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TWISTED MOMENTS OF AUTOMORPHIC L-FUNCTIONS

YUK-KAM LAU, EMMANUEL ROYER, AND JIE WU

ABSTRACT. We study the moments of the symmetric power L-functions of
primitive forms at the edge of the critical strip twisted by the square of the
value of the standard L-function at the center of the critical strip. We give a
precise expansion of the moments as the order goes to infinity.
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1. INTRODUCTION

Let p be a representation on SU(2). For any g € SU(2) we define the polyno-
mial
o) D(X,p,g) =det(I- Xp(g))~".
Endowing SU(2) with its Haar measure, Cogdell & Michel remarked that
z z* 2, R 2 3
D(X,p,8)*dg =1+ |=—FrSc(p)” + = FrSc(p) | X" + 0(X°>)
SU(2) 2 2

[CMO04, (2.26)] for any complex number z, where FrScp is the Frobenius-Schur
indicator of p. The coefficient of X? is then

0 if p is not self-dual,

z(z—-1) .. . . . s 2
5 if id appears once in the irreducible decomposition of Sym~ p,
+1

z(22 ) if id appears once in the irreducible decomposition of A?p.

Date: July 13, 2010.



2 YUK-KAM LAU, EMMANUEL ROYER, AND JIE WU

For p = St (the standard representation of SU(2)), this coefficient is @ In

particular, the Euler product (indexed over the set 22 of all prime numbers)
I1 f D(p™"2,5t,8) dg

converges only for z € {0, 1}.

Let k = 2 be a (fixed) even integer. For any squarefree integer N such that
the set of primitive forms of weight k over I'o(/N) is not empty, we denote by
HZ.(N) this set. To any f € H, (V) we associate an L-function defined by the
Euler product

L(s,f) = [] det(I-XSt(gs(pp~*)~"
peP
where for any prime number p, the matrix

fapp) 0 )
gf(p)—( 0 Br(p

is made up of the local parameters in p associated to f. For any prime p not di-
viding N, this matrix belongs to SU(2) and for the w(N) prime numbers dividing
N we have a r(p == p_” 2 and B f(p) = 0. Hence it tempts naturally to model
the moments of L-functions for the primitive forms in HZ(N) (over the discrete
harmonic measure) with Euler product of polynomial of type (1) with g in SU(2)
endowed with its Haar measure.

As in [CMO04], denote by Zh the harmonic average. It is apparent that

. h 1 )\° _ 0
Nl—l»ToofE%(N)L(E’f) - pl;LISU(z)D(p st 8) dg
and it follows from [RW07, Theorem A and Proposition B] that
lim Y" L(l,f)1 =11 f D(p™2,5t,g)" dg.
N=+0o repr () \2 pezJSUQ2)

The generalization to high power moments sounds problematic, and in fact,
there is a convergence problem on the right side. For z = 2, the lack of con-
vergence of the product in the representation side comes from the term 1/p so
a natural remedy is natural to consider the normalized form

1 2
1-=|D(p V2 st ¢) dg.
T [, (1) Pt 508" a8

To fix ideas, we assume temporarily N to be prime. It turns out that the remedy
is appropriate; in fact,

> L(%»f)z -

FEHLN)

logN (N — +o0)

1 2
1-= D(p~Y?,st,¢)°d
[1[1-5) [ D7 500" a8

peP p

~e " [] f D(p_”z,St,g)zdg (N — +00),
p<NYSUQ)

where v is the Euler constant. In other words, we may model L(1/2, f)? by the

. . Z 2
product over prime numbers p < N of the random variables g — D (p 172 st g)
with a correction factor e™”.



TWISTED MOMENTS OF AUTOMORPHIC L-FUNCTIONS 3

Our result is actually more precise and we compute all the complex moments
of L(1,Sym"™ f) twisted by L(1/2, f)? without too heavy restriction on the level
N. To give our results, we need a few notation.

For any integer m > 1, the mth symmetric power L-function of f € H;.(N) is

L(s,Sym™ f) = [] det(I-Sym™p(g;(»)p~%)"".
peP

If m € {1, 2,4} itis known to have all the required properties to be an L-function in
the sense of [IK04, §5.1] and to have no Landau-Siegel zero [G]78, Kim03, KS02].
For other values of m, we impose two standard hypothesis - Hypothesis Sym* f
and LSz f in [CMO04]. Therefore, our results are unconditional for m € {1,2,4}
and rest on the standard conjectures for all other cases. We write, Yo, for the
gamma factor of L(s, f) which depends only on the weight of f. Explicitly it is
given by

(5)_H—SF(E+E)I‘(E+E)
Yol =0 22" 2 T )

Let

FZ(w’ S;X) — (1 _X1+2w)f D(X1/2+w,st, g)zD(X1+S’symm, g)ng

SU(2)
and
C*(w, s; X)
(1 +X2+2w)(1 _X2+2w)—2(1 _X1+m/2+s)—z if2|m,
= 1 X1+w -2 1_X1+m/2+s -z 1_X1+w -2 1 X1+m/2+s -z
(1 x14) % (e 0 R Sl

The function C#*(w, s; X) will be used as a correction factor to F?(w, s; X). More-
over we define

1 1 1
Az’z(—,l;St,SYmm§N) =[] F* (O»Oi—) [1c (0’0?—)
2 peP? PJ pep p
ptN PIN

and

1 1 1
BZ'Z(—,I;St,Symm;N)z— I1 Fz(w,O;—) [T Cz(w,O;—) .

2 dlUlsz peEDP 14 peP P
pIN pIN

Finally denote by ¢(n) (resp. n(n)) the Euler function (resp. Mébius) and by log;
the k-fold iterated logarithm.
Below are our main results.
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Theorem A— Let m € {1,2,4}. There exists two positive real numbers ¢, and 6 ,
such that for any sufficiently large squarefree N,

5 213 f)zL(l Sym™ f)?

1
= A% (E' I;St,Symm;N) log N

/
el g

Yoo ple_l

1
+2A%% (5, 1;St, Symm;N)

1 log N
+B**|=,1;8t,Sym™; N |+ O -
(2 ym ) m(eXp( mloggN))
uniformly in
logN
Izl < em——i——-
log, Nlogs N

This theorem is proved in Section 3.1. The dependance on the level can be
easily depicted when N has no small prime factors. Consider the set of numbers

N (h) = {Ne Zsg : p(N)2 =land P (N) > h(N)}
for some function h where P~ (N) is the smallest prime factor of N with the con-

vention P~ (1) = +oco. We write
1 1
A* (5, 1;St, Sym’”) = A%* (5, 1;St,Sym""; 1)
1 1 2 (1 m
=11 1——/ D|—5,Stg| D|—,Sym™, g| dg
pe pl)Jsue \p p
and

1 1
B%? (E' 1;St, Symm) = B%# (5, 1;St,Sym", 1)

L) e ol s
_dwm:opeg pl+2w | Jsyo  \ pliz+w’ 8 p,Ym ,g| dg.

Corollary B—Let m € {1,2,4}. There exists a positive real number cy, such that
for any sufficiently large squarefree N € A (log?),

1 )2 1
Zh L(—,f) L(I,Symmf)zz(1+om(l))Az'Z(—,I;St,Symm)logN
feHL(N) 2 2

uniformly in

logN
lzl < em——ri——-
log, Nlogs N

This is shown in Section 3.2.
It is interesting to evaluate the asymptotic behavior of the main term

1
A% (E’I;St’ Symm)

and the constant term B%# (3, 1;St, Sym™) as the exponent z — +oo in real num-
bers.
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Let X, be the Chebyshev polynomial of second kind whose restriction on
[-2,2] is defined by
sin((n+1)0)
sinf
They come up naturally in theory of modular forms since, if {ysymm: m € Z>o} is
the set of irreducible characters of SU(2), then

X;n(2cosB) =

Xsym™ (8) = X (tr g).

Let us introduce some auxiliary functions.

2 /A
) gm(t)::logfsu()ef%m“fg)dgzlog(;f el Xm2cosd gin2gde| (r>0),
2 0

_ () ifo<r<l,
3) Em(=15" !
gn()—(m+1t ift>1,
and
f eltmU8trogdg f”ezxmacose) cosOsin® 6 do
. JsuE 0
(4) hp(0):= = = (t>0),
zf et)(m(trg) dg f etXm(ZCOSO) Sin20d9
SU(2) 0
N Ry (0) ifo<r<l1,
(5) hpt)i=4 " ,
hp(H -1 ifr>1.

Theorem C—Let ] > 1 and m > 1 be two fixed integers. Then we have

1
log A># (5, 1;St, Symm)

i 1 J aj 0 1
=zq(m+1) 082Z+(m+1)y+]; (logz)/ " ((]ogz)]+1)

uniformly for z > 3, wherey is the Euler constant and
+00 &
gm(1) i
= logt)! ™" dzr.
aj fo 7 ogh)
The implied constant depends on J and m only.

Theorem C is proved in Section 4.1.

Theorem D— We have
B>? (%, 1;St, Symm) < A%? (%, 1;St, Symm) logz
uniformly for z > 3 if m is even; and
B** (% 1;St, Symm) = A%# (% 1;St, Symm) {bm + o(e—\/@)} vz
uniformly for z > 3 if m is odd, where

_ 0 Ry (£)
by = —4(2+f0 L dt) #0.

The implied constants depend on m only.
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Section 4.2 is devoted to its proof.

Itis surprising that the asymptotic behavior of log B># (%, 1;St, Sym™) changes
dramatically according as the parity of m.

Acknowledgements. We began working on this paper during a visit of the first
author at Université Blaise Pascal Clermont-Ferrand 2 and continued during the
visits of the second and third authors at The University of Hong-Kong. This work
is supported by the PROCORE - France/Hong Kong Joint Research Scheme (F-
HK36/07T). The first author is also partially supported by the Hong Kong Gen-
eral Research Fund (HKU702308P). The second author is partially funded by the
ANR project “Modunombres”.

2. PRELIMINARY RESULTS

For every g € SU(2), define /lgy';nm (g) by the expansion

+00
D(X,Sym™, g)* = Z Ag;r’nm(g)X”.
v=0

We have from [RWO07, (46) and (36)],
mv
z,v _ z,v
with

©) 'uggll;n’",Sym” = /1;;1;11'” (g)XSym” (8 dg.

SU(2)

One should remark ué'y’l’nm_symu =0 for n > mv. Recall that {ysymm: m € Z} is
explicitly defined by the generating series

@) Y xsymn (T =

= D(T,St,
S0 (l-aT)(1-aT) (1,3t8)

where a and « are the eigenvalues of g. It follows from the study of Cogdell &
Michel [CMO04] (see also [RWO07, eq. (38), (39) and (52)]) that

®) Hgmm syme = 0(14,0),
©) Hmm syms = 261, m),
(m+1Dlzl+v-1
z,V
(10) |G sy | < ( ) )

2.1. Combinatorial results. The aim of this short section is to prove the two
following useful equalities:

7(p") 12(p") Z( 1)

11) _— —=C"|w,s; —|,
uéo p(1+w)u 1/;0 p(1+m/2+s)v p

u=mv (mod 2)

P« Hsm 1

T(p Sym™,Sym"* z( )

(12) =F*lw,s;—|.
Léo p(1/2+w)u z;O p(l+s)v p

Thanks to (10) and the binomial theorem, the series in (12) is absolutely conver-
gent for Rs > -1/2and Rw > —1/2.
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Equality (11) follows directly from the following expressions:

2X 1+X?
Y w+DX"= ——, Y w+DX"=——
u=0 (1 X) u=>0 (1 X)
u odd u even

and

)3

v=>0
v=r(mod 2)

(u+z— I)X” CA-X) 4D+ X))

v 2

for any r € {0, 1}.
From (6) we deduce

zZ,V
1(p*) Hsym™ sym® _ 1 m ) (u+1) xsym*(8)
Léo p/2twu I;O p+sv - fSU(z)D p1+s’SYm 8 ué:l p/2+wiu -dg
Let g € SU(2) and let a, @ be its eigenvalues. We use (7) to get

d T
I;(”H)XSY‘“ ©T = i —ena—an

= (1-T?D(T,St, g)°.
This gives (12).

2.2. Analytical results.

Lemma 2.1-Letm=1andz, =(m+1)min{ne€ Z>y: n > |z|}.
(@) Foro >3/4 and r > 1/3, we have

v

0y 7(p") Y Tiz|(p7) < ecllzl+ S, ()

oINS p o p(0+m/2)v
u=mv (mod 2)

where
1 ifr>1/2

S, (N) =< logz(N) ifr=1/2
(logN)'"%"/log, N if r<1/2

and the constant ¢ > 0 does not depend on o.
(b) Foro >1 andr > 1/3 we have

T(p ) |H§£711}n'" Sym”|
[1x > ——— <exp(co(zm +3)),
pivuso PT >0 p

where cg > 0 is a constant depending on o.
(c) Foro €[3/4,1] and r € [1/3,1] we have

g |
H Z T(p ) Z /JSymm,Sym“

av
piviso P 030 p

(Zm +3)—1+1/0’ _
(1-o0)log(zs, +3)

+log, (zm +3)

<exp (c(zm +3)

|

where ¢ > 0 is a constant not depending on o.
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Proof. (a) Let

7(p") T121(p")
Am(p) = LA
m 14;0 pur ugo p(a+m/2)v
u=mv (mod 2)

If m is even then by (2.1),
1 1\7? 1\
(13) Am(p)= ), Z=(1+7)(1——) (1‘m) ‘
ueven v p p

If m is odd, then we get

A= Y Y +Y Y <Y Y +Y Y <Y Y.

uevenveven pyoddvodd uevenveven uevenyodd Ueven v

In both cases, we are led to the bound in the right side of (13). Since o + m/2 =
5/4 and r = 1/3, this yields

1
H Am(p) < exp (c(lzl + Z 7)) <expl(cllzl +S-(N)]).
pIN pIN P

(b) The proofis similar to [RW07, Page 728]. We separate the product into two
parts according to p? < z,, + 3 or p? > z,,, + 3. Using (9) and (10), we have

ay ] <ew| ¥ |Zmoay oy W
Po>zm+3 po>zm+3\ P v=2 P " =0 P ym,oym
and
u+1l Zzm+v—1| 1
<
U;Z\Léo pt yé'z( v )PUU
with
zm+v—1| 1 <zm(zm+1) Zm+v—1 1
Z ov 20 Z _ o(v-2)
v>2 v p p V=2 v-2 p
so that
1\ 2 (zm+1)? 1)\ %2 1 \ 2 (zn+1)\?
R e e
v>2 p p p 2 p

since p? > z,; + 3. Reporting (15) in (14) leads to

[T <exp(clzm+3)").

p°>z;,+3

Now we deal with p? < z,,, + 3. Using (8), (9) and (10), we have

z,v
Z 7(p") Z |uSym’",Sym“| <1+ Zm 1 Z T(p") (Zm+l}—l).

=+
ru ov ~ o ov ru
u>0 P°7 u>0 p P v=2P w0 P v
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The right hand side, denoted by R, satisfies

Zm 1 [zp+v-—1 1 T(p") [zm+v-1
R=1+—1+ UU( )+Z — ;1

po p0+r S0 pru =1 v+1 pav
< l—i _Zm+2zm (1_i)_2 Zm+uv| 1
X pg pa+r pr 131 v pav

1\ % 2z, 1\72 1) %!
R A T B

1 —Zm—l

ae  <[1-— (1+c m
pU p0+r

for some absolute constant ¢ > 0. Since o and o + r are greater than 1 it follows
that

[T <exp(colzm+1).

p<z;+3

(c) As for establishing (15) we have an absolute constant ¢ such that
Zm (zm +1)?
H < exp Z +c
p”>zm+3\ (p”>zm+3 pa'+rm pZU

( (Zm+3)1/0)
<explc———|.
log(z;;, +3)

17

From (16) we have

1 1
[T gexp(c(zm+1) > _U+W)
p’<zpm+3 p°<zp+3 p p
and using
L 1 + i
— «lo —_
p<y P’ &2 (1-o0)logy

valid uniformly for1/2<o<land y > e [TW03, Lemma 3.2] we get

(zm +3)(1—U)/U -1
(18) <ex (c(z +3) +log,(z;, +3) | |.
pogn o R M T T ) log(zm +3) | B2em
The result is a consequence of (17) and (18). O

3. EVALUATION OF THE MOMENTS

3.1. Moments in the all level case. We fix G any function which is holomorphic
and bounded in some sufficiently wide vertical strip |} s| <« 1, even and normal-
ized by G(0) = 1. (Note G'(0) =0.)
Let ze C and x > 1. Define
+oo AZ m (1)
(19) WGy () = Y LS R
n=1

forall f e H;;(N). We prove the following lemma.
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Lemma 3.1- For all x, z and N we have

feg,t}(lmL(%'f)zwgymmf(x) =2q>1l\/@VN( ) 21 e_:/xfz(nzv)
8 (pll;lm ”;'l;zf”n,)Sym“WJ §(g™ 1 nNm) —D\/(;%) + O(Err)
where
(20) Vn(y) = ﬁfm(w)””“”(Yooiﬁ,;)w G(w) V" dw
and

m

T(N)zlogNlog2 i
N1/4 (

Proof. Let L(s, fHf) = L(s, f)z. This is an L-function in the sense of [IK04, §5.1].
In particular the gamma factor is Y4 (s)?, the sign of the functional equation is
1, the conductor is N? and the n-th Dirichlet coefficient is

Armrm =Y. 1™M@)A(q)T(g).
(q.1eZ,
qr’=n

Err = log x)* 1 zm+m+ 1)L,

Therefore we can apply [IK04, Theorem 5.3] to obtain

Ar(@)T(q) q
2D (—, ) =2 -
q;1 va N(N)

where

1™ (1/2+u)\*d
VN =) r(r) f(s)(yrz)_”G(u)(u) 714

- Yoo(1/2)
_ 12+ u)\? du
= “W +2 (—Y""(l ) —.
g O ARG )

We have to evaluate

T= 3" Ap(@Apm ().
feH]’;(N)

Similarly to [RW07, Lemma 12] we have

(22) T= MD(”KJZCIN)(S‘(GI(N) | n(N)m) 1—[ Hz,vp(n)

Symm)sy.rnllp(q)
\/ N AN plg™

+O(_T(N)2;7082N mia 14

From (19), (21) and (22) we deduce

2
h 1
Z; L(E,f) Wgym () =P +E
feH; (V)

(@) 1og(Nng)T (m+1)12/(M) |-

where P is the announced principal term and

7(N)?log, N  7(g)? G\ Tm+n)z(Mlogn _,,
= ; i log(Nq)VN(N); e ",

(23) E=
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We proved in [RWO07, Proof of Lemma 16] that the summation over 7 is

(24) Y < x™*(logx)* (2 + m+ 1)L,
n

Moreover, by (20) and since

2 4
ZT(q) losg(Nq) _ [log(N)—i *(s)

7 ds| {(2s)

we get, after having moved the integration line in Vj from (2) to (7/10) and
crossed a pole at w = 3/4 the majoration

T(@)*log(Ng) . (q 314
The announced error term is a consequence of (23) with (24) and (25). U

We study the principal term exhibited in Lemma 3.1 in the following lemma.

Lemma 3.2- For any squarefree integer N, any z € C and any x € R such that

1 1
log N <1 < —logN
100 8 SI0BXS 15108

we have

7(q) q e Vx Z,Up(n) (N[ ,,(\N)m O(ny gn)

— W= Tz(nN) B Mo upio [0 10 —
qZ>:1 Va (N)rgl ‘ p|1;([1v) Sym”,Sym"» (P ( ) ,/nl’\'}qN

N 1 1 ' (1 |
_ N )AZ'Z (—,I;St,Symm;N) —logN+y+Yﬁ(—)+Z 8P

N 2 2 w 2] fRp-1

1 1
+ 532’2 (5, 1;St, Syrnm;N) + O(Err)
where

log N
log(z;, + 3)

Err = exp (c log, N — + (21 +3)log(zm +3)

Proof. We write X for the sum to be evaluated:

(26)

_ 1 w »(N) (Yoo(1/2+w))2 2 d_w s
= G2 f(nf(l)N V(A +2w) —Yoo(l/z) Hy (w, $)G(w) ” I'(s)x’ds

with
HY(w,s) =

7(q) Tz(nN) (N) | .. (N) z,Up(n)
5 q |n " D(nqu) IJ ' pm v M
; qw+1/2q]1\[/2 Xn“ ns+ln%/2 ( ) N pll;([N) Sym™,Sym p(4)
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writing a = n™), b= ny, ¢ = g™ and d = gy we have H; (w, s) = AB where
T2(b) 7(d)

A= Z b1+m/2+s Z dw+l D(dbm)
b|N>® d|N*>®

T(p") 7.(p")
- H Z u(w+l) Z p(s+1+m/2)v

pINu=0 P v>0

u=mv (mod 2)
1
=C* (w, S; —)
p

by (11) and

1 7(0) z,up(a)
B_(a% ast Z cW+1/2H Sym”,Sym"»

_ l—[ Z (p") Z “Sym”’,Sym"
PIN S0 p(1/2+w)u = p(1+s)v

1
:Fz(w,s;—)
p

by (12). (Recall that Hgy]:nm Sym” vanishes when u > mv.)

=

In (26) we shift the w-contour to Rw = —1/6 encountering a simple pole at 0
and obtain

1
27 2:P+ff 27 (s)T(s)x ds
2im Jq

with

(P(N) 1 f [ gp Yoo(llz) z
—logN ) Hy (0,
N 2inJyl|2 %8 +Y+p|Np 1 yoo(1/2) (09

10

——  Hi(w,9)|T(s)x’ds.
+26LU|(o,s) N(w s)] (9)x*ds

We bound | 27| as follows. We use lemma 2.1 choosing 0 =2 and r =5/6 in (a),
r =1/3in (b) to get

(logN)1/3 .\ )]
—+2Z
log, N "

(o=l
cl————+zm|| (-
log, N

We now treat the integral in the defining expression for P. For this, we replace
the segment [1 — ilog? x,1 + ilog® x] by the union of the three segments [1 —
ilog? x,—o — ilog® x], [-0 — ilog® x, —0 + ilog® x], [0 + ilog® x,1 + ilog? x] with
o = 1/log(|z|+3). We shall show that the residue Res of the pole of I" at 0 provides
the main contribution whereas the integral on the new contour enters the error
term.

We write

1Z7(s)| <« N V6exp [c(

hence

=P+ O{xN_l/Gexp

(28) P—ReS:A0+A1+A2+Bo+Bl+Bz
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where
N) [logN 1 (1 N) 0
ReS:M &4_'}/4_2&4_&(_) H§(0’0)+M_ H]ZV(W’S)’
N 2 Pl Yo \2 2N 0w|0,0)
N) (logN 1 o (1Y) 1 [l
o= U [logN - 108D Yoo (_) L f HE(0,9)T(s)x" ds,
N 2 pINp_l Yoo 2 2in liilOg X
(P(N) 1 [1iim o . s
B = S — Hy(w, s)T'(s)x> ds,
0 2N 2im Jizilog?x OW|(0,s) e e

and A; (resp. Bj) has the same integrand as Ag (resp. Bp) but the contour is
[1- ilog2 X,—0—1 log2 x] and A, (resp. B») has the same integrand as Ay (resp.
By) but the contour is [—0 — ilog2 X,—0 + ilog2 x].

From lemma 2.1 (a) and (b) and Stirling formula [IK04, (5.113)] we have

(29) Ay <« PIIOBN —tog vicz,+)
N

From lemma 2.1 (a) and (c) and Stirling formula we have

(30) A< %\[e—log2 xX+c(zm+3) lng(Zm"'S).

and

(31) Ay < ¢\ log N ex ( logx )ec(z"’+3)l°g2(z'"+3).

N _log(zm +3)

The contribution of By, B; and B, are easily seen to be dominated by the ones of
Ap, Ay and A, thanks to Cauchy integral formula. Reporting (29), (30) and (31)
in (28) and the result in (27) we obtain that X is the announced principal term
(the residue Res) up to an error term

logN

m + (Zm +3)10g(Zm +3) +10g2 N)) .

< exp (c (—
This completes the proof. U

We have now the ingredients to prove theorem A. As in [RW07, pages 743] we
have

2 2
h 1 h 1
(32) Z L(z,f) L(1,Sym™ f)* = Z L(E,f) WGy (%) + O(Err)
feHL () fEHL(N)
where
Brt = x—l/logzNeDlzllog3N10g4N+eDIleogzN—%logzN_i_N—1/4logD|z|N
logN)
log, N

< exp (Dlzl log, N-«a

by setting x = N*. We have also used

h 1 )2
Y L(—,f) < logN
fEHL(N) 2

which follows from (21) and Petersson trace formula [ILS00, Corollary 2.10] or
[RW07, Lemma 10].



14 YUK-KAM LAU, EMMANUEL ROYER, AND JIE WU

Reporting lemma 3.2, 3.1 in (32) and assuming
logN

lzl <€ 8~
log, Nlogs N

for £ > 0 small enough (regarding to @) we obtain the theorem.

3.2. Moments for levels without small prime factors. Corollary B is a conse-
quence of the following lemma.

Lemma 3.3— We have

N 1 1
MAZ’Z (—, 1;St, Symm,N) = A% (—, 1;St, Symm) [1+0;,,(1)]
N 2 2
and
1 1
MBZ’Z (—, 1;St, Symm,N) = B%# (—, l;St,Symm) [1+0,1)]
N 2 2
1
+ A>* (5' 1;St, Symm) o0,m(1)
uniformly for
Ne.# (log?)
(33) log N
|z| <y ————.
log, Nlogs N

Proof. To prove the first equality, we write
@(N) Pex: E1(N)

34
Gy E>(N)

1 1
(5, 1;St, Symm,N) = A># (5’ 1;St, Symm)
with

Ex(N) =[] Cz(o,o;%),

pIN

EN) =[] D(p~'2,8t,8)*D(p~!,Sym™, g)*dg.
pINJSU[2)
First, we deal with E; (V). For m even we have

E (N):(1+o( W) ))(1+0(—(|Z|+1)w(m))
1 P—(N)Z Pf(N)1+m/2

140 (lzl +Dw(N)
=1+ P~ (N)min(2,1+m/2)
as soon as the function inside the error term is bounded. If m is odd then
1) 1 2 1 1)?
CZ(O,O;—)=5(1+—+O(—2) (1+ﬁ ((mz;m))
p p p p p

1(. 2 1 z (2l + 1)
+§ 1—;+O? I—W-'-Opz—*'m
2
o (|z|+1))
p2+m/2

so that
(lz| + 1)2w(N))



TWISTED MOMENTS OF AUTOMORPHIC L-FUNCTIONS 15

From (35) we deduce that
(36) E1(N)=1+0,(1)

if N and z satisfy (33).
To study E»(N) we define

ez, p) =f D(p~"%,8t,8)*D(p~",Sym™, g)*dg
SU©)
+00 +00 P min(mv;,v,) oy 2
-V -V
(37) :VZ p Z p LLZO /JSyn11 Sym”'uSt Szym
by orthogonality. Using (8) and (9) we compute the contribution of v; = 1 and
v, = 2 to (37) and with (10) we obtain

1o 3+vy 1 |z too 3+vy 1
le(z,p)=11< ) w2 T, V212
vo=2\ V2 P2 P vi=m\ V2 | p7?

™ (m+Dlzl+vi—-1 1 = [3+v,| 1
5| o e

vi=2 Vl pVI vo=0 V2
1 |z| lz|(lz] + 1)
<m ; + pl+mi2 + p? :
It follows that
w(N) |z wum)
38 E>x(N)=1+0 1+ + =1+ 1
(38) 2(N) P-(V) ( 2T TP om(1l)

if N and z satisfy (33). The first result of the lemma follows from (34), (36) and
(38).
We consider now B*# (%, 1;St,Sym™, N). We begin in considering

Fyrw0=|]] Fz(wo ) I1 CZ( 0; )
pep peP p
pIN pIN

with enough uniformity in some fixed neighbourhood of w to be authorized to
apply Cauchy integral formula. We write F5, (w,0) = Ff (w,0)Qy (w) with

Qn(w) = QY (w)/QY (w)

and .
wwzﬂﬁ@m—} QP (w) = Hﬁ@H).
pIN p pIN p

As for E1(N) and E»(IN) we compute
(39) QD w)=1+0 ( @) (1+ 1zl ))

N € P~ (N)l-¢ P—(N)m/2+£
and

@, o w(N) ( |zl (MHVn
(40) (N)Q (w)_1+O£(P—(]\/')1—2£ 1+P—(N)1/2+£+p—(N)1+2£

the constant implied by the error term being independant of w such that Rw >
—e&. It follows in particular that

(41) Qn(0) =1+0,(1)
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if N and z satisty (33). Denote C(0, €) the circle of centre 0 and radius €. We have

(Q)E— Fﬂwm—£4 F%wwzw+ﬁmm—i (gwﬂﬂ
dwiw=0 N7 T dwpw=o 1N V%1 Jewe N w2
and from the uniformity in w in (39) and (40) we deduce
1 dw
(43) — Qn(w)— = o().
217 Jc(,e) w
Reporting (41) and (43) in (42) we obtain the second result of the lemma. O

4. BEHAVIOR FOR THE ASYMPTOTIC REAL MOMENTS

4.1. Behavior of the main term. The aim of this section is to prove Theorem C.
In fact we shall establish a more general result (see Proposition 4.1 below). Write

m ) ) 1
(44) Dp (0,1 :=D(t,Sym™, g) =[] (1 _ i(m=2))0 t) ,
j=0
and

(-1
FbF (w,s;1) = (1 - ¢1H2w) 2

2 (7 ¢
-:[ Dy (0,t12*%)" Dy, (6, t1*°)"sin* 0 do
T Jo
so that
F?(w,s;t) = F2% (w, s; 1)

Proposition 4.1—Let J > 1, ¢ > 0 and m > 1 be three fixed integers. Then we
have

1 ] a .
loFmﬁMkJ=z(m+Db z+(m+1)y+ ’.+o( )
pgy 8%m p 82 Y ]Z:l(logz)l (logz)/+1

uniformly for y > z3/2

Theorem C.

> 10, wherey is the Euler constant and a; is defined as in

Since
1 1
A%Z(—,LSLSynﬂ")z I1 Piz(ao;—),
2 peEP p

Theorem C is an immediate consequence of Proposition 4.1 by taking ¢ = 2 and
making y — +oo0.

In order to prove this proposition, we first establish some preliminary lem-
mas.

Lemma 4.2— Let g,,,(t) and g,,,(t) be defined as in (2) and (3). Then

5 t? ifo<t<l,
gm(t) <« )
log(2t) ift>1,
and
t ifo<t<l,
(1) <
&m0 {t_l ift>1.
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Proof. When t > 0, we can write

e L (1504 10))

=0 n! sinf

From this we deduce, for0 < t < 1,
X "2 rr (sin((m+ 1)60)
0

1+nZ:"2W_

gm(t) =log 17

n
.2
Sind ) sin BdB)

=log(1+#*+0(*)) = ¢*
and
MOERS
Let C;, be the maximum of 2X],,(x) in [-2,2]. Then, since X;,(2) = m+ 1, we
have
0<m+1-X,,(2cos0) < C;;(1 —cosB)
for every 6 € [0, ]. Thus for ¢ > 1, we have by (3) and (5),

T
f e!Xm(2cos0) (m+1-X,,(2cos0)) sin®6do
0

g () =- <m [ (D)].

T
f etXm (2cosf) Sil’l2 0do
0

Now (54) of Lemma 4.6 below implies g%(t) « t! for t > 1. From this we im-
mediately deduce g, () < log(2¢) for t > 1. O

Lemma 4.3— Let m > 1 be a fixed integer. Then we have

/3 /4
(45) f e!Xm2cos) oc0sin?H dO < t f el Xm2cost) gin2 g 49
0 0

and
2 (" tX,,(2cos0) 20 ain? 1 2 tX;m(2cosf) i .2
(46) ;f e’ cos“0sin“0df = 4_1+O(t) —f e sin“0d0
0 7 Jo
uniformly for t > 0. The implied constants depend on m only.

Proof. First we note that these estimates are trivial for ¢ > 1, so we suppose that
0 < t < 1. In view of the following relations:

0 if nis odd
2 7 if n =
—/ cos"0sin®0do = 1 itn=0
7 Jo @r-nnt
—— ifn=2r
@r+2)!

(with n!':= n-(n—2)---) and e!Xm2c0s) — 1 1 O (p), it follows that

T T
f e!Xm(2cos0) (00 5in% 0 dh < t/ |cos ]| sin® 6 d6
0 0

/A
< t[ e!Xm2cosd) gin2 g qg.
0

Similarly
2 (7 1
—f e Xm2¢0s0) cos2 9 sin?0df = — + O (1)
7 Jo 4

which implies (46). U
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Lemma 4.4—Let ¢ > 0 and m > 1 be two fixed integers. Suppose z = 4 is real.
Then we have

1 1
(47) log F5;* (0,0;;) = —(m+1)zlog(1—;)+0(logz)
uniformly for2 < p < Vz; and

1 z z
4o ogri (00,3} (7) -0 5]

uniformly for p > \/z > 2. The implied constants depend on ¢ and m only.

Proof. We have

i(m-2j)0 1
ﬁ(l_el(m ) ):m+ -1 y om0
p

v
j=0 v=0 P o<ji<<ji<m

Since the left-hand side is real and

Yy o eltm2ime2ifoy (y=0,m+ 1),
0< i< <jy<m

it follows that, with notation j, = (j,..., j,) and [i':’ =vm—-2j1—--—2jy,

ei(m—Zj)G) m+1 (_1)1/

f[o(l—— =y Y cos(¢o)

p

v
-0 P 0< ji<<jy<m

m+1 m (_l)v—l

Y {1-cos(ero)}

v
-[-3)
p v=1 pv 0<ji<<jy<m

+ in: SN > 2sin® (51’79/2).

v
v=1 P 0<ji<<jy,<m

Introducing the notation

Y 2sin ([59/2),

v
v=1 p 0<j1<"'<jv<m

l~)m(9,p_l) =1+ (1 - E)_

we can write

m ei(m—Zj)B 1 m+1
H(l——):(l——) D (0,p7")

p
and

1-= Fo2(p)

1 —(m+1)z+0(0-1)/2
( P)

with

Y 2 (" ~ -
ES*(p) ::;fo Dy (H,p‘llz)gDm(O,p_l) “sin0 do.
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Observing the nonnegativity of the integrand, we infer that for some suitably
small positive constant 9,

. 2 1 \2 povplz 6%\~
Ff;;z(p)>—(1——) f (1+C”; ) 62 do
0

T V2
6y/plz 2\ "%
>>f (1+C’”‘5 ) 62 do
0 z
2\ 7% 3/2
> (1 + Cmd ) (E)
Z <
p 3/2
>m (;)

for p < z. On the other hand, it is obvious that
|f)m (H,p_l)_l) <1 and FF(p <1

uniformly for p < y/z. By combining these estimates, we find that

1 \~(m+Dz+L(e-1)12 5
) +logFf;1’Z(p)

1
lOgFr[;l'Z (O, 0, ;) = log(l - ;

-1
=(m+ l)zlog(l - %) +0(logz)

for p < V/z.
Next we prove (48). In view of (44) and (9), it is easy to see that
(49) D (0,p7")" = &/ P Xn(2cost) {1 + o(%)} (p>Va),
p
where the implied constant depends on m at most. Thus for p > v/z, we can
write
1 2 1\f¢-nr2
F"'Z(o,o;—):{1+o(—)}(1——) Fo%(p)
" p p? p "
with .
Eb(p) = 2 f Dy (0, p~112)" e@ P Xn(2eost gin2 g 4
T Jo
Since
20cos® 2(0+1)lcos’0—¢ 1
500  Dy(0,p7?) =1+ T e+ ;OS +o( 3,2)
p p

where the implied constant depends on ¢ at most, (45) and (46) of Lemma 4.3
allow us to deduce that

ElF(p) = 1+ 807D (22 [T gemmxaeeosd greg g,
" 2p p 0

32 ) 7
Inserting it into the preceding relation, we easily obtain (48). O
Now we are ready to prove Proposition 4.1. From (47) and (48), we deduce

that for y = z3/2,

1 1 -1 3/4

ZlogF,Qz(o,o;—):(mﬂ)z Y log(l—— + Y gm(f)+o(z—).
p p Vi<p<y \P logz

p<Yy p<vz




20 YUK-KAM LAU, EMMANUEL ROYER, AND JIE WU

In view of (2), (3) and the following estimate

-1
(l—l) ]—(m+1)£}<<£,
p pl logz

Y {(m +1)zlog
Vz<p<z

the last asymptotic formula can be written as

1
G1) Y logF.? (0,0; —)
p

p<y
1! 3/4
:(m+1)z210g(1——) + Z §m(f)+0 Z—)
p<z P/ vapsy P logz
By the prime number theorem, it follows that
y Yy g, (z/
(52) > §m(£):f gn(Z)ay 1= [ B8 gy,
Visp<y Pl v pg Jyz logu

where
Y z
R :=/ 8m (—)dO(ue_2 log”).
vz u
In view of Lemma 4.2, a simple partial integration gives us
R, < ze~VIogz

In order to evaluate the last integral of (52), we use the change of variables ¢ =
z/ u to write

Y gmzlw) fﬁ gm(t)
vz logu 21y t?log(z/t)

fﬁ gn()
1/vz t?log(z/t)

dt+O(Ry)

where

Wz g, (t 1/2
R, ::zf 2|gm( )| dr < ad
zly  t=log(z/t) logz
by using Lemma 4.2. On the other hand, we have
[ﬁ gm 1 fﬁ 10
1/vz t?log(z/ 1) logz J1/yz t?(1 — (log t)/1log z)
Lo fﬁ (1)
i (logz)i Jiryz 1?

- 1
log)/dt+ 0y .
(log?) +0y (logz)/+!

Extending the interval of integration [1/1/z, /z] to (0,00) and bounding the con-
tributions of (0,1/+/z] and [y/z,00) by using Lemma 4.2, we have

fﬁ M(IOgt)j_ldt:a-+O(M).
1/Vz 12 J \/Z
Combining these estimates, we find that
¥4 J aj 1
e £ [2) - oLk
\/zggygm p {];(logz)f / (logz)/+1
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Now the desired result follows from (51), (53) and the prime number theorem in
the form

-1
> log(l - %) =log,z+y+ O(e_zvlogz).
p<z

This completes the proof.

4.2. Behavior of the constant term. The aim of this section is to prove Theo-
rem D. We shall prove a slightly more general result, i.e. Proposition 4.5. Clearly
Theorem D is its simple consequence with the choice of £ = 2.

Let ¢ > 0 and m > 1 be two fixed integers. Define

2 /A
Bim(w) = By (w, z, p) = —f Dy (Q,p‘“/z“"))[Dm(H,p_l)zsinzede
T Jo
so that
_ _ ((0-1)/2
F,ff(w,o;p I)Z(I—p (1+2w)) (£-1) B, (w).

Proposition 4.5— Let £ > 0. We have
d 1
— logF,ff (w,O; —) <logz
p

uniformly for y > z > 10 if m is even; and

y 4 ogrts (w,o;%) = V2 { by + O[e"VPE)}

p<y dwiw=0

uniformly for y > ze*V1°8% > 10 if m is odd, where
+o00 hv t
by =—2¢ (2 +f0 ;;‘/(2) dt).

The implied constant depends on ¢ and m only.

We need preliminary lemmas.

Lemma 4.6— Let h,,(t) and ﬁm(t) be defined as in (4) and (5). Then

~ t fo<tr<l1, ~ 1 fo<t<l1,
(54) hm (1) <{ Z_f b () <{ ’f
t ift>1, t ift>1.
Further if m is even, then
(55) hm()=0  (£20).

Proof. Equation (55) follows from
/2
hy (D) :f e!Xm2cost) .nc0sin% 0 do (m even)
—/2

by parity. The estimates of (54) with 0 < t < 1 are equivalent to (45). Next we
prove hy, (1) < tforr>1,ie.

T
f e!Xm(2c0s0) (1 _ c5509)sin®H do .
(56) 0 = < pt
f el‘Xm (2cosB) Sinz 9 de
0
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From the power series expansion, we have

1 2
X, (2c0s0) = (m+1) - TU* 6)(m+ 267 + 0,0 (6%),
and hence there exists d = 6,, € (0,7/(3(m +1))) such that forall 0 <8 <9,
2)3 1
(57) (m + 1)—%92<Xm(2cose) <(m+1)- 0%

Since 6 — X;;,(2cos6) is continuous on the compact [3, 2] where its values are
strictly less than m + 1, there exists a,, € (0, m + 1) such that

(58) | X;m2cosO)| < anm O<O<n/2).

We give a lower bound to the denominator of the fraction in (56). As the inte-
grand is nonnegative, we infer from (57) that

b4 1)
[ etX,,,(ZcosB) Sil’l29 do > / etXm(ZCOSB) sin29d9
0 0
e(m+1)t

6
2
(59) > e(m+1)tf e—c,,,tG 62 do >
0 t3/2

where the implied constant in >, depends on m only. For the numerator in the
left-hand side of (56), we write

T /2
f g!Xm@cost) (1 _ co50)sin®0 do = f e!Xm2cos0) (1 _ c0509)sin®0 do
0 0

/2
+[ e—tXm(2C056)(1+C089) sin®0do.
0

Since X;,,(2cosf) > 0for0 € [0,7/(2(m+ 1))], we deduce with (58) that

n/(2(m+1)) /2
do +f e'®mdg
b4

/2
f e 1Xm2cost) (1 4 cos0)sin®HdO <« f
0 12(m+1))

0
< e¥ml,

which is negligible in comparison with (59). Splitting at 8 = § and applying (57)
and (58), we have
/2

e s10°94 dg + f el dg

/2 0
f e!Xm(2c0s0) (1 _ c5509)sin® 0 do <« e(m“)’f
0 0

0

—5/2e(m+1)t

<t +ednmt,

The desired estimate in (56) follows with (59) and the fact a,,, < m + 1.
A direct differentiation shows that

T T
f e Xm@cost) x . (2cos0) sin® 0 do f e *m2¢0s0)(1 — cosB) sin® 0 dO
0 O

hop (1) = - 3
(f etXm (2cosB) sinz 0 dg)
0

/A
f e!Xm2cosd) x5 c0s6)(1 — cosh) sin® 6 do
-= T (t=1).
f ot Xm(20030) -2 0 40
0
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Using the nonnegativity, we see that

T b4
f e!Xm2cosd) x5 cos6)sin® 6 do <<f e!Xm2cost) gin2 9 qg,
0 0

and

T
f g!Xm@cost) x (9 c0s0)(1 - cosO) sin® 0 db
0
T
<<f e!Xm(2cos0) (1 _ c5509)sin?H do.
0

Therefore (56) implies ﬁ;n(t) <t lfort>1. O
Lemma 4.7—Let ¢ > 0 and m > 1 be two fixed integers. Then we have

B;,(0) logp
B,,(0) p1/2

(60)

uniformly forall p and z > 1; and

Bl (0 1 I I I
m(©® _ —2é—°gphm(f)—é(£—1) -1 +o( 98P , 2 ng)
Bm(()) p1/2 p p3/2 pz

uniformly for p > z%/3. The implied constants depend on ¢ and m only.

(61)

Proof. We have

(62) B, (0)=
2 (7 _1/2\¢+1(cosO 1 _1\Z . 2
_MEfo Dy (6,p7'7) (puz—;)(logp)Dm(e,p )" sin“0.do
hence
lo 4 _ .
B, (0) < pi’; Dy (6,p7")"sin” 0.6,

This implies (60), since
Bn(0)={1+0|—7 —f Dy, (6,p™") sin6d6.
p T Jo
In view of (50), it follows that
cosf 1 cosf 2(¢+1)cos?0—1 1
pli2 _; = pli2 + P 0 p3z)
By using it, (49) and (46) of Lemma 4.3, we can deduce, for p > v/z,

63) D (e,p‘”z)m(

I 2 (T
B/, (0) = —2[%—[ e@/ P Xm(2cost) (50 sin? 9 do
pl2 1 Jo

I 1 logp\| 2 [”
—{M—n =r +o( N ;zgp)};f el#/PXn(2c0s0) i dg,
p 0

Under the same condition, thanks to (49) and (45), we have

1 z 2 (" )
B (0) = 1 + O —_ 4 — — e(z/p)Xm(ZCOSG) Slnz ede
m p p3/2 7w Jo .

Combining these, we obtain (61). (]
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Lemma 4.8— Let ¢ > 0 and m = 0 (mod 2) be two fixed integers. Then we have
B! (0 1
m©@ _ logp

(64)
B, (0) p
uniformly forall p and z > 1, and
B, (0 1 1 1
(65) O o ng+o( k8P L2 Ofp)
By (0) p p¥p

uniformly for p > z%/3. The implied constants depend on ¢ and m only.

Proof. Equation (64) follows from (62) and (63) since, by parity consideration we
have

/3
[ (cos0) D,y (6, p_l)zsinzede =0.
0

Equation (65) is an immediate consequence of (61) since h;,(f) = 0 when m is
even. O

Now we are ready to prove Proposition 4.5. If m is even, we apply Lemma 4.8
to

B! (0
logF"”Z(w, ; ) PIRACGESY! gp+z m©)
p<y dwiw=o0 Pl p<y p=1 ;3 Bm(0)
and obtain

1 B! (0

logF[Z(wO—) Y -1 o8P +) m(®)

P<J’dw|w 0 p<z p-1 p<zBm(0)

I 1 | |

3 e[l ) ol sow)
z<p<y -1 p p p

When m is odd, by using (60) of Lemma 4.7 for p < z23 and (61) for z%/3 <
p < y, we obtain

d ¢ 1 logp 1/3
— logF 'Z(w,O;—) =-2/ hm ( )+O logz
p<y dww=0 mn p 22/3<Zp<y 1/2 p ( )
so that
1
(66) Z — logF,l;l’Z(w,O;—) =
p<y w=0 p

lo lo z
_2£{Z if+ > ifhm(p)}+o(zl/3logz).

p<z 2B<p<y 14
By using the prime number theorem, it follows by integration by parts that

~ Y h
—Ingh (E)=f —hm(Z/u)du+O(\/Ee_\/1°?)

1/2 °m 1/2
22B<p<y p p 23 U

t
=2 [ 40 o vae ViR
with the help of Lemma 4.6, provided y > ze2 V1082 Combining these yields
logp~ (z m (1) -
67) y 3P m( ) \/‘f e dr+0(vze Viez).

23<p<y p
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Now the required result is a simple consequence of (66) and(67) and the prime
number theorem.
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