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T. González-Lezana, G. Delgado-Barrio and P. Villarreal

Instituto de F́ısica Fundamental, Consejo Superior de

Investigaciones Cient́ıficas, Serrano 123, 28006 Madrid, Spain

∗ Corresponding author; e.mail address: fa.gianturco@caspur.it; fax: +39.06.49913305.

1

Page 2 of 38

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Abstract

The possible existence of bound states in small helium clusters containing atomic and molecular

hydrogen has been investigated by means of three completely independent sets of calculations. The

first set employs the Jacobi-Davidson filtering procedure recently implemented in the Distributed

Gaussian Functions (DGF) approach, the second one is based on the solution of the Faddeev

equation by means of the hyperspherical adiabatic expansion method and the third follows the

Quantum Monte Carlo approach. The partners within each complex are taken to interact via

two-body potentials chosen among the most accurate existing in the literature. All the present

quantum treatments show that no bound states are found for H(4He)2 and for D(4He)2 while only

one very diffuse bound state is present in T(4He)2, where H, D and T are the three isotopes of

hydrogen. The substitution of the atomic dopant with its molecular counterpart, H2, also gives

rise to only one bound state whose spatial attributes are reported and analysed, underlining again

the ultraweak nature of the interaction forces and the need to implement highly specific tools for

the investigation of the ensuing bound states.
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I. INTRODUCTION

In comparison with the many molecular systems which are held together chiefly by Van

der Waals (VdW) forces, those which involve one or more helium atoms as partners have cer-

tainly received a great deal of attention, in the last twenty years or so, both experimentally

and from the theoretical standpoint [1–4]. Through the extensive analysis and observations

which have been carried out on a great variety of such systems, in fact, our cumulative

knowledge of their behavior has made considerable progress: from our better understanding

of the superfluid behavior of large scale systems with a degree of coherence, to the contribu-

tions of He-containing gases for the occurrence of Bose-Einstein condensation (BEC), just

to cite two of the more intriguing physical effects [5, 6]. It has also been particularly inter-

esting the general capability found in He aggregates, from small clusters to large droplets, to

enclose and interact with a broad variety of molecular systems, neutral and ionized, which

turned out to be only very slightly perturbed by the presence of this quantum fluid that

surrounds the molecules [4]. It therefore becomes of prime interest to provide and collect

as much data as possible on the quantitative knowledge of the strength and extension of

the weak VdW forces which act within cluster structures that contain a variable number

of helium atoms, generally in the bosonic variant, and an atomic or molecular dopant. In

order to make progress in this direction one needs to be able to describe as realistically as

possible their spatial arrangements, invariably characterized by very strongly anharmonic

internal motions and by large values of their zero-point energies [7].

One important computational consequence of this property is the increased difficulty in

obtaining numerically converged results for both eigenvalues and eigenfunctions of these

systems [8]. Hence, the search of bound states due to such ultra-weak forces represents

a challenging test-bed for any computational approach: for example, a method which is

perfectly suited to the calculation of bound states in ordinary, chemically-bound complexes,

can fail with systems requiring extended integration ranges. It is thus mandatory to com-

pare as much as possible the findings obtained with different theoretical and computational

procedures whose reliability, though already assessed for the study of more strongly bound

systems, needs to be confirmed for the study of ultra-weakly bound VdW species, while the

accurate assessment of the behaviour of small, three-body (3B) clusters will help us to guide

further calculations directed at larger, mixed clusters containing He or H [9].

3
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One of the cases in point involves the study of a three-particle system which contains

two 4He atoms, well known to be only very weakly bound to each other [10], attached to

the lighter hydrogen atom, which is known not to be bound to 4He [11]. One would in

fact expect that three-particle aggregates which are made up of such weakly bound partners

should present either no bound states or at most very floppy bound states where the partner

atoms are highly delocalized in space. The H-4He2 system has been already studied a while

ago by Lin and Li [12], who searched for the existence of weakly bound molecules like

He-He-H and He-H-H. With the atom-atom potentials which they used, they indeed found

no bound states for the H-4He2 system. The same result has been confirmed by the more

recent calculations of Ref. [8]. In the present paper we investigate, first of all, if the H-He

interaction is capable of sustaining any bound state and then analyse the effects on the

existence of bound states caused by small changes like the dopant’s isotopic substitution,

the increase of the number of helium atoms and the tuning of the dopant-solvent interaction.

The latter is simulated by substituting the atomic dopant with its molecular counterpart

H2 treated as a structureless atomic species (2H) with mass equal to the deuterium isotope

and interacting with the He atoms via an approximate isotropic potential which originates

from the correct He-H2 potential. One should further note that indeed earlier publications

have already been devoted to 4He clusters containing a single H2 impurity. Variational

Monte Carlo (VMC) calculations on 4He clusters with a single H2 [13] indicate that the H2

is delocalized, moving almost freely from the inside to the outside of the cluster. On the

other hand, results reported by Gordillo in Ref. [14] on 4He/p-H2 binary clusters, which

are obtained by Path Integral Monte Carlo simulations, show that the hydrogen tends to

be located in the inner regions of the cluster. Recently, Toennies and co-workers identified

the H2-
4He van der Waals complex in a molecular beam by a diffraction experiment, using

a 100 nm period transmission grating [15], a result confirmed by our later computational

findings of a bound state for that system [16]. In that paper, the p-H2 molecule interacts

with one helium atom, be it either 4He or 3He [16]. We had found that a bound ”halo”

state indeed exists for both variants of the helium atom and further established that the

very mild orientational features of the H2-
4He potential yielded very similar results when

the molecular partner was treated as a ”spherical“ (2H) partner species [16].

A more extensive Quantum Monte Carlo (QMC) study has been further reported in

our recent work [9] on the H2(
4He)N system, where we carried VMC and Diffusion Monte

4

Page 5 of 38

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Carlo (DMC) calculations in order to extract nanoscopic information about energetics and

geometrical features of these very weakly bound clusters; we used the fully anisotropic H2-

4He PES [17] as one of the ”two-body” (2B) potentials in the clusters and we found there that

the calculations indicate the impurity to be bound to the solvent and no shell structuring

is present across the size range which we have examined (N from 1 to 100). The emerging

physical picture is one in which the dopant is progressively embedded within the cluster

as N increases, although it does not initially reside at the exact center of the droplet, in

substantial agreement with the findings of Ref. [14].

In the present work three completely independent sets of calculations have been employed

to quantitatively assess the existence of bound states and, when existing, of their spatial

attributes for the rotationless H(4He)2 system and its isotopic variants, D(4He)2 and T(4He)2.

The first method employs the Jacobi-Davidson (JD) filtering procedure recently implemented

[18] in the Distributed Gaussian Functions (DGF) approach, introduced a few years ago to

especially treat very floppy triatomic systems [19–22]. The second approach is based on

the solution of the Faddeev equation by means of the hyperspherical adiabatic expansion

method [23]. The third tool follows the QMC scheme and is also employed to study the next

larger cluster with three helium atoms. It will be shown that all methods provide the same,

converged answers on the existence or non-existence of bound states in the above clusters

and further supply us with a detailed description of the spatial features of “molecular“

T(4He)2, the only one presenting a bound state.

We additionally investigate the effect of substituting the atomic impurity H with its

molecular counterpart H2, using the DGF and DMC methods; they will be shown to exhibit

excellent agreement both on the energetics and on the spatial characterization of the only

bound state found for H2(
4He)2.

The paper is organized as follows: next Section II outlines the three approaches and

describes their present implementation, while Section III reports our results. Our discussion

and present conclusions are given in the final Section IV. For the sake of clarity, in the

following 4He will become He.

5
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II. THE THEORETICAL METHODS

A. IMPLEMENTING THE DGF METHOD

The very weak nature of the interaction forces between the three particles of the present

study allows us to describe the total potential energy surface as a sum of the 2B potentials

(V (Ri)). The Hamiltonian can be written in terms of atom-atom coordinates as

H(R1, R2, R3) = T (R1, R2, R3) +
3∑

i=1

V (Ri) (1)

where T (R1, R2, R3) is the kinetic operator for the AB2 triatomic system and has been given

explicitly many times before [22, 24].

The total wave function (WF) of the K-th state is expanded in terms of basis functions

φj(R1, R2, R3)

Φ(K)(R1, R2, R3) =
∑

j

a
(K)
j φj(R1, R2, R3). (2)

Each basis function is defined as a correctly symmetrized product of three DGFs centered

along the three atom-atom coordinates and, in the case of a system with two identical

particles, can be written as:

φj(R1, R2, R3) = N
−1/2
lmn

∑
P∈S2

P [ϕl(R1 −Rl)ϕm(R2 −Rm)]ϕn(R3 −Rn). (3)

In the above expression ϕp(Ri − Rp) is a Gaussian function along the Ri coordinate and

centered in the Rp point, as suggested by Hamilton et al. [25], Nlmn is a normalization

constant expressed in terms of overlap integrals between the Gaussian functions [24], and j

denotes a collective index such as j = (l ≤ m;n) for the case of two identical atoms. We

can now exploit the normalization condition of the total WF for the K-th bound state to

define a sort of weight, P
(K)
j , associated to each basis function φj

1 = 〈Φ(K) | Φ(K)〉 =
∑

j

a
(K)
j 〈Φ(K) | φj〉 =

∑
j

P
(K)
j . (4)

We will refer to the P
(K)
j as to pseudo-weights (PWs) since, although their sum is equal to

one, their character may also be negative. Via these PWs, the moments of a given quantity

xn, depending on the three bond coordinates, can be calculated resorting to the mean value

6
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theorem:

〈xn〉(K) =
∑

j

a
(K)
j 〈Φ(K) | xn | φj〉 ≈

∑
j

P
(K)
j xn

j (5)

where in the integrals involved we have assumed that the magnitude xn has been replaced

by its mean value, xn
j , for the triangular configuration φj. With this procedure quantities

such as the atom-atom distances, the area, the cosine values, can be evaluated to obtain the

most probable geometries of the corresponding bound states. We can also define the weight

of each type of triangular family (scalene, collinear, flat or tall isosceles and equilateral) by

summing the PWs P
(K)
j associated to each element of the family.

Pair distributions in the Ri coordinates are evaluated from the total WF of Eq. (2) as:

D(K)
DGF (Ri) =

∫ ∫
dRjdRk | Φ(K)(Ri, Rj, Rk) |2 . (6)

In order to minimize the unphysical behaviour of the total WFs at the triangular bound-

aries, we require for each product of three Gaussian functions ϕlϕmϕn which belongs to

the basis set that the DGF centers, Rp, satisfy the triangle requirement (TIR) in the more

restrictive way | Rl −Rm |< Rn < Rl +Rm.

1. The ”quality” indicator W

An important indicator of the quality of the DGF bases is the “badness” operator (W)

[20, 26] which quantifies the relevance of the subdomain where the total WF is unphysically

non-zero

W(R1, R2, R3) =

0, |R1 −R2| < R3 < R1 +R2 holds

1, otherwise.
(7)

The average value 〈W〉 estimates how much the norm of the WF integrated over the

entire space (equal to unity) differs from the norm integrated only over the domain where

the TIR is satisfied. This control indicator measures the quality of the representation of

each bound state of the trimer in the chosen basis set.

In Ref. [26] we found that the best locations of the N DGF centers are given by the

following formula

Ri = n ·∆ + i ·∆, i = 0, 1, 2...N − 1, (8)

7
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where the value of n provides the correct multiple of ∆ that locates the radial position of

the first DGF of the expansion set. However, some residual pathological behaviour could

still affect the computed bound energy value whenever linear arrangements significantly

contribute to the description of that bound state. In order to overcome this limitation, we

set up an extrapolation procedure [27] which allows us to produce final results completely

unaffected by pathological contributions, i.e., with zero badness. We repeat the bound-state

calculation by shifting the positions of the DGF centers, thereby establishing the dependence

of the energetics on the badness quantity, which is then fitted to a polynomial functional

finally extrapolated to zero badness. A second extrapolation with respect to the step ∆ is

now carried out in order to reach the δ-function limit of the initial basis set. The actual

functional expressions were different in the two cases. To reach zero badness we employed

the functional form:

Eex
∆ (x) = a0 + a1x

2 + a2x
4 + a3x

6, (9)

where x = 〈W〉. To reach the δ−function limit of zero width we have used

Eex
δ (x) = a0 + a1x

2 + a2x
a3 , (10)

where x = ∆. In the examples of this work the extrapolation of Eq. 9 typically produced

a χ2 value of 9×10−12 and a correlation coefficient of 1×10−6. The extrapolation at zero-

width δ−function has been achieving a χ2
δ value of 3.7×10−9 and a correlation coefficient of

0.99997. All parameters of Eqs. 9 and 10 are available on request.

2. The Jacobi-Davidson filtering procedure

Since the basis functions given by Eq.(3) are not orthogonal one needs to solve a gener-

alized matrix eigenproblem which involves the overlap matrix of the basis set. Due to the

sparse nature and the huge size of the overlap and Hamiltonian matrices, it is convenient

to use an iterative method for the solution of the eigenproblem, such as the JD procedure

[28] that we recently implemented within our DGF approach [18]. The details of the imple-

mentation have been described before [18] and therefore only a brief outline shall be given

below.

Our procedure begins with the generation of a search subspace spanned by an orthonor-

mal basis {v1, ..., vk} starting from a randomly chosen non trivial vector; by imposing the

8
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Galerkin condition [29] we then obtain a test subspace spanned by another orthonormal

basis {w1, ..., wk}.

The reduced problem takes the form: (W∗
kHVk) y = θ (W∗

kSVk) y , where Vk and Wk

denote the n×k matrices with the basis vectors as columns and (θ,y) are the solutions of the

reduced eigenproblem. The Ritz values θ and the Ritz vectors u = Vky are approximations

to the original eigenpair. The reduced eigenproblem is now of much smaller dimensions since

k � n.

In order to improve the quality of the subspaces we solve the JD correction equation,

which is given by

(I− zz ∗)(H− θS)(I− uu∗)u⊥ = −r ≡ −(H− θS)u (11)

in which u⊥ is the orthogonal correction to the approximation of the eigenvector and z is

an auxiliary vector given by z = (H + θS).

The JD method has been implemented in practice by applying a variant of the QZ-

algorithm [30]. A partial generalized Schur decomposition is made for the projected matrices

W∗
kHVk and W∗

kSVk , so that we find orthogonal matrices UL and UR which satisfy

U∗
L(W∗

kHVk)UR = SA (12)

U∗
L(W∗

kSVk)UR = SB

where SA and SB are upper triangular matrices. The approximation of the eigenpair becomes

θ = SA(1 , 1 )/SB(1 , 1 ) and u = VkUR(i , 1 ) with i = 1, ..., k.

B. THE FADDEEV EQUATIONS

3B systems are often described by use of the so called Jacobi coordinates, which are

defined as:

xi = µjkrjk , rjk = rj − rk ,

yi = µi(jk)ri(jk) , ri(jk) = ri −
mjrj +mkrk

mj +mk

, (13)

µjk =

(
1

m

mjmk

mj +mk

)1/2

, µi(jk) =

(
1

m

mi(mj +mk)

m1 +m2 +m3

)1/2

, (14)

where {i, j, k} is a cyclic permutation of {1, 2, 3}, mk and rk are the mass and coordinate

of particle k, and µ2 are the reduced masses of the subsystems in units of an arbitrary

9
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normalization mass m. The xi and rjk coordinates correspond to the interparticle distance

between the two He atoms when i = 1 and to the He–H distance when i = 2, 3. In the

former case, yi and ri(jk) are set along the direction which connects the H atom and the

center of mass of the He2 unit, whereas for the i = 2, 3 arrangements, they correspond to

the distance between one of the He atom and the center of mass of He–H.

Obviously three different sets of Jacobi coordinates {xi,yi} are possible, and in principle

any of them can be chosen for a correct description of the system. However, in some cases,

the particular properties of the intrinsic 2B subsystems can make one of the Jacobi sets more

suitable than the others. A clear example is the one in which one of the 2B subsystems has a

bound state. The Jacobi set where the x coordinate is defined between these two particles is

more appropriate, since they are the natural coordinates describing the asymptotics of the 3B

WF. For the same reason, 3B systems where more than one of the inner 2B subsystems has

a bound state (or a low-lying resonance) are difficult to describe with a single set of Jacobi

coordinates. For these cases a better choice is to use democratic coordinates providing a

completely symmetric treatment of each Jacobi set. This is achieved by writing the total 3B

WF for a total angular momentum J and its corresponding projection along the space-fixed

Z-axis, M , of as:

ΨJM =
3∑

i=1

ψJM
(i) (xi,yi), (15)

where each of the components ψJM
(i) (xi,yi) satisfies the equation:

(T − E)ψJM
(i) (xi,yi) + Vjk

(
ψJM

(i) (xi,yi) + ψJM
(j) (xj,yj) + ψJM

(k) (xk,yk)
)

= 0, (16)

where T is the kinetic energy operator, Vjk is the interaction between particles j and k, and

E is total 3B energy. A cyclic permutation of the indexes {i, j, k} in Eq.(16) gives rise to the

three Faddeev equations, which after summation provide the usual Schrödinger equation.

1. The hyperspherical adiabatic expansion method

From the three sets of Jacobi coordinates {xi,yi} we construct the corresponding three

sets of hyperspherical coordinates {ρ,Ωi} ≡ {ρ, αi,Ωxi
,Ωyi
} where Ωxi

and Ωyi
give the

directions of xi and yi, and the hyperradius ρ and hyperangle αi are defined by

xi = ρ sinαi , yi = ρ cosαi , (17)

10
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in terms of which the volume element is given by ρ5dΩidρ, where

dΩi=sin2 αi cos2 αidαidΩxi
dΩyi

.

The kinetic energy operator is then written as

T =
h̄2

2m

(
−ρ−5/2 ∂

2

∂ρ2
ρ5/2 +

15

4ρ2
+

Λ̂2
i

ρ2

)
, (18)

Λ̂2
i = − 1

sin(2αi)

∂2

∂α2
i

sin(2αi) +
l̂2xi

sin2 αi

+
l̂2yi

cos2 αi

− 4 , (19)

where the angular momentum operators l̂2xi
and l̂2yi

are related to the xi and yi degrees of

freedom.

As detailed in Ref. [23], each of the components ψJM
(i) in the total WF (15) is now

expanded in terms of a complete set of generalized angular functions φ
(i)JM
n (ρ,Ωi):

ψJM
(i) (xi,yi) =

1

ρ5/2

∑
n

fn(ρ)φ(i)JM
n (ρ,Ωi) (20)

where ρ−5/2 is the radial phase space factor and n (=1,2,3...) labels the angular functions.

The total 3B WF can then be written as:

ΨJM =
1

ρ5/2

∑
n

fn(ρ)ΦJM
n (ρ,Ωi), (21)

where ΦJM
n (ρ,Ω) =

∑
i φ

(i)JM
n . The angular functions φ

(i)JM
n are expanded in terms of a

complete basis set of hyperspherical harmonics, YKJM
`x`y

, as [31]:

φ(i)JM
n (ρ,Ωi) =

∑
K`x`y

C
(i)
nK`x`y

(ρ)YKJM
`x`y

(αi,Ωxi
,Ωyi

), (22)

where K is the hypermoment, `x and `y are the orbital angular momenta associated with

x and y, respectively, and C are the expansion coefficients. K is related to the `x and `y

momenta as K = 2ν + `x + `y, where the ν index is varied in the calculation.

The adiabatic approach assumes that the hyperangles vary much more quickly than the

radial coordinate ρ. After substitution of Eqs.(18) and (20) into the Faddeev equations (16),

it is then possible to solve them first for a set of fixed values of ρ, in such a way that the

angular functions (the adiabatic basis) are now, for each chosen ρ, as the eigenfunctions of

the angular part of the Faddeev equations:

h̄2

2m

1

ρ2

(
Λ̂2 − λn(ρ)

)
φ(i)JM

n + Vjk(φ
(i)JM
n + φ(j)JM

n + φ(k)JM
n ) = 0 , (23)
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where {i, j, k} is a cyclic permutation of {1, 2, 3}. The eigenvalue problem given in the equa-

tion above is solved after expansion of the angular eigenfunctions in terms of hyperspherical

harmonics (see [23] for details).

In a second step, the radial coefficients fn(ρ) in the expansion (15) are finally obtained

from a coupled set of “radial” differential equations [23], i.e.(
− ∂2

∂ρ2
− 2mE

h̄2 +
1

ρ2

(
λn(ρ) +

15

4

)
−Qnn

)
fn(ρ) =

∑
n′ 6=n

(
2Pnn′

∂

∂ρ
+Qnn′

)
fn′(ρ) , (24)

where E is the 3B energy, the eigenvalues λn(ρ) of the angular equations (23) enter as

effective potentials, and the functions P and Q are defined as the angular integrals:

Pnn′(ρ) ≡
∫
dΩΦJM∗

n (ρ,Ω)
∂

∂ρ
ΦJM

n′ (ρ,Ω) , (25)

Qnn′(ρ) ≡
∫
dΩΦJM∗

n (ρ,Ω)
∂2

∂ρ2
ΦJM

n′ (ρ,Ω) . (26)

Different properties of these coupling terms can be found for instance in [23].

The pair distribution, in terms of one or two of the coordinates defined in Eq. (13) for

the arrangement i, can be calculated as:

D(i)
Faddeev(rjk) = µjk

∫ ∫ ∫
y2

i dyi dΩyi
x2

i dΩxi
| ψJM

(i) (xi,yi) |2 (27)

D
(i)
Faddeev(rjk, ri(jk)) = µjk µi(jk)

∫ ∫
x2

i dΩx y
2
i dΩy | ψJM

(i) (xi,yi) |2 (28)

The hyperspherical adiabatic expansion method sketched in this section has proved to

be a suitable method to describe spatially extended and weakly bound 3B systems. In

particular it has been frequently, and successfully, used to describe the structures of the

so-called halo nuclei, like 6He or 11Li [32–35], as well as many other nuclei (6Li, 6Be, 12Be,

17Ne or 12C, among others) that can be treated as 3B systems [36–40]. This method is able

to accurately reproduce the asymptotic behaviour of the WFs, as tested for the analysis of

Efimov effects [41–43], where an accurate computation of the WFs at very large distances

is essential [44].

C. QUANTUM MONTE CARLO METHODS

The QMC approach for calculating the bound states of a weakly bound system can be

divided into two main steps: the optimization of the trial WF ΨT through a minimization

12
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procedure, implemented here in a VMC code [45], and the use of ΨT to solve by a random

walk the imaginary-time dependent Schrödinger equation in its importance sampling form:

− ∂f(R, τ)

∂τ
= −D∇2f(R, τ) + ∇[FD(R)f(R, τ)] + [EL(R) − ET )]f(R, τ) (29)

where FD(R) is the quantum force given by

FD(R) = ∇ ln |ΨT (R)|2, (30)

EL(R) is the local energy given by

EL(R) = ΨT (R)−1ĤΨT (R), (31)

D = 1/2m with m being the mass of the atoms of the complex and f(R, τ) = Ψ(R, τ)ΨT (R)

is the distribution function.

The trial WF of the system is given by a product of purely nodeless exponential forms

[46]

ΨT (R) = ΨT (R1, R2, R3) = ψ2H−He(R2)× ψ2H−He(R3)× ψHe−He(R1) (32)

where f 2H−He is the Jastrow correlation factor for the He-hydrogen interaction

f 2H−He(Ri) = −
(
p5

R5
i

+
p3

R3
i

+
p2

R2
i

+ p1Ri + p0 lnRi

)
(33)

with i = 2, 3; the Jastrow factor for the He-He pair has the same functional form.

The DMC procedure relies on the short-time approximation [45] whereby the Schrödinger

equation is solved iteratively in the integral form through a relaxation process in imaginary

time

Ψ(R′, τk+1) =

∫
G(R′ ← R, τ)Ψ(R, τk)dR (34)

where τ = τk+1 − τk becomes now the discretized time step and the Green’s function, given

by

G(R′ ← R, τ) = 〈R′| exp(−τ(Ĥ − ET ))|R〉 (35)

can be interpreted as the ”transition“ probability to move to a new position R′ in the time

step τ . The projection operator in eq. (35) extracts the ground state WF Ψ0 from an

arbitrarily chosen initial state, written as a linear combination of the eigenfunctions Ψi of

Ĥ, Ψ0 =
∑

i ciΨi, when τ →∞

lim
τ→∞

exp(−τ(Ĥ − ET ))
∑

i

ciΨi(R)ΨT (R) = lim
τ→∞

∑
i

exp(−τ(Ei − ET ))ciΨi(R)ΨT (R) =

exp(−τ(E0 − ET ))c0Ψ0(R)ΨT (R) (36)
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The DMC ground state distribution function, f0 = Ψ0ΨT , is reached by simulating the

imaginary-time diffusion of replicas (walkers) of the system in the configurational space.

The Green’s function is generally unknown; in the importance sampling DMC framework

[45, 47] the Green’s function is splitted into two different contributions, according to the

Trotter formula:

G(R′ ← R, τ) ' G̃(R′ ← R, τ) = Gd(R
′ ← R, τ)Gb(R

′ ← R, τ)

= (4πDτ)−3/2 exp

[
− [R′ −R−DτFD(R)]2

4Dτ

]
exp

{[
ET −

EL(R) + EL(R′)

2

]
τ

}
(37)

The Gb = exp
{[
ET − EL(R)+EL(R′)

2

]
τ
}

branching term can be considered as a rate term

which rules the changes in the population of walkers [45]. From a ”diffusional” point of view,

this technique allows one to simulate the presence of “sources“ and “sinks“ in the imaginary

time evolution of the process by replicating or ”killing“ the walkers. On average, walkers

will die in regions where ΨT > Ψ and give birth in regions where ΨT < Ψ. For the branching

part, we follow the approach suggested by Assaraf et al. [48, 49]. At each jth iteration we

calculate the average branching factor for the M walkers

Wj =
1

M

M∑
i

bi,j (38)

where the branching factors are calculated as in [50] i.e.

bi,j = exp

{[
ERef −

EL(Ri) + EL(R′
i)

2

]
τeff

}
(39)

and where EL(Ri) and EL(R′
i) are the local energies before and after the move, ERef is a

constant value close to the eigenvalue and τeff is the effective timestep which depends on

the acceptance/rejection ratio [47]. We then create a relative weight for each walker, given

by

ω̄i,j = bi,j/Wj. (40)

The population of M walkers is reconfigured by dividing it in two subsets: there are M+

walkers with ω̄i,j ≥ 1 and M− walkers with ω̄i,j < 1. In order to maintain a constant

population, a number of the M+ walkers substitutes the same number of M− walkers. This

number is given by [48]

int{Mreconf + η) = int

{
M+∑
i+

|ω̄i,j − 1|+ η

}
(41)
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where η is a uniform random number in [0,1]. The expectation value of an observable can

therefore be written as the usual statistical average [46]:

〈Ô〉 =

∫
Ψ0(R)ÔΨT (R)dR∫
Ψ0(R)ΨT (R)dR

' 1

Nb

Nb−1∑
k=0

 (k+1)×M∑
j=k×M+1

ωj

−1
(k+1)×M∑
j=k×M+1

ωj〈Ô〉j

 (42)

where the 〈Ô〉j is the ensemble average at the j-th iteration and the weight ωj for each

iteration is defined as a product over the last L timesteps of the mean of the branching

factors Wm at the m-th iteration

ωj =

j∏
m=j−L+1

Wm. (43)

For the atomic dopants we have instead employed a DMC version [51–56] in which the

number of walkers is changed during the simulation. Each walker is characterized by a

cumulative weight; at the j-th iteration the weight wij for the i-th walker is given by

wij =

j∏
k=1

bik (44)

where bik is the same as defined in Eq. 39. The only difference is in the reference energy

ER; it is now updated during the random walk, according to the following formula [50]

ER = ER +
α

τ
ln
N(τj−1)

N(τj)
(45)

where α is a control parameter (to be chosen small) and N(τj−1) and N(τj) represent the

population of walkers in two successive steps of the random walk. Updating ER is a funda-

mental tool to minimize the fluctuations in the ensemble. Walkers are killed or replicated

by using two parameters wmin and wmax:

• if wij < wmin the i-th walker is destroyed with probability p− = 1− wij and retained

with probability p+ = wij and a weight equal to the average weight over the ensemble,

W̄j =
∑N

i wij;

• if wij > wmax the i-th walker is replicated. The number of replicas is given by N ij
w =

int(wij + η) where η is uniform random number ∈ [0, 1]. A new weight wij/N
ij
w is

associated at these N ij
w walkers;

• in the case wmin ≤ wij ≤ wmax the i-th walker survives with no duplicates.
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The average over the ensemble at the j-th iteration becomes

〈Ô〉j =
1

Wj

N∑
i=1

wijOi,j (46)

where Wj =
∑N

i wij. The final estimate of the observable O is obtained by the usual

definition of Nb blocks of M steps

〈Ô〉 =

∫
Ψ0(R)ÔΨT (R)dR∫
Ψ0(R)ΨT (R)dR

' 1

Nb

Nb−1∑
k=0

 1

M

(k+1)×M∑
j=k×M+1

〈Ô〉j

 . (47)

III. BOUND STATE CALCULATIONS

A. The atom-atom potentials

In the study of very small weakly bound VdW systems, the relevant potential energy

surface (PES) employed to assess the presence of possible bound states of that complex

is usually constructed as sums of the 2B potentials between the interacting partners, i.e.

disregarding the effects from the 3B forces usually taken to be nearly negligible in such

special systems

VTOT (R1, R2, R3) = VHe−He(R1) +
2∑

i=1

VHe−Hi
(Ri+1) +O(V3B). (48)

In the case of the atomic impurity H and its isotopic variants we employ in the present

study different atom-atom potentials with respect to the other calculations reported in

literature [8, 12]. The He-He interaction was selected among the many existing proposals

(which we extensively reviewed a while ago [57]), where we found that one of the potentials

proposed by Aziz and coworkers [58] was indeed able to support the single bound state of

the dimer for J = 0. The potential selected will be labelled the HFDID potential from

[58]. We then adopted the model potential of Ref. [59] to describe the He-H interaction

because of its accuracy in describing the 2B properties of the system. Our comparison with

Lin’s potential choices showed us that the present 2B potentials are very similar to those

employed by him and therefore we carried out our calculations by using only our present

selection, expecting it to yield comparable results.

The interaction between any of the He atoms and the H2 molecule was taken instead from

Ref. [17], the same anisotropic interaction which we have used in the earlier calculations on

H2-He [16], and which has been obtained from accurate ab-initio calculations.
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The potential curves for all the atom-atom subsystems employed in the present work are

shown in Fig. 1. In that figure we also give indications on the anisotropic strength of the

full H2-He surface [17] in comparison with its isotropic component, an item of interest for

the present work.

The following comments could be made from a perusal of the data in the figure:

1. the two potential curves associated with the H2-He fully anisotropic interaction (la-

belled as BMP) indicate clearly that the repulsive regions are very similar in both

orientations (θ = 0 or π/2) and also have similar long-range behavior. In other words,

the H2-He system exhibits a largely isotropic interaction potential;

2. if we consider the spherical component of the H2-He surface (labelled V0 in the fig-

ure) we see that it follows very closely both orientations’ behavior, with only minor

differences around the well depth value;

3. the He-H interaction is the weakest one for the three subsystems considered here, but

it shows the same spatial extention than the H2-He interaction;

4. the He-He interaction, known to be a very weak interaction potential, is seen here

(labelled as HFDID) to be only slightly weaker than the H2-He interaction potential

while it is stronger than the He-H interaction. The He-He potential well depth is then

localized at smaller atom-atom distances with respect to the potentials of the helium

atoms with both hydrogen moieties.

B. The atomic partners: the hydrogen and its isotopic variants

1. The trimers: H(He)2,D(He)2 and T(He)2

The DGF method has been applied for the cases of the three isotopic variants, using 711

Gaussian functions along the He-H coordinate (with the outermost one located at 10000 a0)

while 103 functions (up to 360 a0) were sufficient to fully describe the more compact He-He

interaction domain. The resulting number of basis functions was 626,152. For the Faddeev

calculation, we have employed up to n = 8 adiabatic terms in the expansion of the WF

from Eq. (21). Orbital angular momenta `x, `y ≤ 4 have been considered in Eq. (22) and

the maximum hypermomentum values Kmax used for each of the components are given in
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Table I. Finally, the coupled set of radial equations given in Eq.(24) has been solved using

a Runge-Kutta procedure up to a maximum value of the hyperradius ρ of about 475 a0.

The DMC calculation employed 2000 walkers propagated in 40 blocks composed by 60,000

timesteps of 300 hartree−1.

As we can see from the parameters employed in the present calculations, the analysis of the

possible bound states associated with the H atom can become quite demanding in terms of

computational effort. In particular, the DGF approach requires a rather large distribution

of basis functions in order to map the extended length of those “bonds” and ensure the

converged control on the location of possible bound states. The corresponding eigenproblem

would be really hard, if not impossible, to solve with standard diagonalization techniques,

while only a moderate computational effort is required by the present implementation of the

JD procedure within the DGF scheme.

Although no bound states were found for either H(He)2 or D(He)2, it is instructive to

look at the results reported by Fig. 2 for the computed pair distribution functions along the

He-D distance obtained by means of the DGF approach.

The computations, carried out with the expansion details given above, show the exten-

sions of the pair distribution functions along the He-D bonds. Such functions are plotted

for each converged variational calculation where the location of the outermost Gaussian

function is moved to increasingly larger radial values.

The results indicate that, in the absence of the formation of a truly bound complex, to

employ increasingly larger “boxes” whithin which to search for bound states forces the distri-

butions to map out the entire available space since we are essentially describing dissociative

states near the energy threshold of the He2 + D partners.

On the other hand, when the same procedure is carried out for the T(He)2 system, we

found that beyond certain distances the pair distribution does not change anymore and both

of them clearly converge to the quantum distributions of a bound trimer. The data reported

by Fig. 3, in fact, refer to the final distributions and show the much more compact nature

of these quantities when the complex is bound. In other words, even when the physical

“box” chosen to describe the He-H interaction range is extended to 10000 a0, the formation

of a bound state is signaled by the more rapid convergence of the radial pair distribution

functions and the essentially negligible density values beyond about 100 a0.

The comparison between the DGF, Faddeev and DMC (mixed estimator) pair distri-

18

Page 19 of 38

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

butions reported by the same Fig. 3 now reveals an excellent agreement between DMC

and Faddeev methods, while the DGF apparently deviates slightly from the overall picture.

However, we see that all three methods yield probability density functions which display

peaks at basically the same values of the He-He and He-T pair distances. The only discrep-

ancy seems to be about the total extension of the distributions, with the DMC and Faddeev

results extending to slightly larger distances than the DGF data, the difference being more

marked for the He-T length. As a consequence, predictions for the mean values of the atom-

atom distances, estimated from the 1D distribution reported in Fig. 3 reveal larger values

for the Faddeev and DMC results (both yielding 27.7 a0 and 34.7 a0, for the He–He and

He–T distances respectively) than for the corresponding DGF estimates (22.6 a0 and 26.5

a0). However, it should be noted that the He-T atom-atom distribution now extends over

100 a.u., meaning that the mean radial values differ by 5 % (for the He–He) and by 8 % (for

the He–T) with respect to the total spatial extension: an acceptable discrepancy given the

special nature of this complex and the very small values of its binding energy.

Furthermore, the overall geometry given by both methods is not far from an equidistant

location of each He atom with respect to the other helium partner and to the H atom. This

feature further confirms the extreme weakness of the He-He interaction which, although able

to support one 2B bound state, yields a bond distance within the He2-H complex perfectly

comparable to the corresponding separation between the T and He atoms, which in fact are

not capable of supporting a separate 2B bound system.

As for the energy value of the bound state, we saw that the DGF calculations which map

radial distances beyond about 300 a0 essentially make no changes on the final eigenvalue. In

other words, the size of the integration box has essentially reached its limit, beyond which

the corresponding bound state WF has all but vanished. The extrapolated values at zero

badness for each chosen step ∆ are reported in the second column of Table II for decreasing

values of the step. By fitting these energies as a function of ∆ and by extrapolating to the

δ-function limit (∆ = 0), as discussed in detail in the previous section, we obtain the final

value of -0.01407 cm−1 for the only bound state of the T(He)2 at J = 0. The Faddeev result

is here -0.01409 cm−1, in extremely good agreement with the DGF prediction. A test of the

convergence in terms of the number of radial expansion coefficients fn(ρ) from Eq. (21) is

shown in Table III. Finally, DMC calculations produce a more strongly bound T(He)2, with

an energy of -0.01898(20) cm−1. Given the smallness of the energy involved, however, it is
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not entirely surprising to find that an energy ”mismatch“ between the methods of the order

of 10−3 cm−1 looks like a sizeable difference, although it really corresponds to a rather small

difference, in absolute terms, between energies computed with different procedures.

To further give us some pictorial representation of this very special state, we report in

Fig. 4 the contour plot and a three-dimensional perspective along the He-He and T(He)2

distances for the probability density function obtained via the Faddeev approach of Eq.

(28). The radial density function displays a similar behaviour for both coordinates, thus

supporting an overall structure for the complex with the H atom located from the center of

mass of the He2 unit at a similar distance to that for the He-He bond.

In Fig. 5 we further show an analysis of the relative weights of the most significant

triangle configurations that describe the bound trimer. The results from Fig. 5 further

confirm, albeit more quantitatively, the spatial features of this bound state found by our

calculations: the linear configurations of this very floppy system are substantial in number

(about 20 %) and describe an “outer” hydrogen atom attached to the helium dimer (see

mid and bottom panels of that figure). On the other hand, the scalene structures (i.e.

the distorted isosceles triangles) give the dominant contributions to the description of the

system: a very floppy He dimer with an outer T atom hovering around it at distances of the

same magnitude as the separation between the He atoms.

Finally, a further search for possible states with Efimov character leads to the conclu-

sion that, given our current knowledge of 2B forces, no Efimov state exists for the T(He)2

complex. Bound state calculations performed by means of the DGF method when the total

strength of the potential was artificially increased reveal that the energy of the trimer always

remain below the corresponding value of the He2 bound state.

2. Strengthening the “cage“ effects: H(He)3 and D(He)3

In the previous Section we have discussed how the change in the mass of the impurity

reflects on the existence of a bound state within a two-He atomic ‘cage’. Doubling the

impurity mass from H to D turned out not to stabilize the trimer for a bound state to

appear: the hydrogen-helium interaction is so weak that we needed to use the heaviest

hydrogen isotope to find a bound state for the trimer. In the present Section we additionally

analyze the effect of slightly enlarging the He-atom cage on the system’s bound spectrum
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and, again, we start with the lightest H isotope. For the four-body system we only carry

out DMC calculations, reassured by its good agreement with DGF and Faddeev methods

already employed for the trimers of the previous Section. For the H(He)3 system the DMC

calculations find a state with energy -0.087(2) cm−1. Such a state is essentially isoenergetic

with respect to the He3 system (-0.0877(4) cm−1, calculated by us) which, hence, does not

seem to be capable to bind the very light impurity. On the other hand, the tetramer D(He)3

shows a more marked bound state with energy -0.13166(57) cm−1. Our zero of energy

refers, as usual, to the full fragmentation, i.e. to the atomic components; with respect to the

deuterium loss the binding energy is instead 4 × 10−2 cm−1, which is around 57 mK. This

extremely weakly bound system is, as expected, highly delocalized in space, as can be seen

from Fig. 6, where we report the 1D radial and angular distributions which characterize

the D(He)3 spatial features. We notice there that the D species, though bound to the three

He atoms, is clearly ‘outside’ the helium cluster and quite far away, spanning an impressive

radial box of the order of the µm. Such a microscopic extension reflects on the distribution

function obtained for the He-D-He angular variable: the D atom is so far away that the

relative angle is always close to 0. The angular distribution as a function of the D-He-He

angle is thus flat and shapeless over the entire definition domain, further indication of the

very large spatial delocalization of the D impurity.

Since we had already found the T isotope to be bound to two He atoms, we did not think

to be of special interest in this work to further confirm it in the case of three He atoms. We

shall, in fact, present and discuss the T-solvation in larger He clusters in a separate study

[60].

C. The molecular partner: H2 and (2H)

Because of the very marked weakness of the present system, and also in order to test the

structural importance of including the full anisotropy of the He-H2 ”molecular“ interaction,

we carried out calculations using either the full He-H2 PES of Ref. [17] or its spherically

averaged potential also shown by Fig. 1. The DMC calculations were preceded by varia-

tional, VMC, calculations to optimize the trial WF ΨT needed in the importance sampling.

The DMC procedure involved 4000 walkers, time steps of 100 hartree−1, 100 blocks and

6000 iterations per block. Such data apply to ”atom-like” calculations pertaining to the
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(2H)(He)2 system, while the ”molecular“calculations for the H2(He)2 system employed, to

reach convergence, 1500 walkers, time steps of 200 hartree−1, 20 blocks and 6000 iterations

per block [9]. The DGF calculations were applied to the (2H)(He)2 case and employed a total

of 206 distributed Gaussians functions over a radial range of 200 Å for the He-He bond and

for the (2H)-He bonds: only ”atomic-like” calculations were carried out in this case. The

final badness value was extrapolated to zero and the initial width of the Gaussian functions

was chosen to be 0.6 bohr, also extrapolated to near-zero width in the final calculations (see

previous Section II for further details).

The numerical results are collected in Table IV. Two different He-He potentials were used:

the HFDID from Ref. [58], which we discussed before, and the TT potential from Ref. [61]

that has been often suggested also as a possible potential. The results from the Table clearly

indicate the good accord in achieved between the two methods. Furthermore, we see that

a fully anisotropic He-H2 potential and its spherical modelling yield essentially very similar

binding energies: the differences are of the order of about 0.01 cm−1. Finally, the choice of

two different He-He potentials, of which the TT one does not produce a bound He dimer,

also appears to cause fairly small differences. The more realistic HFDID potential (Fig. 1)

produces a smaller binding energy value, but only by about 0.013 (DMC) or 0.016 (DGF)

cm−1. Such calculation, therefore, can give us some feeling about the possible ”sensitivity“

of our results on the chosen 2B potentials.

In conclusion, one sees that the present four-particle system is indeed very weakly bound

and it can be just as accurately described as a three-particle species containing a spherical

(2H) partner. It is usually understood that the calculation of the radial distributions between

partners, especially between very weakly bound species as in the present instance, provides

a very sensitive test on the comparable qualities of different computational procedures. It

is therefore very useful to further evaluate radial densities along both the He-He and the

He-(2H) bonds in order to compare the findings of the DGF and DMC schemes discussed

earlier.

The results are reported by the two panels of Fig. 7, the top one being for the He-

He distances and the bottom one for the He-(2H) distances. The solid lines describe the

radial densities associated with the DMC results (obtained by the mixed estimator), while

the dashes report the results obtained using the DGF method described in the previous

Section. It is once again remarkable, and rather reassuring, to see that both methods yield
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here essentially the same distributions along the two distances. Furthermore, their maxima

appear roughly at the same radial value of about 10 bohr, thus indicating the preferential

collocation of this very floppy, quantum system as an equilateral triangular structure: we

indeed obtained the same result by using the full anisotropic PES in our earlier calculations

[9]. One further indicator of the highly quantum nature of this system is given by the

estimates of zero-point energies which can be obtained from the binding energies computed

here: the well depth of the two 2B potentials are around 10 cm−1 and 7 cm−1 for He-He,

while we obtain binding energies which are around a fourth of a cm−1. This feature therefore

suggests that more than 95 % of the total energy available is given as a classically excluded

region for the weakly bound, highly delocalized quantum system. This finding is also very

similar to the well-known behavior of the He dimer [62].

IV. DISCUSSION OF RESULTS AND CONCLUSIONS

As already mentioned in the Introduction, the study of ultra-weak interaction forces which

might bound small atomic clusters pushes to their computational limits all the standard

methods which are commonly employed for the calculations of bound states. This is chiefly

due to the unusual extension of the spatial domain of definition for the bound WFs, as can

be inferred by the features of pair distribution functions and by the values of the variational

parameters required for convergence shown in the previous Section. Additionally, to have to

deal with binding energies of the order of the mK (or fraction of mK) constitutes a significant

challenge for getting converged results and, as illustrated in the case of the T(He)2 system,

small discrepancies obtained when using different, independent methods are not surprising,

especially when the characterization of the system in terms of its spatial attributes shows a

substantial agreement between different approaches.

The DGF representation of the Hamiltonian was introduced ten years ago precisely with

the aim of providing a procedure more suited to the characterization of weakly bound sys-

tems and the Jacobi-Davidson scheme has enabled us to increase by more of one order of

magnitude the number of basis Gaussian functions employed in the calculation while re-

ducing the computational time and the memory required by the method. The DMC and

Faddeev procedures are usually employed in the study of more conventional, nearly chemi-

cally bound systems, while the interaction of one hydrogen atom with two helium moieties
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constitutes for them a very challenging case, due to the nature of the potentials involved.

It is well known that one He atom never binds to a single hydrogen atom: the interaction

potential, reported in Fig. 1, is too weak to support a bound state between the two very

light particles. The replacement of H with its heaviest isotopes, deuterium and tritium,

which represents the most dramatic isotopic mass effect for all known elements, does not

cause the appearance of any bound state.

On the other hand, the H2-He system does present a bound state: in the spherical

approximation of the interaction the molecular hydrogen is really treated as a deuterium

atom so that the different potential for the H2-He system has the effect of “tuning” the known

interaction potential on the He-D dimer: indeed the He-H2 potential, though comparable to

the latter in terms of spatial extension and position of the well, changes enough to be able

to support a bound state.

A further way to act on the system has been provided by a small increase of the solvating

‘shell’ of the He atoms. Even though the H-He dimer is not bound, the addition of a second

He to the H-He dimer is seen to create the conditions for a Halo state to appear, i.e., for a

bound trimer state with unbound diatomic subsystems.

In sum, the above studies have allowed us to analyze in detail the possible existence of

bound states (with J =0) for all the isotopic variants of an hydrogen atom interacting with

the helium dimer in its bosonic form. The intermolecular forces, constructed as a sum of 2B

interactions, are known to be very weak in such systems and therefore it was not at all clear

in advance whether or not such bound complex structures exist within the current quality

of 2B forces available.

Our calculations have employed a variational expansion over a symmetry-adapted, non-

orthogonal basis of Gaussian functions, the DGF expansion [21, 22], the Faddeev equations

and the DMC treatment: we have carefully controlled the detailed numerical convergence

of all the parameters which appear within all three methods.

All three approaches used the same modelling of the 3B interaction as described earlier

and provided in the end remarkable agreement with each other, finding only one bound state

for the T(He)2 system and the same energy eigenvalue for such state. These systems further

showed very similar atom-atom density functions and agreed on indicating that the T(He)2

bound trimer should not support any excited state with Efimov character.

In conclusion, we have shown through different examples how it is possible to achieve
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accurate and reliable evaluations of the binding energies and of the bound state features for

the smaller (trimers and tetramers) clusters that interact via ultraweak forces, exhibiting

very unusual spatial features and properties with respect to more conventional, and more

strongly bound, ”chemical“ systems.

V. CAPTIONS

• Fig 1: 2B potential term contributions employed for the H-He2 and the (2H)-He2

systems discussed in this work. The He-He potential is from Ref. [58], the H2-He

potential curves are from Ref. [17], while the H-He potential is from Ref. [59]. See

main text for further details.

• Fig 2: Computed pair distributions along the 4He-D bound distance obtained with the

DGF method as a function of the location of the outermost Gaussian function.

• Fig 3: Computed pair distribution D(0)
DGF and D(i)

Faddeev functions (see Eqs. (27) and

(6)) as calculated with the DGF (solid line), Faddeev (dashed line with filled circles)

and DMC (dashed line with stars) approaches along the He-He (left panel) and He-T

(right panel) bonds within the bound triatomic complex. Distances are measured in

a0. See text for further details.

• Fig 4: Three dimensional perspective and contour plots for the probability density

in terms of the He-He and T-He2 distances for the T(He)2 bound state obtained by

means of the Faddeev calculation. See Eq. (28).

• Fig 5: Computed pseudo-weights for all triangular configurations of the T(He)2 system

(top panel). The middle panel shows the triangular configurations centered on either

4He atoms, while the bottom panel shows those centered on the T atom.

• Fig 6: 1D radial probability functions and, in the inset, the angular distribution for

the D-4He3 system.

• Fig 7: Computed radial densities using both the DMC (solid lines) and the DGF

(dashes) methods. The upper panel refers to the He-He distance while the lower panel

reports the (2H)-He distance. See text for details.
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i = 1 i = 2, 3

`x `y Kmax `x `y Kmax

0 0 1700 0 0 1700

2 2 254 1 1 202

4 4 168 2 2 204

3 3 166

4 4 168

TABLE I: Components included in the Faddeev calculation for the expansion in Eq. (22). Kmax

gives the maximum value of the hypermomentum used in the calculations. For i = 1 the xi Jacobi

coordinate goes between the two He atoms, while for i = 2, 3 it goes between the He and the H

atoms.

He2T E0 (cm−1) DGFs basis functions

∆ = 1.2 -0.00096 144 556,851

∆ = 1.1 -0.00330 157 731,077

∆ = 1.0 -0.00565 172 949,889

∆ = 0.9 -0.00745 193 1,334,099

∆ = 0.8 -0.00881 217 1,890,668

∆ = 0 -0.01407

TABLE II: Details of the extrapolation procedure to the ∆ = 0 case in the DGF calculation for

the 4He2T. We have used DGFs with single step from 3.0 a0 to 100.0 a0 and with double step from

100.0 a0 to 300.0 a0. See text for further details.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

E (cm−1) −0.01086 −0.01138 −0.01283 −0.01352 −0.01362 −0.01398 −0.01405 −0.01409

TABLE III: Convergence test with respect to the number n of adiabatic terms in the expansion of

Eq. (21).
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DMC DGF

H2-He2 - -0.248(3)b - -

(2H)-He2 -0.272(2)a -0.259(2)b -0.272a 0.256b

TABLE IV: Computed total energies for H2-He2 and (2H)-He2 using both the DMC and the DGF

methods. a HFDID He-He potential from Ref. [58]; b TT He-He potential from Ref. [61]; the

energy value of -0.248(3) cm−1 from Ref. [9]. See text for details.
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