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We analyse the phase behaviour of a simple one-dimensional lattice model with two repulsive
ranges (a hard core repulsion that covers two sites and a next-to-nearest neighbour repulsive
interaction), a long-ranged staggered mean field, and an additional mean field attraction.
The model is investigated in terms of its analytic solution. By a suitable choice of the next-
to-nearest neighbour repulsive interaction and the mean field attraction, the model displays
a phase behaviour closely connected with that of water: a solid phase less dense than its
fluid counterpart, a solid that melts upon isothermal compression, and no stable liquid-liquid
equilibrium.

1. Introduction

In recent papers[1, 2], the authors analysed the phase behaviour of a simple one
dimensional lattice model with a two-scale repulsive (2SR) interaction and a mean
field attraction. The model in question has a nearest-neighbour (NN) hard core
exclusion (or an infinitely strong NN antiferromagnetic coupling) and a next-to-
nearest neighbour (NNN) antiferromagnetic interaction, whose coupling constant
is K > 0, together with a long-ranged staggered mean field and a mean field
attraction. In a lattice gas the NNN antiferromagnetic interaction term is a NNN
repulsion, and in a continuum model it would correspond to a shoulder or the
short-range repulsion of a ramp potential[3, 4]. This very simple model was shown
to exhibit a liquid-solid transition at moderate densities in which the solid phase
melts when pressure is increased along an isotherm. When an attractive mean field
term is included, the model also presents a liquid-vapour equilibrium, and in Ref. [2]
it was shown that its phase behaviour resembles that of phosphorus[5, 6], in which
the molecular liquid P phase transforms upon compression into a base-centred
orthorhombic solid, which melts back upon further compression (see Figure 1). As
shown in our previous works, this 2SR lattice model is one of the simplest physical
models that reproduces the singular phase behaviour found in systems such as P[5,
7], silica[8], or germanium oxide[9]. These substances exhibit temperature-pressure
coexistence curves with negative slope, and all have solid phases with relatively low
coordination numbers (3-5, that are lower than those of the corresponding liquid
phases). However, when one compares the phase diagram of water [see [10] and
references therein] with that of our simple model, one notices that the solid-liquid
equilibrium line in water starts out with negative slope from the the triple point, so
that there is no stable liquid region that solidifies under isothermal compression to
melt again at higher pressures, in contrast with the behaviour depicted in Figure
1. The aim of this short paper is to analyse and tune the model Hamiltonian so
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Figure 1. p−T ∗ phase diagram of the one-dimensional lattice model with the
parameters of Ref. [2] (α = −8 and K∗ = 2.5). The metastable liquid-liquid
transition is indicated with a dotted curve (see Fig. 5 of Ref. [2]). A circle
denotes the triple point, and the vapour-liquid critical point is represented by
a diamond.

as to provide a set of parameters that leads to a phase behaviour more alike that
of water. To that purpose, in the next section we recall the key features of the
lattice model and the equations that describe its phase behaviour. In Sec. 3, in the
light of the findings of Ref. [2] and the analysis of how the phase diagram depends
upon the model parameters, we find a new set of parameters and discuss the phase
behaviour for this new set in relation with the well known experimental
behaviour of various real systems.

Our results below show that the phase diagram of the one dimensional
model and the ones of substances like water, Si, and P share some char-
acteristics. The main reason for this is that the model and these sub-
stances have common qualitative features on the level of fundamental
interactions. A common feature is the relative low density of the solid
phase. This is because the energy minimum of the interaction is some
distance away from the close packing configuration. Thus in the model
the particles have hard cores that cover two lattice sites while the result-
ing staggered mean field attraction (with the uniform field included) is
most attractive on the third neighbor (and each third neighbor further
on). Thus the solid or ordered phase, mostly filling each third site, can
not be at close packing. So further compression will return the system
to the disordered liquid state. Now adding a repulsive shoulder next to
the hard core will modify the return to the liquid state at high density.
Hence we find that the interplay between the interactions included in
the model determines the precise phase diagram including that of water.
This is discussed in more detail in the last part of Sec. 3.

2. The model. Equation of state

The Hamiltonian of our model can be written as

H = J
N

∑

i=1

sisi+1 + K
N

∑

i=1

sisi+2 +
N

∑

i<j

ϕ(i − j)sisj − H0

N
∑

i

si. (1)
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As in Refs.[2, 11] and [1], the J > 0 is the antiferromagnetic nearest neighbour
(NN) coupling, and we let J → ∞ with H0 such that H0 + 2J remains finite.
Thus we redefine H0 to include the 2J term by which it becomes finite in the
expressions below. Further, N is the number of spins or lattice sites, si = ±1 are
the spin variables, and H0 is the external field. Additionally we have a long-ranged
repulsive staggered interaction

ϕ(i − j) =

{

3aγ exp[−γ|i − j|], if i − j = 3n + 1, 3n + 2
0, if i − j = 3n

(2)

where n is integer, the limit γ → 0 is considered, and a > 0.
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Figure 2. (Colour online) h∗
− m isotherms of the one-dimensional

lattice model with NNN interaction and staggered field (α = −15 and
K∗ = 2.75) in the neighbourhood of the triple point temperature

An attractive mean field interaction similar to (2) but acting on all sites is
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introduced ad hoc in the free energy expressions below in order to give rise to
the usual vapour-liquid transition. The strength of this mean field attraction is
related to the strength of interaction (2) by means of a parameter α.

The analytical solution of the model was presented in full in Ref. [2], so here we
recall only the key equations needed to describe its thermodynamics.

The lattice can be split into groups of cells made up of three sublattices consistent
with the staggered interaction (2). One has a magnetization per particle mi on
sublattice i. It is then possible to define m1 = m+2u and m2 = m3 = m−u, where
m is the average magnetization and u represents the periodic ordering (staggered
magnetization) of the sublattices.

The free energy G per spin [1, 2] is given by

−βG = lnλ + βαam2 − βau2. (3)

where λ is the partition function per spin or lattice site with effective magnetic
fields, a is the strength of the staggered mean field, and α tunes the mean field
attractive term relative to the staggered one. The effective fields are H1 = He+Hse

,
H2 = H3 = He −

1
2Hse

with He and Hse
given by Eqs. (7) and (8) below. The

partition function is obtained from the eigenvalue equation of the transfer matrix
(Eqs. (23)-(25) in Ref. [2]), namely

Λ3 + a2Λ
2 + a1Λ + a0 = 0 (4)

where Λ = λ3, and

a2 = −[D3p−3 + D(2e−v + e2v)p]

a1 = −[D2(e−2v + 2ev)(p−2 − p2) + p−6]

a0 = D3p−3(p−2 − p2)3, (5)

with

D = CB2/3 = exp(−βHe)

e−v = B4/3 ; v = βHse
. (6)

The effective staggered and average fields are given by

Hse
= 2au (7)

He = H0 − 2αam. (8)

The α is the coupling term that can switch from uniform mean field attraction
(α < 0) to repulsion (α > 0).

Once λ is obtained by solution of (4), the magnetization m and staggered mag-
netization u can be obtained by differentiation of the eigenvalue equation by the
method used in Ref.[11]. Starting from

m =
∂ lnλ

∂βHe

u =
∂ lnλ

∂(βHse
)

(9)
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one gets

m = −
1

3

3
∑

n=0

a′nΛn/N (10)

u = −
1

3

3
∑

n=1

a′sn

Λn/N, N =
3

∑

n=1

nanΛn. (11)

Here

a′n =
∂an

∂(βHe)

a′sn

=
∂an

∂(βHse
)
, (12)

whose explicit expressions can be found in Ref. [2]. We have thus all the ingredients
to study the phase behaviour of our model.

3. Phase behaviour

Explicit calculations are carried out in terms of reduced quantities. In the present
instance, the corresponding reduced field and the NNN coupling constant will be
h∗ = H0/a and K∗ = K/a. Phase equilibrium conditions determine that the field,
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Figure 3. Phase diagram of the one-dimensional lattice model with NNN
interaction and staggered field calculated using a mean field coupling α =
−15 and K∗ = 2.75. The liquid-solid metastable transition is shown with
dotted curves. When extended to temperatures above the triple point
these latter curves smoothly join the solid-liquid equilibrium curves
inside the metastable region, so as to form again the previous liquid-
solid-liquid equilibrium curve studied in Refs.[1] and [2].

h∗, and the spin free energy, βG, stay the same in both phases at equilibrium. Thus
one has to solve,

βG(u = 0, md; T
∗) = βG(uo, mo; T

∗) (13)

h∗(u = 0, md; T
∗) = h∗(uo, mo; T

∗) (14)
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where the subscripts d and o denote the disordered and ordered phases respectively.
Additionally, md and h∗, and mo, uo and h∗ are connected via Eqs.(10) and (11).
Details as to the explicit numerical solution of these equations can be found in
Refs. [1] and [2].
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Figure 4. p − T ∗ phase diagram of the one-dimensional lattice model with
NNN interactions and staggered field calculated using a mean field coupling
α = −15 and K∗ = 2.75. A circle denotes the triple point, and the vapour-
liquid critical point is represented by a diamond.

Now let us focus on the phase diagram depicted in Fig. 1. In contrast to the
well known phase diagram of water, we observe here that the solid-liquid equilib-
rium curve starts out from the triple point with positive slope, and then bends
backwards at a point of maximum temperature. This feature, present in systems
such as phosphorus, selenium and tellurium[7] is clearly absent from water[10] and
other tetrahedrally coordinated substances, such as Si and Ge[7]. After a careful
examination of Fig. 1 and the corresponding ρ−T diagram (see Fig. 5 of Ref. [2]),
it became evident to us that the weight of the attractive mean field term in the
Hamiltonian must be increased, so as to raise the vapour-liquid critical temper-
ature, which in realistic water models is well above the triple point temperature
in contrast with the situation of Fig. 1. Increasing the mean field attraction will
also widen the liquid-vapour coexistence curve, and thus by tuning the α param-
eter, the undesired liquid-solid equilibrium can be made metastable with respect
to the gas-solid (or vapour-solid) transition and thus somehow be ”‘squeezed” into
the vapour-liquid equilibrium. Additionally, increasing the repulsive parameter K∗

shifts the liquid-solid-equilibrium to higher densities. Thus changes in α had to be
accompanied by a fine tuning of the K∗ parameter. After some trials, we found
that the combination α = −15 (which doubles the magnitude of the α parameter
in Fig.1 and Ref. [2]) and K∗ = 2.75 (just a minor change with respect to Fig. 1)
reproduced the sought for features. In Figure 2 we present various isotherms cal-
culated using these parameters for temperatures in the vicinity of the triple point.
In the figure the fields corresponding to the various phase equilibria found for each
temperature are shown with straight lines connecting coexisting magnetizations
or densities, as determined from Maxwell’s equal area rule. One immediately sees
how the solid-liquid transition shrinks, but remains finite as the triple point is
approached.

Now, one can construct the complete ρ−T phase diagram for the new parameter
set, which is displayed in Fig. 3. One observes now a vapour-liquid critical point
well above the triple point. Below the triple point, the vapour freezes into a low
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density solid, that is in equilibrium with a higher density liquid. Right at the triple
point, the liquid density is one percent higher that that of the solid. The liquid-
solid equilibrium has turned metastable (plotted in dotted curves in the figure),
as desired. When the phase diagram is plotted in terms of p − T variables (see
Fig. 4) and compared with Fig. 1 we observe that the maximum temperature for
the liquid-solid transition has disappeared, and the liquid-solid equilibrium curve
starts out at the triple point with a slightly negative slope, in a fashion similar to
that of water.

We might ask ourselves what is the relevance of these simple model
results for real systems. If we think in terms of tetrahedrally coordi-
nated systems, such as water, Si or Ge, the complex nature of their
atomic or molecular interactions can be reduced by means of a simple
Boltzmann weighted angular average of their intermolecular potentials.
In the case of water the angular dependence stems from the anisotropic
nature of their molecular pair interactions, but in Si and in Ge it arises
from the strong directional character of the covalent bonding, that can
be expressed in terms of three and four body correlations. Such an av-
erage would immediately evidence the presence of a very short range
hard core like repulsion due to Pauli’s principle (from O atoms in the
case of water), and an additional longer range repulsion arising from the
angular average of the tetrahedral-like bonding that stabilizes the low
density solid structures. These two repulsive ranges explain the presence
of a high density solid phase and a low density one, separated by a liquid
phase somewhat denser that the low-density solid. Thus, the negative
slope of the P − T solid-equilibrium curve in real systems has its origin
in the presence of the two repulsive ranges, which is a key feature of our
model. Now, obviously, our averaged interaction also includes an attrac-
tive term resulting from the presence of dispersion forces and hydrogen
bonding (in water) or from the average attractive nature of covalent
bonding (or the partial metallic character of bonding in liquid Ge and
Si). This interplay between attractive forces and the medium range re-
pulsion that stabilizes the open solid structures smoothly switches from
the phase diagram of Figure 1 (phosphorus-like) to that of Figure 4 (wa-
ter or Si-like). Let us focus on the difference between P and Si, since the
nature of their bonding is similar (covalent and strongly directional). In
the case of P, we are dealing with a molecular-like system composed of
P4 units (in the liquid) where the P-P distance is around 2.2 ± 0.1Å .
Upon compression it transforms into a laminar solid (rombohedral black
P) where the threefold coordination and the bond distance are more or
less preserved. Its melting temperature is 879K[12]. When compared
with Si, its diamond-like form is composed of tetrahedral units with a
Si-Si distance of 2.43Å and its melting temperature is 2693K. Larger
differences are found in their boiling temperatures. This is telling us
two things, first, one should expect the second repulsive range in P to
be somewhat shorter than that of Si. Secondly, the attractive forces in
Si must be much larger than those in P. This is in fact in agreement
with the details of our model, in Figure 1 (P-like) we have K=2.5 vs
2.75 in Figure 4 (Si-like). In our model we do not modify the range of
the second repulsive shoulder but we increase its intensity. Then, re-
garding dispersive (attractive forces), in our P-like model α = −8 and in
our Si-like model α = −15, thus one should expect attractive forces to
be substantially more intense in this case, by which the transition from
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low density liquid to solid upon compression becomes metastable with
respect to the condensation of the vapour into a solid, as seen in Figure
4. In this way a P-like phase diagram transforms into a Si (or water)-like
diagram. Our simple model thus stresses those elements that are key to
shape the phase diagram of rather complex materials.

In summary, we have seen, how tuning the ratio between the mean field attrac-
tion and the NNN repulsion reshapes the phase behaviour of the simple model
considered leading from a phosporous-like to that of a water-like phase diagram,
and we have provided qualitative arguments as to the correspondence
to the behaviour found in real systems. On the other hand, it is also well
known that water is endowed with a large amount of solid phases (and multiple
triple points are found). More complex models are obviously needed to possibly
account for some of these additional features.
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