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Visual cortex exhibits smooth retinotopic organization on the macroscopic 
scale, but it is unknown how receptive fields are organized at the level of 
neighboring neurons. This information is crucial for discriminating among 
models of visual cortex. We used in vivo two-photon calcium imaging to 
independently map ON and OFF receptive field subregions of local 
populations of layer 2/3 neurons in mouse visual cortex. We found that 
receptive field subregions are often precisely shared among multiple 
neighboring neurons. Furthermore, large subregions appear to be 
assembled from multiple smaller, non-overlapping subregions of other 
neurons in the same local population. These experiments provide the first 
characterization of the diversity of receptive fields in a dense local network 
of visual cortex, and reveal elementary units of receptive field organization. 
Our results suggest that a limited pool of afferent receptive fields is 
available to a local population of neurons, and reveal new organizational 
principles for the neural circuitry of the mouse visual cortex. 
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The organization of receptive fields (RFs) in the visual cortex1 has been the 

subject of renewed and intense interest with the advent of new imaging and 

recording methods. A smooth retinotopic organization on the macroscopic scale 

has been demonstrated in mice using intrinsic signal optical imaging2, 3, 

corroborating earlier extracellular recordings4, 5. However, it remains unknown 

how RFs are organized on the microscopic scale, at the level of local networks of 

neighboring neurons. In monkeys, which also exhibit smooth retinotopic 

organization, Hubel and Wiesel6 found that the scatter of RFs for units recorded 

simultaneously on the same electrode or during the same perpendicular 

penetration was quite large, approximately equal to the RF size. More recent 

studies have confirmed that when multiple neurons are recorded simultaneously 

on the same electrode, they can have very different RFs7, 8 and responses to 

natural stimuli9. However, these studies could only sample a small number of 

neurons that could fortuitously be recorded on a single electrode and 

discriminated. In order to determine the diversity of RFs, and identify any 

underlying structure, it is necessary to systematically map larger samples in a 

defined local population. 

 

Exploring the diversity of RFs within a local population can yield important 

insights into the function of visual cortex. The geometry of retinal ganglion cell 

mosaics10 can provide a constraint for neurons in visual cortex to form their 

RFs10-12. If neurons sample from a small pool of unique afferent RFs, then local 

populations of cortical neurons should exhibit substantial redundancy in 

representing a few RFs. Alternatively, an ample pool of afferent RFs and a large 

amount of convergence could permit neighboring cortical neurons to integrate 

many different unique sets of afferents, thus rendering highly variable RFs and a 

low level of redundancy. 

 

To address these issues, we used two-photon calcium imaging in vivo to obtain 

the first high-resolution RF maps for large numbers of neurons in a local 
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population. By using sparse noise visual stimulation, we independently mapped 

the ON and OFF subregions of multiple neighboring neurons in mouse visual 

cortex. We discovered new features of RF micro-organization in visual cortex: 

shared and spanned receptive fields. These results can be used to constrain 

models of visual cortex, thus deepening our understanding of neocortical 

circuitry. 
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Results 

Mapping RFs for populations of neurons in visual cortex 
Bolus loading of calcium indicator dyes and two-photon microscopy13, 14 were 

used to monitor spiking activity in a local population of layer 2/3 neurons 

spanning a square area (230 μm to a side) in mouse primary visual cortex during 

sparse noise visual stimulation (Fig. 1a,b). A deconvolution-based algorithm was 

used to convert calcium signals into estimated spike rates. To calibrate the 

algorithm, we made loose cell-attached patch-clamp recordings from identified 

neurons in the population during two-photon calcium imaging and stimulus 

presentation (Fig. 1c). After calibrating using the electrophysiology data, the 

algorithm yielded spike rate estimates that were highly correlated to the recorded 

spike trains (r = 0.81 ± 0.02, n = 19; Fig. 1d), and the false positive rate was low 

(4.4 ± 1.7%). 

 

The estimated spike rates were used to construct a spike-triggered average (Fig. 

1e) for each neuron in the population. Visual stimuli consisted of random black 

and white dots on a gray background15. Using the estimated spike rate time 

courses, we generated two spike-triggered averages, one for the white dots (the 

ON map) and one for the black dots (the OFF map). Maps were then smoothed 

using a Gaussian kernel equal in size to the smallest dot used in the stimulus set 

(1.3°), z scored (Fig. 1f), and thresholded (Fig. 1g). With this method, we 

obtained maps for 44 ± 4% of imaged neurons (189/434 neurons in 6 mice). RFs 

for at least 20 neurons (range 21 - 68) were obtained in each animal. The relative 

ratio of ON and OFF subregions within a local population of neurons varied 

significantly among animals, but in contrast to macaque visual cortex which is 

dominated by OFF responses16, overall did not show a consistent bias (mean: 

1.08 ± 0.31; range: 0.39 to 2.17). 

 

RF subregions varied in size (Fig. 2a) and were often elongated. To quantify RF 

subregion shape, we fit the subregions with ellipses and computed the half short 

axis, which was 6.9 ± 1.5° (mean ± S.D., n = 189 RFs from 6 mice; Fig. 2b). This 
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is similar to RF subregions of individual neurons in previous studies of mouse 

visual cortex obtained using electrophysiological techniques, which generally 

reported a 5 - 7° range for RF radius17-19. The half long axis of the RF subregions 

we measured was on average 11.1 ± 4.3° (mean ± S.D.; Fig. 2c), which reflects 

their often elongated structure. The mean aspect ratio of the elliptical fits was 1.7 

± 0.6 (mean ± S.D.; Fig. 2d). The mean area of the RF subregions was 237 ± 

157°2 (mean ± S.D.; Fig. 2e). ON and OFF subregions in individual RFs exhibited 

low overlap (Supplementary Fig. 1), indicating that most cells were simple cells, 

consistent with extracellular recordings from mouse V1 (Refs. 18, 20).  

 

Overlap analysis of RF subregions 
We next examined ensembles of subregions. Ensembles are defined here as all 

the subregions of a single sign (ON or OFF) from a single population of neurons 

(20.7 ± 4.8 subregions per ensemble, n = 6 animals). Ensembles of subregions 

exhibited a scatter of 4.9 ± 0.8° (n = 11 ensembles from 6 animals; Fig. 3a). This 

scatter is comparable to the subregion size, consistent with findings in primates6. 

We then examined the degree of overlap in ensembles of subregions. To test 

whether the amount of overlap observed in the data could result from random 

positioning, we used a bootstrap method. For each ensemble of subregions, we 

constructed 1000 new ensembles. These new ensembles used exactly the same 

population of subregions (no rotations or other distortions), but repositioned them 

randomly, preserving the subregion scatter observed in the original data 

(observed: 4.9 ± 0.8°, shuffled: 4.9 ± 0.4°; Fig. 3a). Thus, only the relative 

positions of subregions were randomized.  

 

Next, we quantified the pairwise overlap of subregions using a simple metric: the 

proportion of the smaller of two subregions that overlapped the larger subregion. 

This metric ranges from 0 (indicating no overlap) to 1 (indicating that one 

subregion is completely contained within the other subregion). A high proportion 

of RF subregion pairs exhibited a high degree of overlap (i.e. overlap index close 

to 1; Fig. 3b). To test whether this unexpectedly high degree of overlap is due to 
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chance, we used the same measure for the randomly repositioned subregions 

(as shown in Fig. 3a). The randomly repositioned subregions exhibited 

substantially fewer incidences of high overlap (P < 10-5, two sample Kolmogorov–

Smirnov test, Fig. 3b), indicating that the observed substantial overlap between 

RF subregions is a key, non-random feature of the organization of receptive 

fields in the mouse visual cortex. The distribution of full RFs (ON + OFF 

subregions) was similar to that of repositioned subregions, and was again 

significantly different from the subregions as observed (P < 10-5, two sample 

Kolmogorov–Smirnov test, Supplementary Fig. 2). Manual inspection of small 

ensembles of overlapping subregions revealed an apparent trend for subregions 

to be shared among multiple neurons (Fig. 3c). Therefore, we explicitly tested for 

the existence of shared subregions. 

 

Shared RF subregions 
We defined neurons with shared RF subregions as those whose subregions 

matched in shape, position, and sign (ON or OFF). Such shared RF subregions 

(Fig. 4a) were observed frequently in all animals, and were often shared across 

multiple neurons (up to 7). When subregions were repositioned randomly in 

visual space while preserving scatter (see Fig. 3a), the incidence of shared 

subregions was significantly reduced (P = 0.00021, paired t-test, n = 11 

subregion ensembles from 6 mice; Fig. 4b).  

 

In addition to sharing an area of visual space, we determined whether the spatial 

structure of the spike triggered average within the area is also shared between 

neurons. We computed the image correlation of the z scored maps and the 

thresholded RF subregions. We found that the z scored maps also exhibited high 

degrees of correlation, consistently higher than that of the thresholded RF 

subregions. This is further evidence of significantly shared RF subregions 

(Supplementary Fig. 3). 
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What is the spatial relationship of neurons in visual cortex which share RF 

subregions? Two-photon population calcium imaging provides us with the exact 

location of all neurons recorded, allowing us to link their functional properties with 

their relative locations in the visual cortex. There was only a weak relationship 

between the distance separating individual neurons in the cortex and the overlap 

of their subregions in visual space (Supplementary Fig. 4). Therefore, although 

there is gross retinotopy on the macroscopic scale3, 4, on the scale of neighboring 

neurons, visual cortex did not exhibit smooth retinotopy. 

 

Correlations among neurons with shared RF subregions 
The next question we addressed is whether neurons with shared RF subregions 

also exhibit correlated activity. We computed activity correlations from the 

deconvolution-based spike rate estimates rather than from the raw calcium 

imaging signals themselves in order to avoid overestimating correlation 

coefficients (Supplementary Figs. 5 and 6). While some neurons with shared RF 

subregions showed correlated activity, in general neurons that shared RF 

subregions exhibited low correlations (Supplementary Fig. 5a-d), only slightly 

higher than the general population (correlation among neurons with shared RF 

subregions: 0.12 ± 0.12, mean ± SD, n = 149 pairs; correlation among neurons 

not sharing an RF subregion: 0.085 ± 0.088, mean ± SD, n = 6696 pairs; P = 

0.0023, Wilcoxon rank sum test). Overall there was only a weak relationship 

between the correlation coefficient and the subregion overlap, as quantified by 

the overlap index (Pearson’s r = 0.13; P < 10-5; Supplementary Fig. 5f). There 

was a similarly weak relationship between the strength of the cross-correlation 

and the distance between cell bodies in visual cortex (Pearson’s r = -0.053; P = 

0.0021; Supplementary Fig. 5g). Therefore, even when the subregions of two 

neurons were identical (Supplemental Fig. 5b), individual neurons often 

responded to different frames of the visual stimulus (Supplementary Fig. 5e). 

 

When we analyzed pairs of cells that both exhibit ON and OFF RF subregions, 

and shared at least one RF subregion, we found that none of these cell pairs 
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shared both ON and OFF subregions (0/13). To further explore this difference, 

we examined the overlap and found that among these neurons, their subregions 

of the opposite sign overlap about 30% less than the shared subregions (P = 

0.0097; Supplementary Fig. 7). This tendency for neurons to not share RF 

subregions of both signs simultaneously could contribute to the low correlations 

we observe. Additional potential contributors to the low correlations include a low 

response reliability, differing selectivities to higher order aspects of the stimulus 

not reflected in the spike triggered average, and active decorrelation due to 

intracortical circuitry21. 

 

Spanned RF subregions 
We also observed evidence for neurons integrating multiple subregions into a 

single, larger subregion. We refer to this feature as “spanned subregions”: the 

subregion of one neuron overlaps two or more non-overlapping subregions of the 

same sign from other neurons (Fig. 4c). Spanned subregions were observed in 

all animals, but not all ensembles. When subregions were repositioned randomly 

in visual space while preserving scatter, the incidence of this feature was 

significantly reduced (P = 0.0234, paired Wilcoxon signed rank test, n = 8 

subregion ensembles from 6 mice; Fig. 4d). This indicates that subregions which 

are not overlapping may themselves be encompassed by a larger spanning 

subregion that integrates them both. 

 

Spatial offset of ON and OFF RF subregion ensembles 
Having determined that subregions of the same sign frequently overlap and thus 

form clusters in visual space, we next sought to determine the relative 

relationships between clusters of ON and OFF subregions. To address this issue, 

the ensemble of subregions for a single local population of neurons was plotted 

in visual space and color-coded to discriminate ON and OFF subregions. This 

revealed a clear spatial segregation of ON and OFF subregion populations (Fig. 

5a). When subregions were randomly reassigned as ON or OFF subregions 

(while still maintaining the same total number of ON and OFF subregions), this 
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segregation was not observed (P < 0.02, bootstrap, n = 4 mice; Fig. 5b). Thus, 

local populations of neurons encode light and dark stimuli in parallel from 

separate regions of visual space.  
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Discussion 

We have mapped RFs in local populations of layer 2/3 neurons in mouse visual 

cortex using calcium imaging combined with sparse noise visual stimulation. This 

yielded a cellular-level view of a cortical retinotopic map, revealing independently 

sampled ON and OFF subregions for individual neurons mapped at high 

resolution. Within these local populations we found that, although local retinotopy 

was not smooth, neurons often exhibited highly similar RF subregions, precisely 

overlapping in visual space, and sharing similar spatial structure. Moreover, large 

RF subregions often appeared to be composed of two or more smaller, non-

overlapping subregions exhibited by other neurons in the same local population. 

Together, these results suggest that small RF subregions represent elementary 

units that are shared and integrated by local populations of neurons. This finding 

indicates that a small pool of afferents strongly influences the organization of RFs 

in local populations, and places constraints on the functional organization of 

cortical circuitry10-12, 22.  

 

Population imaging for dense sampling of receptive fields 
This study provides the first characterization of the diversity of spatial RFs in 

local networks of the mammalian visual cortex. Previous studies of visual cortical 

activity using population calcium imaging used comparatively small numbers of 

stimuli to reveal the cellular-level cortical organization of orientation selectivity14 
23, and ocular dominance24, 25. In our experiments, by combining sparse noise 

visual stimuli with high speed imaging, we were able to present thousands of 

visual stimuli and obtain high-resolution RFs from a large fraction of neurons in a 

local population simultaneously. Such dense sampling is important for 

constructing accurate models of cortical function15, 26. In particular, our results 

would have been difficult to obtain using smaller samples of each local 

population, and highlight the unique advantages of population calcium imaging: 

excellent isolation of individual neurons and parallel sampling of local 

populations. Importantly, cross-validation of our results is possible against data 

obtained with complementary methods. In particular, receptive field sizes and 
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scatter we have observed are consistent with results from electrophysiological 

studies4, 17-20.  

 

Shared and spanned subregions 
The principal finding of our study is that RF subregions of layer 2/3 neurons in 

mouse visual cortex often precisely overlap with those of other neurons 

distributed heterogeneously in the same local population. In addition, larger 

subregions appear to be composed of non-overlapping smaller subregions. 

These features limit the diversity of RFs and represent a fundamental principle of 

organization of the visual cortical microcircuit.  

 

The subregions we observed are similar in size to the RFs of retinal ganglion 

cells27. However, the subregions of cortical neurons are more elongated, with 

their aspect ratio around 1.6 on average compared to ~1.2 for retinal ganglion 

cells28, likely reflecting the integration of multiple afferents, possibly upstream of 

the layer 2/3 populations we have imaged. This integration may occur in the 

lateral geniculate nucleus, where neurons receive input from 1 to 3 retinal 

ganglion cells29. While RF properties in mouse visual cortex are quite similar to 

those observed in the lateral geniculate30, we cannot exclude the possible 

contribution of further cortical integration upstream from the populations of 

neurons we imaged. 

 

Neurons that shared subregions were not spatially clustered within visual cortex 

at the cellular scale, indicating that their dendritic fields did not necessarily need 

to overlap to produce identical subregions. This distributed processing of visual 

space stands in contrast to the retina, where individual mosaics of ganglion 

neurons are coordinated to sample visual space uniformly31. Similarly, neurons 

with subregions that spanned other subregions did not exhibit a clear pattern of 

spatial organization within visual cortex. These spanning subregions may occur 

in neurons downstream in the circuit from those neurons expressing the 

subregions that they contain, suggesting the possibility of a processing hierarchy 
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of RF subregions. Detailed circuit tracing studies will be required to test this 

hypothesis. 

 

Pairs of neurons that shared an RF subregion exhibited low correlations in 

activity, similar to the rest of the population. This suggests that neurons sharing 

RF subregions remain independent, rather than simply serving as redundant 

elements in cortical circuitry. There are at least two possible scenarios to 

consider. First, the neurons sharing an RF subregion may receive input that 

originated with the same small population of retinal ganglion cells. This naturally 

explains the high overlap, but does not explain the low activity correlations. There 

are several potential sources of these low correlations. Low firing rates can limit 

the peak correlations (see Supplementary Note 1). RF subregions of the opposite 

(non-shared) sign are another mechanism that will limit correlations, by driving 

uncorrelated responses when the stimulus is not restricted to the shared RF 

subregion. Indeed, neurons that share a RF subregion of one sign have less 

overlapped subregions of the opposite sign (Supplementary Fig. 7). Similarly, 

neurons may be selective for different higher order features of the visual stimulus 

that are not captured by the spike-triggered average32, 33. Finally, another 

potential source for the low correlations in this scenario is active decorrelation 

due to intracortical circuitry21. 

 

Second, the two cells may receive input that originated from retinal ganglion cells 

(RGCs) of the same sign and the same region of visual space, but different RGC 

types with different temporal response profiles to the stimulus. The mouse retina 

is estimated to contain at least 20 different RGC types, each forming an 

independent mosaic34-36. Furthermore, given the density of RGCs in the mouse 

retina and the surface area of visual cortex we image, we estimate about 1270 

RGCs contribute to the region of visual space encoded in the portion of visual 

cortex we image (see Supplementary Note 2). Therefore, independent RGC input 

with the same sign encoding input for a very similar area of visual space is 

plausible, and would naturally explain the low activity correlations. However, 
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since each retinal mosaic is positioned independently, the precise overlap seen 

in our data between different cell types is expected to be uncommon. Hebbian 

mechanisms could alter receptive fields in the visual pathway and increase the 

functional overlap in primary visual cortex. It may be helpful to use population 

imaging to map RFs in developing visual cortex in order to determine whether the 

substantial overlap of subregions is a feature that is initially present, or only 

emerges later due to Hebbian mechanisms37.  

 

Spatially offset ensembles of ON and OFF RF subregions 
The ON and OFF RF subregions exhibited by local populations of V1 neurons 

were found to be spatially offset in visual space. The origin of this phenomenon 

may lie in retinal ganglion cell mosaics (see Supplementary Note 3), but another 

source could also be responsible. In the optic tract of cats, retinal ganglion cell 

axons of the same type tend to travel together and form separate retinotopic 

maps that are slightly out of register with each other38, 39. A similar phenomenon 

may occur in mice. Although corrective mechanisms may exist to bring these 

maps back into register, they will have to operate on pathways with very different 

firing patterns (ON and OFF cells for the same region of visual space). Thus it is 

easy to imagine how such mechanisms may fail to fully correct the registration 

error introduced by the fasciculation of axons of the same cell type. 

 

Comparison with other species 
Since many principles of visual cortex development and function are shared 

between mice, cats, and primates40, 41, it will be interesting to determine whether 

the results presented here may also hold in these other species. In support of 

this idea, we found that clusters of ON and OFF subregions tend to be spatially 

segregated in visual space. This is reminiscent of the clustering of ON and OFF 

geniculate afferents in cat visual cortex42. The segregated processing of light and 

dark stimuli we found at the local level may also have parallels in humans, given 

that human test subjects perform more poorly at detecting the interval between 

opposite polarity lines than same polarity lines, a phenomenon that has been 
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interpreted to be due to independent processing of light and dark stimuli43, 44. 

However, there are also aspects of the mouse visual system that are different 

from the visual systems of cats and primates (see Supplementary Note 4). 

Nevertheless, the principles we have uncovered are potentially applicable to 

intracortical connections with a low degree of divergence, which are found across 

a wide range of species.  

 

Functional implications 
Our results demonstrate that there is indeed robust functional microorganization 

in mouse visual cortex which underlies the apparently weak local spatial 

organization of neurons with similar function previously described across rodent 

cortex45. This important result provides a useful framework with which we can 

begin to dissect the cortical microcircuitry. Groups of neurons with shared or 

spanned RF subregions, despite precisely sharing a portion of their selectivity, 

act as independent, parallel units in the cortical circuitry. 

 

This result demonstrates a mechanism for generating a high diversity of stimulus 

selectivities, despite low convergence: local scatter. The precisely shared 

RF subregions and spanned subregion sets indicate a low degree of 

convergence. If this low convergence were combined with low scatter 

retinotopy, more neurons would have shared both ON and OFF subregions and 

local circuitry would have exhibited much less diversity. By employing a high 

level of local RF scatter, the diversity of stimulus selectivities is increased. Thus 

local RF scatter may not be a defect, but rather a mechanism for generating 

diverse cortical computations.  

 

Visual cortex circuitry can be considered in terms of discrete, self-contained 

circuits (“columns”), or alternatively as a uniform network with smoothly varying 

stimulus selectivities. Our finding that the visual cortex contains groups of 

neurons that perform parallel processing of visual stimuli46 of the same sign in 

the same area of visual space (at the expense of smooth local retinotopy) may lie 
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somewhere in between these two extremes. Groups of neurons can form 

discrete cell assemblies47 by virtue of a shared subregion of the same sign, and 

exhibit a variety of stimulus selectivities due at least in part to their diversity of 

subregions of the opposite sign, thus forming a parallel processing unit for an 

area of visual space. However, these units are not mutually exclusive. Each 

neuron in a group may simultaneously participate in another group due to their 

subregions of the opposite sign, effectively participating in multiple cell 

assemblies47. This clear evidence for an intermediate domain of discreteness 

raises many questions about models of cortical development and function. To 

address these questions, it will be important to determine the connectivity motifs 

of groups of neurons that share subregions, and neurons that exhibit spanning 

subregions. This will ultimately require a combination of dense population 

imaging as we have performed here, and new approaches for detailed cortical 

circuit analysis.  
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Methods 

Preparation All experiments were carried out in accordance with UK Home Office 

regulations. Adult C57/blk6 mice (1.5 – 3 months of age) were anesthetized with 

isoflurane (5% for induction, 1 – 3% for surgery) and chlorprothixene (0.5 – 2 

mg/kg). During imaging, the isoflurane level was decreased to 0 – 0.5%. A 2 – 3 

mm diameter craniotomy was opened over monocular visual cortex. The dura 

mater was left intact. Bolus loading of neurons with calcium dye was performed 

using a standard protocol13, 14, 48. A 50 μg aliquot of Oregon Green BAPTA-1 or 

Fluo-4 (Invitrogen) was dissolved in a 20% Pluronic 127 solution in DMSO. After 

vortexing, this was diluted 10-fold with a pH 7.4 solution of 150 mM NaCl, 2.5 

mM KCl, 10 mM HEPES, and 50 μM sulforhodamine 101 to counterstain 

astrocytes49. After filtering the solution, a patch pipette (3 – 7 MΩ) was guided 

under two photon microscopy to a depth of 150 – 250 μm. Pressure of 300 – 600 

mbar was applied for 1 – 3 minutes to eject dye solution from the pipette. This 

stained a spherical volume of 300 – 400 μm in diameter. We imaged 434 

neurons in 6 animals and obtained RFs from 189 of these cells (44%). 

  

Imaging A custom two-photon microscope with a 16x, 0.8 N.A. (Nikon) water 

immersion objective and a large aperture collection pathway with low-noise 

PMTs (hand-selected 3896 and 7422-40P PMTs, Hamamatsu) was used for 

imaging. Images were acquired using ScanImage in conjunction with MATLAB at 

15.6 frames per second with 256 x 128 pixels resolution, covering an area of 230 

x 230 μm.  

 

Electrophysiology In order to calibrate the deconvolution routine, on-cell 

recordings were performed during imaging and stimulus presentation. Standard 

techniques50 were used to visually guide the pipette (3 – 5 MΩ), which contained 

HEPES-buffered artificial cerebrospinal fluid and 25 – 50 μM Alexa 594 

(Invitrogen), to the target neuron. Recordings were obtained in current clamp 
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mode with no current injection. Signals were filtered at 3 – 5 kHz and acquired at 

10 – 50 kHz.  

 

Visual stimulation Routines written in MATLAB using the Psychophysics Toolbox 

(Brainard and Pelli) extensions controlled the visual stimulus presentation. 

Sparse noise visual stimuli consisted of black (2 cd/m2) and white (86 cd/m2) dots 

on a gray (40 cd/m2) background 15. Dots ranged in size from 1.3° to 8.0° in 

diameter. Adjacent frames had no overlap in dot locations so that all pixel 

transitions were to or from gray, never from black to white or vice versa. The 

visual stimulus LCD screen (ESAW 7 inch VGA TFT, set at 1024x 768 resolution 

and 60 Hz refresh rate) was shrouded with a cone up to the eye of the animal to 

prevent contamination of the imaging pathway with light from the visual stimulus. 

The visual stimulus extended +20 – +124° in azimuth (in one experiment, the 

span was +20 – +73°) and –10 – +42° in elevation. Stimulus frames (128 x 128 

pixels) were smoothly interpolated so that 1 stimulus frame pixel was equivalent 

to 0.72°2 in visual space. Between 4000 and 6000 stimulus frames were used in 

each experiment. Total mapping time was 30 – 45 minutes. 

 

Analysis and statistics In the calcium imaging movies of visual cortex during 

stimulus presentation, regions of interest were detected using a local pixel-wise 

neighborhood cross-correlation (Supplementary Fig. 8). For a given movie, the 

time course for each pixel was compared to those of its eight neighbors. The 

average peak cross-correlation value was then used to form a local cross-

correlation peak image. This image was thresholded using a locally adaptive filter 

to obtain regions of interest. Subsequently, morphological filters were used to 

identify somata.  

 

After filtering the fluorescence time courses with a locally adaptive Wiener filter, a 

deconvolution-based algorithm generated estimated spike rates. The 

deconvolution kernel was an instantaneous rise followed by an exponential 

decay. The time course of the exponential decay was selected based on the 
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electrophysiology data to maximize the match between the real and estimated 

spiking. Once optimized, the same kernel (τdecay = 0.64 s) was used for all time 

courses. The resulting trace was then thresholded to remove noise; this 

threshold was adaptive in that it was adjusted based on the standard deviation 

and skewness of the deconvolved traces. When the threshold was adjusted 

manually for each cell individually, the resulting cross-correlations between 

recorded spike trains and estimated spike trains did not change significantly 

(automatic noise threshold, cross-correlation: 0.81 ± 0.02; manual noise 

threshold, cross-correlation: 0.84 ± 0.02). When the noise threshold was set 

using all but 1 data set, and then tested on the remaining data set, the estimated 

spike trains again did not change significantly (cross-correlation: 0.81 ± 0.02). 

Detection rates (Fig. 1d) were calculated as the likelihood that any given, single 

imaging frame event will be detected. It does not factor the accuracy of event 

amplitude estimation (number of spikes). The cross-correlation measure does 

depend on the accuracy of the event amplitude estimation, but is insensitive to 

changes in scale. We restricted our analysis to measures that were also 

insensitive to scale, namely spike-triggered averages and cross-correlations. 

 

These estimated spike rate time courses were used for reverse correlation with 

the visual stimulus and for determining cross-correlations between neurons. Raw 

fluorescence traces were not used for computing cross-correlations due to 

concerns that they can yield artificially high correlations (due to a variety of 

causes, including slow decay time courses after events and small fluctuations in 

laser power). Indeed, when cross-correlations were computed on raw 

fluorescence traces, the resulting cross-correlation values were higher than that 

obtained from deconvolved traces (Supplementary Fig. 6). 

 

We did not explicitly differentiate between excitatory and inhibitory neurons. 

However, our deconvolution scheme relies on the well-characterized calcium 

signal in response to action potentials, and the action potential-associated 

calcium signals in interneurons are typically markedly smaller than those of 
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principal neurons, due to the robust calcium buffering mechanisms unique to 

interneurons. Together with the higher prevalence of pyramidal neurons 

compared to interneurons in mammalian cortex, it is therefore likely that the 

population of neurons reported here is dominated by pyramidal neurons. 

 

Reverse correlation was computed using the delay that yielded the highest 

signal-to-noise ratio in the RF maps across all neurons (mean 255 ms, range 

200 – 300 ms). The same delay parameter was used for all neurons within a 

population. Estimated spike-triggered averages were thresholded at ±4 z score. 

To further decrease the noise in the RF maps, a morphological filter excluded 

small features (less than 2.6° in radius). Negative z score areas (where visual 

stimuli suppressed spiking) were observed, but were rare and typically weak. For 

simplicity, we focused solely on the positive z score areas for this analysis. For 

clarity, interpolated RF contours are shown in some figures. All analysis was 

performed on uninterpolated (pixel-wise) binary RFs. 

 

The overlap index metric was calculated as the proportion of the smaller of two 

subregions that overlapped the larger subregion. Shared subregions were 

defined as having ≥ 90% overlap, centers ≤ 1.5° from each other, and ≤ 25% 

difference in area. Spanned subregion sets were defined as an ensemble of two 

or more subregions with ≤ 25% overlap and another subregion that overlapped 

the ensemble ≥ 75%. To measure the incidence of spanned sets, we calculated 

the number of unique span sets in the population, normalized by the number of 

subregions; a span set was defined as a set of non-overlapping subregions and a 

corresponding spanning subregion. The main results of this study were not 

acutely sensitive to these definitions. We also compared an alternative measure 

of subregion overlap to the overlap metric described above. This alternative was 

a subregion correlation (SC) metric that was calculated using the formula: 

SC =1−
srA − srB

allpixels
∑

srA + srB
allpixels
∑

allpixels
∑
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where srA and srB are binary images of two subregions with backgrounds of 

zeros. For this metric, 0 indicates completely non-overlapping subregions, 

increasing values represent greater amounts of subregion overlap, and a value of 

1 indicates that the subregions are perfectly identical. Indistinguishable results 

were obtained using the overlap metric with the thresholds described above, and 

the subregion correlation metric with a threshold of 0.85. Thus the results 

presented in this study do not depend on a specific quantification of subregion 

overlap.  

 

We also computed image correlations using another metric. The two images 

were each converted into 1-dimensional series of pixels, A and B, similar to two 

time series. The correlation R was computed as: 

R =
E[(A − μA )(B − μB )]

σAσB

 

Where μx and σx are the mean and standard deviations of series X, and E is the 

expected value operator. When used to compare z scored maps, the maps were 

first masked by a two dimensional Gaussian mask with a standard deviation 

equal to the longest radius of the RF subregion. This minimally affected the z 

scored maps near the RF subregion, and flattened out the background regions to 

values near 0. This approach was taken to ensure that the correlation coefficients 

calculated were dominated by correlations in or near the RF subregion, and not 

the background noise. 

 

Span sets were found using a tree search algorithm. Neurons with similar, but 

not necessarily shared, subregions could increase the number of span sets. For 

example, take the case where neurons A, B, and C have similar subregions; 

likewise for neurons D, E, and F; and neurons G and H have similar subregions, 

which span the previous ones. Then the spanning subregions sets would be: 

ADG, BDG, CDG, AEG, … CFH. A total of 18 unique sets for 8 neurons. Note 

that, in practice, not all shared subregions will degenerately contribute to the 

same spanning subregion count; some shared subregions will vary just enough 
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to exclude them, and vice versa for subregions in the spanning subregion count 

being excluded from the shared subregions. Since shared RF subregions can 

contribute to high spanning set counts and thus confound a statistical test of the 

spanning RF subregions, we relaxed the thresholds for the spanning RF 

subregion test to the point that the statistical significance for shared RF 

subregions breaks down. Thus, any remaining difference between observed and 

repositioned subregions was due to the feature of spanning RF subregions. The 

potential for high counts in this analysis was mitigated by using the non-

parametric, paired, two-sided Wilcoxon signed rank test for determining statistical 

significance. 

 

In order to test whether the observed ensembles of subregions were significantly 

different from other random spatial configurations, we compared the ensembles 

to randomly repositioned versions. To construct these, observed subregions 

were randomly repositioned in visual space. The repositioning did not change 

subregion shapes or orientation. The repositioning preserved the scatter and 

spatial spread (Supplementary Fig. 9) of subregion ensembles in visual space, 

as observed in the original data. To obtain average values for the randomly 

repositioned versions of ensembles, the repositioning was repeated 1000 times.  

 

The clustering of ON and OFF subregions was quantified by subtracting the sum 

of the OFF subregions from the sum of ON subregions. In this way, highly 

overlapping ON and OFF subregions will result in an image that is on average 

zero, and any clustering will result in positive and negative peaks. The sum of 

absolute values of all pixels was then used as a measure of clustering. To test 

significance, the subregions were randomly re-assigned as ON or OFF and the 

clustering was re-calculated. After 1000 iterations, the mean of the clustering 

values for the re-assigned data was used to normalize the observed clustering 

measures. 

 

Unless otherwise noted, all measurements are expressed as mean ± S.E.M.  
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Figure legends 
 

Figure 1. Mapping receptive fields with population calcium imaging and 
sparse noise visual stimuli.  
(a) Sparse noise visual stimuli were presented to a mouse during (b) 

simultaneous population calcium imaging in visual cortex. (c) The calcium signals 

were deconvolved using parameters obtained from electrophysiology in order to 

obtain estimated spike rates. Scale bars in b and c: 20 μm; scale bars at right, 

top to bottom: 20% ΔF/F, 1 mV, 2 spikes/frame. (d) Left, the mean correlation 

coefficient between deconvolved calcium signals and spike rates obtained from 

simultaneous on-cell recordings was 0.81 ± 0.02. Right, detection reliability as a 

function of the number of spikes within one frame. Error bars are ± S.E.M. (e) 

Using the deconvolved calcium signals as an estimate of spike rate, a triggered 

average of stimulus frames was computed. Separate ON and OFF maps were 

generated for the white dots (top) and black dots (bottom), respectively. (f) This 

estimate was filtered using a Gaussian kernel and z scored using an area of the 

triggered average away from the RF. (g) This was then thresholded to obtain 

RFs. 

 

Figure 2. Receptive field subregions obtained with population calcium 
imaging. 
(a) To illustrate the diversity of subregion sizes and shapes, a representative set 

of examples are shown, taken from eight different neurons across three different 

animals. For each example subregion, the z scored triggered average of stimulus 

frames (left) and the subregion outline used in subsequent analysis (right) are 

displayed next to each other. The third and sixth subregions are OFF subregions, 

the rest are ON subregions. For all subregions mapped (n = 228 subregions in 6 

mice) we have plotted the distributions of various geometric parameters. (b) The 

half short axis length and (c) half long axis length, and (d) aspect ratio of elliptical 

fits to observed subregions. (e) Distribution of areas of RF subregions. Arrows 

indicate the mean of each histogram. 
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Figure 3. Pair-wise subregion overlaps are higher than expected for 
random positioning 
(a) Left, multiple (12 – 15) overlaid subregions (ON, OFF, OFF subregions, 

respectively) in three different mice are shown. For each point in space, the 

number of overlapping subregions is coded by color. Scatter is defined as the 

average deviation of each subregion center from the mean subregion center. 

Right, the subregions of each ensemble have been randomly repositioned three 

times. The random repositioning algorithm was designed to not change the 

scatter (across the full data set, scatter observed: 4.9 ± 0.8°, after repositioning: 

4.9 ± 0.4°; mean ± S.E.M.; P = 0.99, Wilcoxon signed-rank test). Note that the 

random repositioning does not markedly alter the appearance of the ensembles. 

(b) Pairwise analysis, however, reveals that subregions overlapped more in their 

observed positions (grey bars) than when randomly repositioned (red line, error 

bars indicate S.D.; P < 10–5, Kolmogorov-Smirnov test). (c) Example of 

apparently shared subregions (left) and clustered subregion centers (right) in 

visual space. The subregion outlines and center markers have been color-coded 

by hand for clarity. The two gray subregion center markers on the right represent 

subregions (not shown) that do not appear to be shared with the green and blue 

groups. 

 
Figure 4. Features of local receptive field organization: shared subregions 
and spanned subregions.  
(a) The left-hand panels show subregions of individual neurons (color-coded) 

which are shared. The right-hand panels show the relative position of the same 

neurons in visual cortex (same color code). Four examples are shown. (b) The 

number of shared subregions in the population is decreased when the 

subregions are randomly repositioned. Each point represents one ensemble of 

subregions. (c) In the case of spanned subregions, the subregion of one neuron 

overlaps two or more non-overlapping subregions from other neurons. Four 
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examples are shown. (d) Again, the incidence of this spatial arrangement 

decreases when the subregions are randomly repositioned.  

 

 

Figure 5. ON and OFF subregions are offset with respect to each other in 
visual space. 
(a) The ON subregions in each animal tend to cluster in an area of visual space 

spatially segregated from the OFF subregions that also cluster together. Data 

from two animals are shown, with overlap density represented by color intensity 

(example 1 consists of 15 ON subregions and 18 OFF subregions; example 2 

consists of 19 ON subregions and 15 OFF subregions). (b) When the subregions 

are randomly reassigned as ON or OFF subregions, the spatial segregation is 

lost. The observed clustering was decreased by randomly reassigning 

subregions as ON or OFF (P < 0.02, bootstrap method, n = 4 mice). 
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Supplementary Figure Legends 

Supplementary Figure 1. Overlap of ON and OFF subregions in single 
receptive fields. 
(a) Receptive fields from eight example cells are shown, each with both the ON 

and OFF subregions indicated. (b) The overlap between the ON and OFF 

subregion in individual receptive fields was low, indicating that these neurons 

were mostly simple cells. 

 
Supplementary Figure 2. Overlap of full receptive fields. 
The gray bars show the distribution of overlap of full receptive fields (i.e., both the 

ON and OFF subregion together) between pairs of cells. The distribution of 

overlaps more closely follows that of the RF subregions after random 

repositioning. By contrast, the distribution of overlaps of RF subregions as they 

are observed, shows a clear trend toward very high overlap. 
 
Supplementary Figure 3. RF subregions share not only an area of visual 
space, but spatial structure as well. 
In order to explore the internal structure of shared RF subregions, we computed 

pair-wise image correlation coefficients. (a) Two example pairs of subregions 

show the typical high degree of overlap in their area maps. (b) The spatial 

structure maps for these pairs of subregions (the filtered and z scored spike-

triggered stimulus averages) appear highly similar. The maps on the left and right 

of panel (b) correspond to the red and blue outlines in panel (a), respectively. (c) 

The image correlation for the spatial structure maps was higher than the image 

correlation of the area maps. This shows that shared RF subregions share not 

only an area of visual space, but a spatial structure within that area as well. 

 
Supplementary Figure 4. Relationship between RF subunit overlap and 
neuron separation. 
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Each data point represents one pair of neurons in the same population, with the 

distance measured between the center of their respective cell bodies plotted 

against the RF subregion overlap index for that pair. There was no significant 

correlation between the values at this scale (r = 0.036, n = 3422 pairs), despite 

large scale retinotopy.  

  
Supplementary Figure 5. Relationship between RF subunit overlap and 
activity correlations. 

(a) Two simultaneously imaged neurons (separated by over 100 μm) exhibiting 

shared RF subregions. (b) The subregions of the two neurons overlap completely 

(overlap index = 1). (c) Calcium signals and estimated spike rates from the two 

neurons during sparse noise visual stimulation. (d) The spike rate cross-

correlation of the two neurons, while significant, was lower for stimulus-evoked 

than for spontaneous activity. (e) A Venn diagram shows that the neurons tended 

to respond to different frames of the visual stimulus. (f,g) Across the dataset, 

while some neurons showed substantial activity cross-correlations, there were 

only weak relationships between (f) the strength of the cross-correlation and the 

overlap index (Pearson’s r = 0.13; P < 10–5) or (g) the distance between cell 

bodies (Pearson’s r = –0.053; P = 0.0021). 

 

Supplementary Figure 6. Cross-correlations from raw fluorescence signals 
are higher than from deconvolved signals.  
(a) For the same set of neurons, we calculated the pairwise cross-correlations 

using raw fluorescence traces and deconvolution-based estimated spike rate 

time courses (n = 1101 pairs). (b) Cross-correlation values obtained from raw 

fluorescence signals were greater than those obtained from estimated spike rate 

time courses. In many cases the difference was over 2-fold. 
 
Supplementary Figure 7. Neurons that share one RF subregion, have 
subregions of the opposite sign that overlap less. 
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(a) Example cells are shown, with both their ON and OFF RF subregions. Note 

that the lower group of cells is the same shown in bottom of Fig. 4a. Here, both 

the ON and OFF RF subregions are shown. (b) Subregions that are shared 

overlap to a high degree, but in those same cells, subregions of the opposite sign 

overlap less. Note (P=0.0097, paired t-test, n=13). Note that high overlap is only 

one of the three criteria for shared RF subregions. The opposite sign subregions 

with high overlap indices differed in size and/or were centered on different points 

in visual space, and thus were not shared. 

 
Supplementary Figure 8. Automated identification of regions of interest  
(a) In the first of two adjacent frames (at 15.6 frames/s acquisition), the circled 

neuron appears with very low contrast against the background (Frame 1), but 

during a spike in the next frame the neuron was clearly visible (Frame 2). 

Therefore, instead of using an average signal to define regions of interests, we 

used the entire spatiotemporal data set. (b) The temporal cross-correlation of 

each pixel with its adjacent neighbors was used to identify putative neurons and 

processes. (c) The local cross-correlation image was then filtered with an 

adaptive local threshold. Finally, a series of morphological filters were used to 

define candidate neuron locations.  

 
Supplementary Figure 9. The average subregion ensemble sampling of 
visual space  
After obtaining the RFs for a local population of neurons in visual cortex (over the 

230 x 230 μm imaging region), we plotted all subregion ensembles in one visual 

space. In order to combine data form multiple animals, the center of mass of 

each ensemble (ON or OFF) was centered at the origin (0,0). Next, the 

ensembles for all animals were averaged together. The resulting map is 

significantly elongated in the horizontal axis. This is likely related to the smaller 

cortical magnification factor observed for azimuth (~0.01 mm/°) compared to 

elevation (~0.02 mm/°) in mouse monocular cortex, observed in both intrinsic 
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imaging (Kalatsky and Stryker, 2003) and extracellular recording (Wagor et al., 

1980). 

 
Supplementary Figure 10. Retinal ganglion cell density as a function of 
mosaic spacing and number of mosaics.  

Using an estimate of retinal magnification factor (31 μm/°; Remtulla and Hallett, 

1985), and assuming retinal mosaics with a small amount of noise matched to 

observed data (Wässle et al., 1981), the density of retinal ganglion cells has 

been computed as a function of the number of mosaics and cell spacing within 

each matrix. The observed range of cell density (Drager and Olsen, 1981; 

Salinas-Navarro et al., 2009) is indicated on the logrithmic color scale bar. The 

dotted lines indicate the parameter estimates based on a recent survey of mouse 

retinal ganglion cell types (Völgyi et al., 2009). The number of different cell types 

was based on anatomical classificiation, the cell spacing was estimated here as 

1.25 * average dendritic tree radius reported for the 22 cell types identified in the 

study. Note that the estimated parameters fail to account for the full cell density 

observed in retinal ganglion cell counting studies by a factor of 5 – 8. 
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Figure 3. Substantial receptive field subregion overlaps occur more frequently than expected 
for random positioning
(a) Left, multiple (12 - 15) overlaid subregions (ON, OFF, OFF subregions, respectively) in three differ-
ent mice are shown. For each point in space, the number of overlapping subregions is coded by color. 
Scatter is defined as the average deviation of each subregion center from the mean subregion center. 
Right, the subregions of each ensemble have been randomly repositioned three times. The random 
repositioning algorithm was designed to not change the scatter (across the full data set, scatter 
observed: 4.9 ± 0.8°, after repositioning: 4.9 ± 0.4°; mean ± S.E.M.; P = 0.99, Wilcoxon signed-rank 
test). Note that the random repositioning does not markedly alter the appearance of the ensembles. (b) 
Pairwise analysis, however, reveals that subregions overlapped more in their observed positions (grey 
bars) than when randomly repositioned (red line, error bars indicate S.D.; P < 10-5, Kolmogorov-
Smirnov test). (c) Example of apparently shared subregions (left) and clustered subregion centers 
(right) in visual space. The subregion outlines and center markers have been color-coded by hand for 
clarity. The two gray subregion center markers on the right represent subregions (not shown) that do 
not appear to be shared with the green and blue groups.
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