that, within free volume theory, the critical non-additivity required to
drive a (metastable) fluid-fluid phase separation of hard spheres and point particles
(i.e. the AO model) is A¢ ~ 0.17. This observation raises the question whether
fluid-fluid demixing predicted to occur for additive hard spheres below a size ratio
¢ ~ 0.1 terminates at a lower value of £, say £ = £, below which a positive value of
the non-additivity parameter A is required to drive phase separation, as expected
from the & = 0 limit. In other words, is the fluid-fluid miscibility gap for additive
hard spheres restricted to a limited range of size ratios 0 < & < ¢ < &, ~ 0.17

In the present paper we address this problem by calculating the critical non-
additivity required to induce fluid-fluid segregation as a function of £ over the full
range [0,1]. We apply a recently developed thermodynamic perturbation theory
adapted to singular interactions [13, 14] to calculate the free energy of the non-
additive binary hard sphere fluid as a function of packing fraction and concentra-
tion. The predictions for the onset of spinodal instability presented in the following
sections indeed suggest that a non-zero non-additivity (A¢ > 0) is required to trig-
ger fluid-fluid demixing for extremely asymmetric mixtures (0 < ¢ < & ~0.01) as
well as for size ratios £ > &, ~ 0.1.
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2. Model and theory

We consider binary mixtures of hard spheres of diameters o4 and op (> 04). The
three pair distances of closest approach are

OAA =0A

OBB = OB (1)

1
oan = 5(0a+0B)(1+ A)

where A (> 0) is the dimensionless non-additivity parameter. The hard sphere pair
”potentials” are

. OO,T’<0'aB
“aﬁ(r)_{o, r> 0.3 o,f=AorB (2)

A = 0 corresponds to the familiar and widely studied additive binary hard sphere
mixture. The reduced thermodynamic properties of this athermal system depend
only on the partial packing fractions 1, = mpaos /6 (o = A, B), where p, = No/V
is the number density, or number of spheres per unit volume, or equivalently on the
total packing fraction n = 74 +np and the concentration z = x4 = N4/(Ns+ Np)
of species A (xp = 1 — x4). The solution of the Percus-Yevick (PY) integral
equation theory for the partial pair distribution function g,g(r) provides analytic
expressions for the equation of state (e.o.s.) and the Helmholtz free energy F' [15]
which predict accurate results, compared to available simulation data, for low and
moderate packing fractions (say 1 < 0.3), at least for size ratios

§=o0a/op 3)

which are not too small. For higher packing fractions (0.3 < n < 0.5), very accurate
thermodynamic properties are provided by the semi-empirical e.o.s. of Boublik [16]
and Mansoori et al. [17] (BMCSL). The corresponding expression for the reduced
excess Helmholtz free energy per particle (N = N4 + Np), reads [17]

oo BE_ "
- %(1 — 1 +y2 +y3) + By + 2y3)/(1 =)
+ 5= =g — gu)/(1 =) + (g5 — 1) (1 — )
where
(0a+08)

y1 =20

\/OAORB
VTATB <77A N nB)
n

0A 0B

Y2 =0

s = (:1:,40124 + 133023)3
(mAaZ" + :1/:,3(7%)2
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and

TATB
§d=+/oaop(oa — 03)2

a0 + oy’

The BMCSL e.o.s. has been tested by computer simulations of binary hard sphere
mixtures, except for small size ratios £ where simulations experience ergodicity
problems [18, 19]. The validity of the free energy function (4) is thus not established
for £ < 0.2, when the partial packing fractions n4 and np are comparable.

Both PY [20] and BMCSL theories predict that additive binary hard sphere flu-
ids are miscible for all size ratios £ and packing fractions 7, in contradiction with
later findings, based on self-consistent integral equations [5, 9], free volume theory
[8], density functional theory [6], and simulations [7] which predict a fluid-fluid
miscibility gap for sufficiently small size ratios ({ < 0.2) and high packing frac-
tions, i.e. under conditions where the former two theories have not been validated.
Since fluid-fluid phase separation appears to be marginal, small inaccuracies in the
free energy may be sufficient to suppress segregation. On the other hand it has
been shown that a modest degree of non-additivity (0 < A < 1) is sufficient to
drive fluid-fluid demixing. even for fairly symmetric mixtures [3]. For a systematic
exploration of the dependence of critical non-additivity as a function of size ratio,
over the full range 0 < £ < 1, we have calculated the free energy of a fluid of
non-additive hard spheres, using additive hard spheres with the same diameters
o4 and op as a reference system, and the recently developed Mayer f-function
thermodynamic perturbation theory [13, 14]. Dividing the pair potential between
particles into a reference part and a perturbation,

Vag(r) = v (r) + wags(r), (5)

the standard thermodynamic perturbation theory of Zwanzig amounts to a cu-
mulant expansion of the Helmholtz free energy in ”powers” of the dimensionless
perturbations wag(r)/kpT [21, 22]. In the case of non-additive hard spheres char-
acterised by the pair interactions defined in eqs (1) and (2), the perturbation part,
which acts only between opposite pairs, is singular

0, r< %(O’A-i-O’B)
wap(r) = 0o, 2(ca+o0B) <r<0oap (6)
0, T>O‘AB:%(O'A—|—O'B)(1+A)

which lead to divergent corrections to the free energy. This can be circumvented
by an expansion in powers of the Mayer f-function, rather than w4p, namely

0, r< %(O'A +0oB)
fap(r) =4 =1, 3(ca+0B) <r <oap (7)
0, T > 0AB

Details of the corresponding expansion of free energy are given in ref. [13]. To first
order

F

— __ pid er
= NkgT *f +f0 +f17 (8)

f

where £ is the ideal contributions, given within an irrelevant density and concen-
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tration independent term, by
f*=zalnna+zplnng. 9)

57 is the excess free energy of the additive reference system, given by eq. (4) within
BMCSL theory, while the first order perturbation is

P / 0O () fa (r)r2dr, (10)
0

where gff]é(r) is the A-B partial pair distribution function of the reference fluid,

i.e. of the additive binary hard sphere mixture. The latter can be taken from
the analytical solution of the PY equations [15], as given by Kahl and Pastore
over the whole range of distances r [23]. Since PY theory becomes unreliable at
high packing fractions and for small size ratios £, we have used its semi-empirical
extension proposed by Grundke and Henderson [24] and subsequent improvements
[25]. Details are given in Appendix A.

The explicit expression for the second order correction fs to the free energy is
given in ref. [13]; it involves, in particular, a fluctuation term, which would require a
knowledge of the three and four-body distribution functions of the reference system,
and is hence rather intractable. However it was shown in the same paper that the
first order expansion (8) gives very accurate results (compared to simulation data)
in the case where £ = 1 and A = 0.2, as well as for a one component hard
sphere fluid, when the diameter is swollen from o to o(1 + A), with A < 0.1.
All calculations reported below were hence based on the first order expression (8).
From our previous experience, we expect convergence of the perturbation theory
to be satisfactory, as long as A < &.

3. Thermodynamic stability of binary mixtures

The conditions of thermodynamic stability of binary mixtures against phase sep-
aration are well documented[26, 27]. Let f(x,v) be the reduced Helmholtz free
energy per particle of an athermal system, an intensive thermodynamic function
of the intensive variables x = z4 and v = 1/p (total volume per particle). If
the binary mixture were incompressible, the condition of thermodynamic stability
against concentration fluctuations would reduce to

(W)U > 0. (11)

For a compressible mixture however, the condition of stability against combined
concentration and density fluctuations, generalising eq. (11) is [26, 27|

O%f\ [O%f 92f \2
— —5 | — 0 12
(a>(6m> (3us) >© 12)
which is easily shown to be equivalent to the more familiar condition for the reduced
Gibbs free energy (or free enthalpy) g(x, P) = f + Pv/kgT, namely

<&@@J6>P>o, (13)

0z2
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where P is the overall pressure of the mixture.

The spinodal associated with fluid-fluid phase separation is determined by turn-
ing the inequality (12) into an equality. Switching from the variables x, v to =z,
n(z,v), the equation for the spinodal reads

O°f\ (O%f O*f\ (Of 0%f \ (Of
(52), (o), 72(a2),(31), 0 o) (5), 0

AN AN
‘”<8xan> T (”(677) =0

xT

where X(z) = (03 — 0%)/(xz40% + zp03).

For the non-additive hard sphere mixture considered here, the (approximate)
free energy function, to be substituted into eq. (14), is given by eqgs. (4) and (8)-
(10). The derivatives of i and f§* are taken analytically, while those of f; are
calculated numerically. For given values of &, n, and A, the left hand side of eq.
(14) is calculated for all x € [0,1]. A is then gradually increased (from an initial
value of 0) until the stability condition is violated. This determines the critical
non-additivity parameter A¢ required to drive fluid-fluid phase separation. The
results of these calculations are presented in the following section.

4. Results and conjectures

We have carried out the calculations laid out in Section 3 for many values of the
size ratio £, covering the full interval 0 < £ < 1. The key output is the variation of
the critical non-additivity Ag with &. A similar calculation was carried out in ref.
[3], but was based on a very different approximation for the Helmholtz free energy
of a binary mixture of non-additive hard spheres. In that paper f was derived
from a truncated Barboy-Gelbart expansion of the e.o.s. in powers of the variables
Yo = pa/(1—n) [28]. The latter reduces to the PY compressibility e.o.s. in the limit
of additive hard spheres (A — 0), which is not a particularly good approximation
at high packing fractions (1 2 0.4), and for small size ratios &.

Results for Ag as a function of £, for a total packing fraction n = 0.5, from
the present calculations based on three different approximations for gffl)g(r), are
compared in Fig. 1 to the data from ref. [3]. The general trend is seen to be
always the same with A¢ decreasing sharply with &, for & < 0.5, in all cases.
The results based on the present thermodynamic perturbation theory are sensitive
to the reference system (additive hard sphere mixture) pair distribution function
gffl)a(r): there are significant differences between the A (&) data obtained with the
PY and Grundke-Henderson (GH) pair distribution functions; the GH results are
seen to be insensitive to the choice of contact value gff])g (r=(ca+op)/2) [24, 25].
None of the theories predicts that A — 0 as £ — &, ~ 0.1 as expected [5-9].
Note however that A is systematically very small (Ac < 0.01) in the vicinity
of £ ~ 0.1; in particular A¢ < 0.1&, thus validating first order thermodynamic
perturbation theory as used in the present paper. Another important observation
is that Ac(€), as calculated within the latter approach using the GH reference
pair distribution function, goes in fact through a minimum around ¢ = 0.015.
The Ag versus € curve for several packing fractions are plotted in Fig. 2, while
an enlargement restricted to the range ¢ < 0.1 is shown in Fig. 3. Fig. 2 shows
that for a given £, A¢ decreases with increasing 7, in other words a larger degree

of non-additivity is required to drive phase separation at lower packing fractions.
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Critical non-additivity forn = 0.5
0.04
0.035
0.03
0.025
< 0.02
0.015
0.01
0.005
0 . . . .
0 0.2 04 y 0.6 0.8 1
E=0 Aog
Figure 1. Critical non-additivity, A, vs. size ratio £ obtained using different approximations; circles: data

from ref. [3]; squares: results from first order perturbation theory, using g4 pg(r) from ref. [23]; hexagrams:
results from first order perturbation theory, using gap(r) from ref. [24]; pentagrams: results from first
order perturbation theory, using g4p(r) from ref. [24] with improvement from ref. [25]

Critical non-additivity vs. size ratio

0.09

0.08} O =035 “__o. ‘‘‘‘‘‘‘
Aoy =04 Pl

0.07f [-E-n=0.45 e
-X-n =05 o

Figure 2. Critical non-additivity A¢ vs. size ratio £ for several values of the total packing fraction 7,
calculated using the GH reference system pair distribution functions

Fig. 3 shows the behaviour for £ < 0.15 and 0.35 < n < 0.5. All A¢(§) curves go
through a minimum for £ ~ 0.015, before increasing sharply as £ decreases further
towards zero. At the minimum A¢ is roughly equal to £/2, but upon decreasing £
further, Ac(§) rapidly becomes comparable to or larger than &, such that the first
order expression (8) of the free energy can no longer be expected to be valid. The
break-down of the truncated thermodynamic perturbation theory is illustrated by
the appearance of an unphysical maximum in Ag (&) for £ < 0.01, whereas A¢ is
expected to grow as & — 0. The value of A¢ for £ = 0 (i.e. a mixture of hard
spheres and point particles) can be easily estimated by adapting the free volume
theory of refs. [4] and [11] to this special case as sketched in Appendix B. The
theory predicts A¢ =~ 0.17 for the onset of fluid-fluid phase separation when £ = 0
(Asakura-Oosawa model). We thus expect A¢ to increase from its minimum value
~ (0.005 to A¢ ~ 0.17 in the narrow interval between £ ~ 0.015 and £ = 0.

The variation of the critical concentration x% and of the packing fraction ng of
the large spheres with size ratio £ are plotted in Figs. 4a and 4b for several values
of the total packing fraction 7. x% is seen to drop sharply with £ by nearly 4 orders

URL: http://mc.manuscriptcentral.com/tandf/tmph
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1 Critical non-additivity vs. size ratio
2 0.025
3
g 0.02}
6
7 0.015
8 <
90 0.01}
1
11
12 0.005}
13
14 0
15
16
17 Figure 3. Enlargement of the curves in Fig. 2 for small size ratios £ < 0.15. The curve with the full squares
18 is the curve for n = 0.45 (open squares) shifted downward, such that A¢(§ =0.1) =0
19
20 of magnitude between £ = 1 and £ = 0.01, and to depend little on 7. The variation
21 of ng with £ is non-monotonic. ng first decreases slowly with &, goes through an
22 n-dependent minimum around & =~ 0.25, before increasing sharply to its limiting
23 value 75 (¢ = 0) = 5 (the contribution of the point particles to the total packing
gg fraction is zero).
26 Since A¢ > 0 for all &, the present theory fails to predict the phase separation
27 of additive hard sphere mixtures for £ < 0.1. This failure may of course be traced
28 back to the use of the BMCSL free energy (4) for the reference system of additive
29 hard spheres, which predicts full miscibility for all compositions and size ratios.
30 However the very small values of A¢ predicted to drive phase separation hint that
31 BMCSL theory barely ”misses” the expected demixing transition, due to a small
32 error in the free energy for small size ratios £. A heuristic procedure to compensate
33 for this small inaccuracy of the BMCSL free energy is to shift the Ag(€) curves
gg downwards, such that Ac = 0 for £ = 0.1 and n = 0.45, as predicted by the MC
36 simulations of ref. [7]. The tentative ”corrected” Ac(§) curve for n = 0.45 is shown
37 in Fig. 3, where negative values of A¢ (&) are replaced by A = 0. This speculative
38 construction suggests that A¢ takes on non-vanishing positive values for £ < 0.01,
39 i.e. a miscibility gap in a dense (n 2 0.45) binary mixture of additive hard spheres
40 is only expected over a narrow range of size ratios 0.01 < & < 0.1.
41
42
ji 5. Conclusions
32 The key speculative prediction of the present paper is that highly asymmetric
47 binary mixtures of additive hard spheres undergo a fluid-fluid phase separation for
48 size ratios £ in the range 0.01 < ¢ < 0.1 and for sufficiently high packing fractions.
49 We have reached this conclusion, or rather conjecture, by an indirect approach,
50 starting from binary mixtures of hard spheres with non-additive diameters, as
51 defined in egs. (6) or (8), and using a version of thermodynamic perturbation
52 theory adapted to singular (hard core) perturbations [13, 14]. A modest degree of
53 non-additivity (A < 0.1) will drive phase separation for any size ratio £. As already
54 shown in ref. [3], using a different theoretical approach, the critical non-additivity
gg parameter A¢ required to drive fluid-fluid phase separation at a given value of the
57 total packing fraction 7, decreases with decreasing £, but never goes to zero (which
58 would correspond to an additive hard sphere mixture) because the free energy of
59 the additive reference system is always a convex function of the thermodynamic
60
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a: Critical concentration of large
particles vs. size ratio

|;§( b: Critical packing fraction of large
particles vs. size ratio

Figure 4. Frame a: Critical concentration xg of large spheres vs. size ratio £ for several values of the total
packing fraction n. Frame b: Corresponding critical packing fractions ng vs. &.

variables. However A¢ is found to go through a positive minimum as a function
of &, reaching very small values of the order of 0.005, suggesting that the BMCSL
free energy barely misses the thermodynamic instability associated with demixing.
Since advanced integral equation theories [5, 9], free volume theory [8] and MC
simulations [7] all predict phase separation for sufficiently small £, we have shifted
our predicted Ax(€) curves downward, such that Ac =0 for £ = 0.1 and n ~ 0.45
in agreement with the MC results of ref. [7].

The second key finding of our work is that Ax (&) goes through an n-dependent
minimum for £ ~ 0.015, before increasing sharply as & — 0, where A¢ is expected
to reach its limiting value Ax(§ = 0) ~ 0.17 predicted by free volume theory [11]
(Appendix B). The heuristic downward shift of the Ax(€) curves (by an amount
d(A¢) ~ —0.01) then leads to Ac(§) = 0 for £ ~ 0.01 at the lower end. Ther-
modynamic perturbation theory combined with the heuristic shift of the A (&)
curve hence leads to the conjecture that fluid-fluid phase separation is restricted
to the limited range of size ratios 0.01 < & < 0.1. The shifted Ac(§) function takes
negative values in that interval, raising the intriguing possibility that highly asym-
metric binary hard sphere systems might demix, even for (slightly) negative values
of the non-additivity parameter A, which always favour miscibility. This tendency
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is hence compensated by a stronger tendency towards segregation induced by a
large size asymmetry.

The present calculations do not consider binary hard sphere solid phases, and
the possibility of the coexistence of fluid and solid phases of different compositions.
Fluid-solid phase separation has been shown to preempt fluid-fluid segregation,
which is hence a metastable phase transition [7]. However, as mentioned earlier in
this paper, the fluid-fluid phase separation might be observable, provided the crys-
tal nucleation kinetics is sufficiently low. Possible candidates for the observation of
fluid-fluid demixing are binary dispersions of sterically stabilised colloidal particles
(0 ~ 10 — 100nm) and nanoparticles or miscelles (¢ ~ 1 — 5nm).
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Appendix A. The Pair distribution function of the reference system

For the pair distribution function gg% (r) of the reference system, i.e. of a binary
mixture of additive hard spheres, we have used either the piece-wise analytical PY
solution [15, 23] or the semi-empirical improvement due to Grundke and Henderson
[24], namely

gg)))B(T’n,xA;UA;UB) = @(T—O'AB) X (Al)

Aoap e~ 0(r=04B) oog (b(r — UAB)))'

(90 (20,0 o) + 27

The Heaviside step function © ensures that the pair distribution function vanishes
inside the core (r < oap). The rescaled radii o’y = o4(1 —7/16)'/3 and oy =
o5(1—1n/16)/3 shift the phase of the oscillating pair distribution function slightly
compared to the PY solution. The prefactor A of the second term on the r.h.s. of
eq. (Al) allows to adjust the contact value of gpy (r) which is too low:

0
A = 91(4;(0-143’777 TA, UA7UB) - QPY(UAB‘U7$A70147 U/B)) (A2)

where gffé(UAB\n, xA,04,0p) is determined by the BMCSL equation of state [16,

17] or by a further improvement which is expected to be more accurate for small
size ratios £ [25]. The inverse length b in the second term of the r.h.s. of eq. (A1)
is determined as explained in the GH paper [24], using the exact relation:

kT O 0
b 2PA 47TPB/ [g,(f])g(ﬂ??,ﬂﬁA,UA,UB) —1]r?dr =
0
= 47TpB/ (gpy (r|n, 24, 0%, 0) — 1]r?dr + 21 Appoip/b. (A3)
0

where the Lh.s. is calculated from the BMCSL free energy function.
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Appendix B. Free volume calculation of A¢ in the £ = 0 limit

Lekkerkerker et al. [11] used free volume theory to calculate the full phase diagram
of the AO model for mixtures of hard sphere colloids and ideal polymers. This model
is a limiting case of a binary mixture of non-additive hard spheres considered in
the present paper, when £ = 04/0p = 0. They found coexistence between a low
density fluid phase and a high density crystal phase with different compositions,
for A < 0.32. For larger non-additivities a fluid-fluid-solid triple point and a fluid-
fluid critical point appear. We have adapted their calculation to determine the
critical non-additivity parameter Ao beyond which a metastable fluid-fluid phase
separation appears. The colloidal B-particles of diameter op are not affected by
the presence the point A-particles, and hence their contribution to the reduced free
energy per particle f = F//NkpT is accurately given by the Carnahan-Starling free
energy, which is the one-component version of the BMCSL free energy (4), namely
(including the ideal contribution):

n(4 —3n)

fC:FB(Nc,V)/Nk‘BszB ln(n)+ (1_77)2 ,

(B1)

where = ng = Npmoy/6V.

The point A-particles are excluded from a sphere of diameters og 4+ A centred on
each of the B-particles. The mean volume V' < V accessible to the point particles
can be calculated using Widom’s insertion theorem [29] with the result [4, 11]:

Vi=aV
a = (1—mn)e B0, (B2)

where v =n/(1 —n); A=3A+3A%+ A3, B=9/2A? + 3A3, and C = 3A3.
Since the A-particles do not mutually interact their contribution to the free
energy is purely ideal, i.e. (with p/y = Na/V”)

fa=wzaln(ply) = zaln(pa/a). (B3)

If f = fa+ fp is substituted into eq. (14) we find that spinodal instability first
appears when A = Ag ~ 0.17, in the fluid range n < 0.5.
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