Laurent Habsieger 
  
Emmanuel Royer 
email: emmanuel.royer@math.univ-bpclermont.fr
  
C U, U B P E R 
  
SPIEGELUNGSSATZ: A COMBINATORIAL PROOF FOR THE 4-RANK

Keywords: Subject Classification. 11R29, 11R11, 11A15, 11T24, 05E15 4-rank, Spiegelungssatz, combinatorial interpretation, reflection principle

come    

I

Let à be a quadratic field. Let I à be the multiplicative group of fractional nonzero ideals of the ring of integers of à and P à be the subgroup of principal fractional ideals. We consider the subgroup P + à of P à , whose elements are the ones generated by an element with positive norm. The narrow class group Cℓ + à of à is the quotient I Ã/ P + à . If à is imaginary, this is the usual class group Cℓ à := I Ã/ P à whereas if à is real, the group Cℓ à is a quotient of Cℓ + à . We have Cℓ + à = Cℓ à if and only if the funda- mental unit of à has norm -1. Otherwise, the cardinalities of these two groups differ by a factor 2. For more details about the relations between Cℓ à and Cℓ + à we refer to [FK10a, Section 3.1]. The narrow class-group being finite, we can define its p k -rank for any power of a prime number p k by Rank p k (Ã) := dim p Cℓ + Ã

p k-1 Cℓ + Ã p k .
In other words, Rank p k (Ã) is the number of elementary divisors of Cℓ + Ã divisible by p k .

If à = É( √ ∆), the reflection of à is the quadratic field à # := É( √ -∆).

Assume that à is totally real, in [DP70, Th éor èmes II.9 and II.10], Damey & Payan proved the following inequality (the so called Spiegelungssatz for the 4-rank, see [START_REF] Leopoldt | Zur Struktur der l-Klassengruppe galoisscher Zahlkorper[END_REF]):

Rank 4 (Ã) ≤ Rank 4 (Ã # ) ≤ Rank 4 (Ã) + 1.

In this article, we provide a combinatorial proof of this Spiegelungssatz using expressions involving character sums due to Fouvry & Kluners [START_REF] Fouvry | On the 4-rank of class groups of quadratic number fields[END_REF]. The letter D will always denote a positive, odd, squarefree integer.

Let d à be the discriminant of the real quadratic field à and d # à be the discriminant of the imaginary quadratic field à # . The usual computation of the discriminant allows to consider three families of quadratic fields. This families are described table 1.

d à 1 (mod 4) 0 (mod 8) 4 (mod 8) d à D 8D 4D d # à -4D -8D -D d # à 4 (mod 8) 0 (mod 8) 1 (mod 4) D 1 (mod 4) -1 (mod 4) à É( √ D) É( √ 2D) É( √ D) T .
Link between D, d à and their reflections.

We introduce for any integers u and v coprime with D the cardinality

E D (u, v) := #{(a, b) ∈ AE 2 : D = ab, ua ≡ (mod b), vb ≡ (mod a)}
where x ≡ (mod y) means that x is the square of an integer modulo y.

Using table 1, we find in [FK07] (where what the authors note D is what we note d à or d # à ) the following expressions for the 4-rank of à and à # .

1) If d à ≡ 1 (mod 4), then 2 Rank 4 (Ã) = 1 2 E D (-1, 1) [FK07, Lemma 27] and 2 Rank 4 (à # ) = 1 2 (E D (1, 1) + E D (2, 2)) [FK07, Lemma 40] with D ≡ 1 (mod 4). 2) If d à ≡ 0 (mod 8), then 2 Rank 4 (Ã) = 1 2 (E D (-2, 1) + E D (-1, 2)) [FK07, Lemma 38] and 2 Rank 4 (à # ) = E D (2, 1) [FK07, Lemma 33]. 3) If d à ≡ 4 (mod 8), then 2 Rank 4 (Ã) = 1 2 (E D (-1, 1) + E D (-2, 2)) [FK07, Lemma 42] and 2 Rank 4 (à # ) = 1 2 E D (1, 1)
[FK07, Lemma 16] with D ≡ 3 (mod 4).

Remark--These expressions of 2 Rank 4 (Ã) and 2 Rank 4 (Ã # ) either have one term or are a sum of two terms. In case they have one term, it can not be zero and this term is a power of 2. In case they are sum of two terms, we will show that each of these terms is either zero or a power of two ; then considering the solutions of the equation 2 a = 2 b + 2 c , we see that either one term (and only one) is zero or the two terms are equal.

To prove Damey & Payan Spiegelungssatz, we have then to prove the three following inequalities.

1) If D ≡ 1 (mod 4) then (1) E D (-1, 1) ≤ E D (1, 1) + E D (2, 2) ≤ 2E D (-1, 1).
2) For any D,

(2)

E D (-2, 1) + E D (-1, 2) ≤ 2E D (2, 1) ≤ 2E D (-2, 1) + 2E D (-1, 2).
3) If D ≡ 3 (mod 4) then

(3)

E D (-1, 1) + E D (-2, 2) ≤ E D (1, 1) ≤ 2E D (-1, 1) + 2E D (-2, 2).
In section 1, we establish a formula for E D (u, v) involving Jacobi characters. We average this formula over a group of order 8 generated by three permutations. We deduce properties for E D (u, v) from this formula. In section 2, we give an interpretation of E D (u, v) in terms of the cardinality of an affine space. In particular, this shows that E D (u, v) is either 0 or a power of 2. Finally, in section 3, we combine the character sum interpretation with the affine interpretation to deduce the Spiegelungssatz. We also prove the equality cases found by Uehara [Ueh89, Theorem 2] and give a new one.

A  

Denote by m n the Jacobi symbol of m and n, for any coprime odd integers m and n. The letter p will always denote a prime number. For any integers s, t, u and v coprime with D, we introduce the sum

σ D (s, t, u, v) = ab=D p|b s p + ua p p|a t p + vb p .
We have

σ D (1, 1, u, v) = ab=D p|b 1 + ua p p|a 1 + vb p =: S D (u, v).
This last sum is nonnegative and related to our problem by the easy equality (4)

E D (u, v) = 2 -ω(D) S D (u, v)
where ω(D) stands for the number of prime divisors of D. The aim of this section is to establish some properties of σ D .

We note the symmetry relation

σ D (s, t, u, v) = σ D (t, s, v, u) which gives S D (u, v) = S D (v, u). The factorisation (5) σ D (s, t, u, v) = ab=D s b t a p|b 1 + sua p p|a 1 + tvb p implies the upper bound (6) |σ D (s, t, u, v)| ≤ S D (su, tv)
. Finally, we shall use the elementary formula

(7) 2(-1) xy+yz+zx = (-1) x + (-1) y + (-1) z -(-1) x+y+z
valid for any integers x, y and z.

We introduce the element β(n) ∈ 2 by

-1 n = (-1) β(n) .
If m and n are coprime, the multiplicativity of the Jacobi symbol gives β(m) + β(n) = β(mn). With this notation the quadratic reciprocity law reads

(8) m n n m = (-1) β(m)β(n) .
We shall combine ( 7) and (8) to get the linearisation formula

2 x y y z z x x z z y y x = -1 x + -1 y + -1 z - -1 xyz .
Lemma 1-For any integers s, t, u, v coprime with D, the following equality

σ D (s, t, u, v) = abcd=D (-1) β(c)β(d) a d b c s b t a u d v c holds.
Proof. By bimultiplicativity of the Jacobi symbol, equation (5) gives To build symmetry, we average the formula in lemma 1 over an order 8 group, namely the group generated by three permutations: the permutation (a, d), the permutation (b, c) and the permutation ((a, b), (d, c)). The quadratic reciprocity law allows to factorise the term (-1)

β(c)β(d) a d b c
in every transformed sum and then to see u and v as describing the action of each permutation.

Proposition 2-For any integers s, t, u, v coprime with D, the following equality

8S D (u, v) = abcd=D (-1) β(c)β(d) a d b c × 2 u d v c + u a v c -1 a + -1 c + -1 d - -1 acd + u d v b -1 b + -1 c + -1 d - -1 bcd + u a v b 1 + -1 ac + -1 bd - -1 D .
holds.

Proof. From lemma 1 follows

(9) S D (u, v) = abcd=D (-1) β(c)β(d) a d b c u d v c .
We permute a and d and use the quadratic reciprocity law (8) to obtain

S D (u, v) = abcd=D (-1) β(c)β(d) a d b c u a v c × (-1) β(c)β(d)+β(d)β(a)+β(a)β(c) .
Formula (7) gives

(10) 2S D (u, v) = abcd=D (-1) β(c)β(d) a d b c u a v c × -1 a + -1 c + -1 d - -1 acd .
Similary, we permute b and c, then use the quadratic reciprocity law (8) and formula (7) to get 

(11) 2S D (u, v) = abcd=D (-1) β(c)β(d) a d b c u d v b × -1 b + -1 c + -1 d - -1 bcd .
× 1 + -1 ac + -1 bd - -1 D .
We obtain the result by adding twice (9) with the sum of (10), ( 11) and (12).

When two expressions are equivalent under the action of the symmetry group, we get an identity. We give two such formulas in the next two corollaries.

Corollary 3-If D ≡ 1 (mod 4) then S D (-1, 1) = S D (1, 1).
Proof. For any D, we obtain from proposition 2 the formula (13) 8

(S D (1, 1) -S D (-1, 1)) = abcd=D (-1) β(c)β(d) a d b c × 1 - -1 D 1 + -1 b 1 + -1 c .
This gives the result since

-1 D = 1 if D ≡ 1 (mod 4). Corollary 4-If D ≡ 3 (mod 4) then S D (1, 1) = 2S D (-1, 1). Proof. For any D, proposition 2 gives 8S D (1, -1) = abcd=D (-1) β(c)β(d) a d b c 2 + -1 b + 2 -1 c + -1 d + -1 ac + -1 bd + -1 bc - -1 ad + -1 abc - -1 acd .
Thanks to (13), we deduce for any D the equality

-8 (S D (1, 1) -S D (-1, 1) -S D (1, -1)) = abcd=D (-1) β(c)β(d) a d b c × 1 + -1 c + -1 d + -1 ac + -1 bd + -1 abc + -1 abd + -1 D .
It follows that

-8 (S D (1, 1) -S D (-1, 1) -S D (1, -1)) = abcd=D (-1) β(c)β(d) a d b c × 1 + -1 D 1 + -1 c + -1 d + -1 ac .
This finishes the proof since -1 D = -1 if D ≡ 3 (mod 4). Finally, after having dealt with equalities, we shall need the following inequalities.

Lemma 5-For any D, for any u coprime with D, the following inequalities

S D (u, 1) ≤ S D (-u, 1) + S D (u, -1) ≤ 2S D (u, 1) hold.
Proof. We prove first the inequality (14) S D (-u, 1) + S D (u, -1) ≤ 2S D (u, 1). With proposition 2, we write

8 (S D (-u, 1) + S D (u, -1)) = abcd=D (-1) β(c)β(d) a d b c × 2 u d 1 + -1 c + -1 d + -1 bd + u a 2 + -1 a + -1 b + -1 c + -1 d + 2 -1 ac + -1 abd + -1 abc - -1 acd - -1 bcd . Using (15) -1 xyz = -1 D
-1 t for any {x, y, z, t} = {a, b, c, d} together with (9) and lemma 1 we deduce 8 (S D (-u, 1) + S D (u, -1)) = 2 (S D (u, 1) + S D (u, -1) + S D (-u, 1))

+ 2 (σ D (-1, 1, -u, 1) + σ D (1, u, 1, 1) + σ D (1, -u, 1, -1)) + 1 - -1 D (σ D (1, -u, 1, 1) + σ D (-1, u, 1, 1)) + 1 + -1 D (σ D (1, u, 1, -1) + σ D (1, u, -1, 1)) .
Since 1 --1 D and 1 + -1 D are nonnegative, the upper bound (6) gives 8 (S D (-u, 1) + S D (u, -1)) ≤ 4 (2S D (u, 1) + S D (u, -1) + S D (-u, 1)) hence ( 14). We prove next the inequality (16) S D (u, 1) ≤ S D (-u, 1) + S D (u, -1).

As for (14), we use equation ( 15), proposition 2, equation ( 9) and lemma 1 to get 8S D (u, 1) = 2S D (u, 1) + S D (u, -1) + S D (-u, 1)

+ σ D (1, -u, 1, 1) + σ D (1, u, 1, -1) + σ D (1, u, -1, 1) + σ D (-1, 1, u, 1) + 1 + -1 D σ D (1, -u, 1, -1) + 1 - -1 D σ D (1, u, 1, 1) - -1 D σ D (-1, u, 1, 1) + σ D (1, -1, u, 1) .
Then (6) leads to 8S D (u, 1) ≤ 4 (S D (u, 1) + S D (u, -1) + S D (-u, 1)) hence ( 16).

A  

We write p 1 < • • • < p ω(D) for the prime divisors of D and define a bijection between the set of divisors a of D and the set of sequences

(x i ) 1≤i≤ω(D) in ω(D) 2 by x i = 1 if p i | a 0 otherwise.
Let a and b satisfy D = ab and u and v two integers coprime with D.

We extend the notation of the previous section writing

a b = (-1) α(a,b) = (-1) βa(b) with α(a, b) = β a (b) ∈ 2 .
The condition that vb is a square modulo a is equivalent to vb p = 1 for any prime divisor p of a, that is

v p i j : x j =0 p j p i = 1
for any i such that x i = 1. With our notation, this gives ∀i,

x i = 1 =⇒ (-1) βv(p i ) (-1) j : x j =0 α(p j ,p i ) = 1. We rewrite it ∀i, x i = 1 =⇒ (-1) βv(p i ) (-1) j =i (1-x j )α(p j ,p i ) = 1 and so (17) ∀i, x i β v (p i ) + j =i x i (1 -x j )α(p j , p i ) = 0.
Similary, the condition that ua is a square modulo b is equivalent to

(18) ∀i, (1 -x i )β u (p i ) + j =i (1 -x i )x j α(p j , p i ) = 0.
Since x i is either 0 or 1, equations ( 17) et ( 18) are equivalent to their sum. We deduce the following lemma.

Lemma 6-The cardinality E D (u, v) is the cardinality of the affine space

F D (u, v) in ω(D) 2 of equations   β u (p i ) + β v (p i ) + j =i α(p j , p i )   x i + j =i α(p j , p i )x j = β u (p i )
for all i ∈ {1, . . . , ω(D)}.

Remark--In particular, lemma 6 shows that E D (u, v) if not zero is a power of 2, the power being the dimension of the direction of F D (u, v). This is not a priori obvious.

Remark--This interpretation slightly differs from the one found by Redei [START_REF] Redei | Arithmetischer Beweis des Satzes uber die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkorper[END_REF][START_REF] Gerth | The 4-class ranks of quadratic fields[END_REF]. The matrix with coefficients in 2 associated to our affine space is (a ij ) 1≤i,j≤ω(D) with

a ij =      α(p j , p i ) if i = j β u (p i ) + β v (p i ) + ℓ =i α(p ℓ , p i ) if i = j
whereas the matrix considered by Redei is ( a ij ) 1≤i,j≤ω(D) with

a ij =      α(p j , p i ) if i = j ω(D) + 1 + ℓ =i α(p ℓ , p i ) if i = j.
Corollary 7-For any D, we have S D (1, 1) = 0 and, either S D (2, 2) = 0 or S D (2, 2) = S D (1, 1).

Proof. The affine space F D (2, 2) has equations

  j =i α(p j , p i )   x i + j =i α(p j , p i )x j = β 2 (p i ) for all i ∈ {1, . . . , ω(D)}. The affine space F D (1, 1) has equations   j =i α(p j , p i )   x i + j =i α(p j , p i )x j = 0
for all i ∈ {1, . . . , ω(D)}. Hence, both spaces have the same direction, and same dimension. The space F D (1, 1) is not empty: it contains (1, . . . , 1). Its cardinality is then 2 dim 2 F D (1,1) . The affine space F D (2, 2) might be empty and, if it is not, then its cardinality is 2 dim 2 F D (2,2) = 2 dim 2 F D (1,1) . It follows that E D (1, 1) = 0 and, either E D (2, 2) = 0 or E D (2, 2) = E D (1, 1). We finish the proof thanks to (4).

Corollary 8-For any D, we have S D (-1, 1) = 0 and, either S D (-2, 2) = 0 or S D (-2, 2) = S D (-1, 1).

Proof. Since β -2 (p i ) + β 2 (p i ) = β -1 (p i ), the affine space F D (-2, 2) has equations   β -1 (p i ) + j =i α(p j , p i )   x i + j =i α(p j , p i )x j = β -2 (p i )
for all i ∈ {1, . . . , ω(D)}. The affine space F D (-1, 1) has equations

  β -1 (p i ) + j =i α(p j , p i )   x i + j =i α(p j , p i )x j = β -1 (p i )
for all i ∈ {1, . . . , ω(D)}. Hence, both spaces have the same direction, and same dimension. The space F D (-1, 1) is not empty: it contains (1, . . . , 1). It follows that E D (-1, 1) = 0 and, either E D (-2, 2) = 0 or E D (-2, 2) = E D (-1, 1). We finish the proof thanks to (4).

D-P S

3.1. Proof of the Spiegelungssatz. We have to prove (1), ( 2) and (3).

Consider the case d à ≡ 1 (mod 4). Recall that D = d à . Thanks to (4), equation ( 1) is

S D (-1, 1) ≤ S D (1, 1) + S D (2, 2) ≤ 2S D (-1, 1)
for any D ≡ 1 (mod 4). By corollary 3, this inequality is equivalent to S D (2, 2) ≤ S D (1, 1) and this last inequality is implied by corollary 7. Consider the case d à ≡ 0 (mod 8). Recall that D = d à /8. Thanks to (4), equation (2) is

S D (2, 1) ≤ S D (-2, 1) + S D (2, -1) ≤ 2S D (2, 1)
for any D. This is implied by lemma 5 with u = 2. Finally, consider the case d à ≡ 4 (mod 8). Recall that D = d à /4.

Thanks to (4), equation (3) is

S D (-1, 1) + S D (-2, 2) ≤ S D (1, 1) ≤ 2S D (-1, 1) + 2S D (-2, 2)
for any D ≡ 3 (mod 4). By corollary 4, this inequality is equivalent to S D (-2, 2) ≤ S D (-1, 1) and this last inequality is implied by corollary 8.

3.2. Some equality cases. It is clear from our previous computations that

• if d à ≡ 1 (mod 4) then Rank 4 (à # ) = Rank 4 (Ã) if E D (2, 2) = 0 Rank 4 (Ã) + 1 otherwise; • if d à ≡ 4 (mod 8) then Rank 4 (à # ) = Rank 4 (Ã) + 1 if E D (-2, 2) = 0 Rank 4 (Ã) otherwise.
We do not have such clear criterium in the case d à ≡ 0 (mod 8). The reason is that our study of the cases d à ≡ 1 (mod 4) and d à ≡ 4 (mod 8) rests on equalities (corollaries 3, 4, 7 and 8) whereas, our study of the case d à ≡ 0 (mod 8) rests on inequalities (lemma 5 and mainly equa- tion ( 6)). We study more explicitely special cases in proving the following proposition due to Uehara [Ueh89, Theorem 2] (the case c seems to be new).

Theorem 9-Let à be a real quadratic field of discriminant d à and D be described in table 1. Suppose that every prime divisors of D is congruent to

±1 modulo 8. Then a) If d à ≡ 1 (mod 4), then Rank 4 (à # ) = Rank 4 (Ã) + 1. b) If d à ≡ 0 (mod 8) and D ≡ -1 (mod 4), then Rank 4 (à # ) = Rank 4 (Ã)+ 1. c) If d à ≡ 0 (mod 8) and D ≡ 1 (mod 4), then Rank 4 (à # ) = Rank 4 (Ã). d) If d à ≡ 4 (mod 8), then Rank 4 (Ã) = Rank 4 (à # ).
Proof. Since every prime divisors of D is congruent to ±1 modulo 8, we have β 2 (p i ) = 0 for any i.

• If d à ≡ 1 (mod 4), then D ≡ 1 (mod 4). By lemma 6, we know that E D (2, 2) is the cardinality of an affine space having equations

j =i α(p j , p i )(x i + x j ) = 0 (1 ≤ i ≤ ω(D))
hence it is non zero (x i = 1 for any i gives a solution). • If d à ≡ 0 (mod 8), then 2 Rank 4 (à # )-Rank 4 (Ã) = 2E D (2, 1) E D (-2, 1) + E D (-1, 2) .

Since β -2 (p i ) = β -1 (p i ) for any i, lemma 6 shows that E D (-2, 1) = E D (-1, 2) = E D (-1, 1). Lemma 6 also shows that E D (2, 1) = E D (1, 1), hence 2 Rank 4 (Ã # )-Rank 4 (Ã) = E D (1, 1) E D (-1, 1) .

If D ≡ -1 (mod 4), corollary 4 implies that 2 Rank 4 (Ã # )-Rank 4 (Ã) = 2 whereas, if D ≡ 1 (mod 4), corollary 3 implies that 2 Rank 4 (Ã # )-Rank 4 (Ã) = 1.

• If d à ≡ 4 (mod 8), then D ≡ -1 (mod 4). By lemma 6, we know that E D (-2, 2) is the cardinality of an affine space having equations

β -1 (p i )x i + j =i α(p j , p i )(x i + x j ) = β -1 (p i ) (1 ≤ i ≤ ω(D))
hence it is non zero (x i = 1 for any i gives a solution).

Remark--Probabilistic results have been given by Gerth [START_REF]Comparison of 4-class ranks of certain quadratic fields[END_REF] and, for a more natural probability by Fouvry & Kluners in [START_REF]On the Spiegelungssatz for the 4-rank[END_REF]. Among other results, Fouvry & Kluners prove that lim X→+∞ # d à ∈ D(X) : Rank 4 (à # ) = s| Rank 4 (Ã) = r #D(X)

=      1 -2 -r-1 if r = s 2 -r-1 if r = s -1 0 otherwise.
where D(X) is the set of fundamental discriminants in ]0, X].

R

  σ D (s, t, u, v) = By the change of variables (a, b, c, d) = (αγ, βδ, γ, δ), we get σ D (s, t, u, v) = we conclude using the quadratic reciprocity law (8) to γ δ δ γ .

Finally, we×

  permute (a, b) and (b, c), apply twice the quadratic reciprocity law (8) to get 2S D (u, v) (-1) β(c)β(d)+β(b)β(a)+β(a)β(d)+β(b)β(c) . Since β(c)β(d) + β(b)β(a) + β(a)β(d) + β(b)β(c) = β(ac)β(bd), using formula (7) with z = 0 we get (12) 2S D (u, v)
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