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Abstract

We establish a large deviation principle for the process of the largest eigenvalue of an Hermitian
Brownian motion. By a contraction principle, we recover the LDP for the largest eigenvalue of a
rank one deformation of the GUE.
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1 Introduction

From the fifties, the Gaussian unitary and orthogonal ensembles (GUE/GOE) have been extensively
studied. We focus on large deviations and recall some known results. For the global regime, Ben Arous
and Guionnet [BAG] established a large deviation principle (LDP) in the scale N2 for the spectral
measure of a Gaussian ensemble of size N. The LDP for the largest eigenvalue of the GOE with a
scale N was obtained by Ben Arous, Dembo and Guionnet [BADG]. This result was extended to a
rank one perturbation of the GUE/GOE by one of the author in [M]. In both proofs, the fact that
the deviations of the spectral measure and those of the largest eigenvalue do not occur in the same
scale plays a crucial role and so will be in the proof of our result : in the scale at which we look at the
largest eigenvalue, the spectral measure of all but the largest eigenvalue is already well concentrated
around the semicircle law.
In 1962, Dyson [D] introduced a dynamical version of the GUE, namely the Hermitian Brownian
motion whose set of eigenvalues is a time-dependent Coulomb gas, consisting in particles evolving
according to Brownian motions under the influence of their mutual electrostatic repulsions. More
precisely, let (βij , β

′
ij)1≤i≤j≤N be a collection of independent identically distributed standard real

∗E-mail: catherine.donati@upmc.fr
†E-mail: mylene.maida@math.u-psud.fr

This work was supported by Agence Nationale de la Recherche grants ANR-08-BLAN-0311-03 and ANR-09-BLAN-

0084-01

1



Brownian motions defined on a probability space (Ω,F ,P); the Hermitian Brownian motion (HN )t≥0

is the random process, taking values in the space of N ×N Hermitian matrices, with entries (HN )kl
given, for k ≤ l by

(HN )kl =

{

1√
2N

(βkl + iβ′kl), if k < l,
1√
N
βkk, if k = l.

We then set Hθ
N (t) = HN (t) + Hθ

N (0) the Hermitian Brownian motion starting from Hθ
N (0) :=

diag(θ, 0, . . . , 0), with θ ≥ 0 and denote by λθ,N1 (t) ≥ λθ,N2 (t) ≥ . . . ≥ λθ,NN (t) the set of ordered
eigenvalues of Hθ

N (t). Dyson ([D], see also [G, 12.1]) showed that the eigenvalues of Hθ
N (t) satisfy the

following system of stochastic differential equations (SDE)

dλi(t) =
1√
N
dβi(t) +

1

N

∑

j 6=i

1

λi(t)− λj(t)
dt, t ≥ 0, i = 1, . . . , N (1.1)

where βi are independent standard real Brownian motions.
It was rigorously shown in [CL] that this system of SDE admits a unique strong solution and the
eigenvalues do not collide.
The process of the eigenvalues is called Dyson Brownian motion. For any t ≥ 0, the corresponding
spectral measure (µN )t :=

1
N

∑N
i=1 δλθ,Ni (t)

converges a.s. to the semicircular distribution σt given by

dσt(x) =
1

2πt
1[−2

√
t,2

√
t]

√

4t− x2dx and σ0 = δ0. (1.2)

Moreover, the process µN satisfies a LDP in the scaleN2 (see [CDG], [G]) in the space C([0, 1];P(R)),
the set of continuous functions on [0, 1] with values in the set P(R) of probability measures on R,
equipped with the metric d(µ, ν) = supt∈[0,1] dLip(µt, νt) where

dLip(µt, νt) = sup
f∈FLip

∣

∣

∣

∣

∫

fdµt −
∫

fdνt

∣

∣

∣

∣

where FLip denotes the space of bounded Lipschitz functions on R with Lipschitz and uniform bound
less than 1. For any µ ∈ C([0, 1];P(R)) and α > 0, B(µ, α) will denote the ball centered at µ with
radius α with respect to the metric d.

In this work, we will be interested in showing an LDP for the process of the maximal eigenvalue
(λθ,N1 (t))t≥0, that is the largest particle of Dyson Brownian motion.

More precisely, for T > 0, we consider the processes (λθ,N1 (t))0≤t≤T as a sequence of random vari-
ables with values in the space Cθ([0, T ],R) of continuous functions for [0, T ] to R equal to θ at zero
and investigate its LDP in this space endowed with the uniform convergence. For sake of simplicity,
we fix T = 1 in the sequel.

Our main result is the following:

Theorem 1.1 Let (λθ,N1 (t))0≤t≤1 be the process of the largest eigenvalue of an Hermitian Brow-

nian motion (Hθ
N (t))0≤t≤1. Then the law of (λθ,N1 (t))0≤t≤1 satisfies a large deviation principle on

Cθ([0, 1];R) equipped with the topology of uniform convergence, in the scale N, with good rate function

Iθ(ϕ) =















1

2

∫ 1

0

(

ϕ̇(s)− 1

2s

(

ϕ(s)−
√

ϕ(s)2 − 4s
)

)2

ds,

if ϕ absolutely continuous and ϕ(t) ≥ 2
√
t ∀t ∈ [0, 1],

+∞, otherwise.

(1.3)
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Remark 1.2 For the sake of simplicity the theorem above is stated and proven in the paper for the
Hermitian Brownian motion but we want to mention that it can be easily extended to the symmetric
Brownian motion. With the notations already introduced above, the latter is defined as the random
process taking values in the space of N ×N real symmetric matrices so that

(SN )kl =
1√
N
βkl, if k ≤ l.

The process of its eigenvalues satisfies the following system of SDE

dλi(t) =

√
2√
N
dβi(t) +

1

N

∑

j 6=i

1

λi(t)− λj(t)
dt, t ≥ 0, i = 1, . . . , N

and its law satisfies a LDP with good rate function simply given by 1
2Iθ.

The proof that will be developed in the sequel can be adapted to the symmetric case with a few minor
changes left to the reader.

An easy consequence of Theorem 1.1 is the a.s. convergence of our process, in the topology of
uniform convergence for continuous functions on [0, T ], towards the function (fθ(t))t≥0 given by:







fθ(t) = 2
√
t if θ = 0,

fθ(t) =

{

θ + t
θ t ≤ θ2

2
√
t t ≥ θ2

if θ > 0.

The case θ = 0 extends the a.s. convergence of the maximal eigenvalue of the GUE of variance
a2/N to 2a (see for example [BY]) and in the case θ > 0 a similar result holds for a rank one additive
deformations of the GUE (see for example [P]).

In the sequel, we will specify the superscript θ,N in the statements but drop it in the proofs,
unless there is any ambiguity. In the static case, the LDP was shown using the explicit expression of
the distribution of the N eigenvalues. In the dynamical case, the proof relies on stochastic calculus
using that the process of the eigenvalues satisfies the system of SDE (1.1). Roughly speaking, the
largest eigenvalue is a solution of a SDE of the form

dλ1(t) =
1√
N
dβ(t) + b(λ1(t), (νN )t)dt,

with β a standard real Brownian motion, νN := 1
N−1

∑N
i=2 δλi(t) the empirical distribution of all but

the largest eigenvalue and the drift b(x, ν) that will be explicited in the sequel being not a continuous
function of ν for the weak convergence of probabilities. In the scale of interest, νN is close to σ and
the rate function Iθ is the one predicted by the Freidlin-Wentzell Theorem (see [DZ, Th.]) for the
SDE

dλ1(t) =
1√
N
dβ(t) + b(λ1(t), σt)dt,

but the main difficulty will be to deal with the singularity of the drift of the SDE.
To prove our main result, we first establish the exponential tightness of the process (λ1(t))0≤t≤1

stated in Proposition 2.1 and proved in Section 2. A short Section 3 will be devoted to the study of
Iθ, where we check in particular its lower semicontinuity. Section 4 is devoted to the proof of the lower
bound, stated in Proposition 4.1. The upper bound is given in (5.1) and obtained along Section 5.
Then Theorem 1.1 will follow from the exponential tightness, the lower bound obtained in Proposition
4.1 and the weak upper bound (5.1) (see [DZ, Chapt. 4] or [AGZ, Cor. D.6 and Th. D.4]).

Finally, in Section 6, we recover by contraction the fixed-time large deviation principles already
known and cited at the beginning of this introduction, namely
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Theorem 1.3 The largest eigenvalue of Hθ
N (1) satisfies a large deviation principle in the scale N,

with good rate function Kθ defined as follows:
• If θ ≤ 1,

Kθ(x) =















+∞, if x < 2
∫ x

2

√

z2 − 4 dz, if 2 ≤ x ≤ θ + 1
θ ,

Mθ(x), if x ≥ θ + 1
θ ,

with Mθ(x) =
1

2

∫ x

2

√

z2 − 4 dz − θx+
1

4
x2 +

1

2
+

1

2
θ2 + log θ.

• If θ ≥ 1,

Kθ(x) =

{

+∞, if x < 2
Lθ(x), if x ≥ 2,

with Lθ(x) =
1

2

∫ x

θ+ 1
θ

√

z2 − 4dz − θ

(

x−
(

θ +
1

θ

))

+
1

4

(

x2 −
(

θ +
1

θ

)2
)

.

NB : this is a corrected version of Theorem 1.1 in [M], the proof there is correct.

2 Exponential tightness

We want to show the exponential tightness of the process (λ1(t))0≤t≤1 in scale N that is

Proposition 2.1 For all L, there exists N0 and a compact set KL of Cθ([0, 1];R) such that:

∀N ≥ N0,P(λ
θ,N
1 6∈ KL) ≤ exp(−LN).

From the description of the compact sets of C([0, 1];R) (Ascoli theorem), it is enough to show (see
[RY], [CDG]) the following lemma

Lemma 2.2 There exists a universal constant C > 0 such that for any η > 0 and there exists δ0 such
that for any δ < δ0, for all N, p ≤ N and s ∈ [0, 1],

P

(

sup
s≤t≤s+δ

|λp(t)− λp(s)| ≥ η

)

≤ exp

(

−CN η2

δ

)

.

To get the proposition, for a fixed L, we choose p = 1, any η and then δ small enough so that C η2

δ > L.
Proof of lemma 2.2: Let 0 ≤ s ≤ 1.
Let us denote by H̃N the Hermitian Brownian motion defined, for u ≥ 0, by H̃N (u) = Hθ

N (u + s) −
Hθ
N (s) and by (λ̃i(u))u≥0 its associated eigenvalues, in decreasing order. From a classical relation

between eigenvalues (due to Weyl), for t ≥ s,

λθp(s) + λ̃N (t− s) ≤ λθp(t) ≤ λθp(s) + λ̃1(t− s)

so that
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|λθp(t)− λθp(s)| ≤ max
(

λ̃1(t− s),−λ̃N (t− s)
)

= ‖H̃N (t− s)‖

where ‖.‖ denotes the operator norm on matrices. For any η > 0

P

(

sup
s≤t≤s+δ

|λθp(t)− λθp(s)| ≥ η

)

≤ P

(

sup
s≤t≤s+δ

‖H̃N (t− s)‖ ≥ η

)

= P

(

sup
0≤u≤δ

‖H̃N (u)‖ ≥ η

)

= P

(√
δ sup
0≤u≤1

‖H0
N (u)‖ ≥ η

)

,

where we used that H̃N has the same law as H0
N and the scaling invariance of this law. Now, there

exists C > 0 such that for M large enough and for all N ,

P

(

sup
0≤u≤1

‖H0
N (u)‖ ≥M

)

≤ exp(−CNM2) (2.1)

Indeed, from [BADG], Lemma 6.3, we have: for M large enough, for all N,

P(‖H0
N (1)‖ ≥M) ≤ exp(−NM2/9); (2.2)

Now, (‖H0
N (u)‖)0≤u≤1 is a positive submartingale and from Doob’s inequalities, all the moments of

sup0≤u≤1 ‖H0
N (u)‖ are controlled by those of ‖H0

N (1)‖ (up to a constant 4). Therefore, the Gaussian
concentration inequality (2.2) implies the same type of concentration for sup0≤u≤1 ‖H0

N (u)‖, that is
(2.1). �

3 Some insight on the expected rate function

Before going into the proof of the lower bound, we gather hereafter some useful remarks about the
function Iθ defined in Theorem 1.1. In particular, we show in this section that it is lower semi-
continuous.
We introduce the following notations : for µ a probability measure on R and x ∈ R, we define

b(x, µ) =

∫ x

−∞

dµ(y)

x− y
∈ R+ ∪ {∞}. (3.1)

For µ ∈ P(R), we denote by r(µ) the right end-point of the support of µ. Let (ϕ, µ) ∈ Cθ([0, 1];R) ×
C([0, 1];P(R)) such that for all t ∈ [0, 1], ϕ(t) > r(µt). Then, b(ϕ(t), µt) is bounded. We set

H := {h ∈ C([0, 1],R)/h absolutely continuous, ḣ ∈ L
2([0, 1])}

with L
2([0, 1]) the set of square-integrable functions from [0, 1] to R equipped with its usual L2-norm,

denoted by ‖ · ‖2. For any h ∈ H we define

G(ϕ, µ;h) = h(1)ϕ(1) − h(0)ϕ(0) −
∫ 1

0
ϕ(s)ḣ(s)ds −

∫ 1

0
b(ϕ(s), µs)h(s)ds (3.2)

F (ϕ, µ;h) := G(ϕ, µ;h) − 1

2

∫ 1

0
h2(s)ds (3.3)
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For σ := (σt)t≥0 the semicircular process defined in (1.2), the condition ϕ(t) > r(µt) reads ϕ(t) >
2
√
t and one can check that F (ϕ, σ;h) is also well defined under the weaker assumption that ϕ(t) ≥ 2

√
t

for all t ∈ [0, 1]. It is indeed well known (see for example [HP, p. 94]) that

b(ϕ(t), σt) =
1

2t
(ϕ(t)−

√

ϕ2(t)− 4t), (3.4)

so that 0 ≤ b(ϕ(t), σt) ≤ 1√
t
for ϕ(t) ≥ 2

√
t.

We now study the properties of F.

Lemma 3.1 Let θ ≥ 0 and ϕ ∈ Cθ([0, 1],R) such that for any t ∈ [0, 1], ϕ(t) ≥ 2
√
t and define

J(ϕ) := sup
h∈H

F (ϕ, σ;h). (3.5)

Then,

J(ϕ) <∞ ⇒ ϕ absolutely continuous and J(ϕ) =
1

2

∫ 1

0
(ϕ̇(s)− b(ϕ(s), σs))

2ds = Iθ(ϕ)

Sketch of proof: The optimization problem for J is a classical one. We just give an outline of the
proof and refer for example to [DRYZ] for details on similar computations. Recall that F (ϕ, σ;h) =
G(ϕ, σ;h) − 1

2

∫ 1
0 h

2(s)ds where h 7→ G(ϕ, σ;h) is a linear functional. Replacing h by λh, λ ∈ R and
optimizing in λ yields

J(ϕ) =
1

2
sup
h∈H

G2(ϕ, σ;h)

‖h‖22
If J(ϕ) <∞, then the linear functional G(ϕ, σ, .) can be extended continuously to L

2([0, 1]) and by
Riesz theorem, there exists kϕ ∈ L

2([0, 1]) such that G(ϕ, σ, h) =
∫ 1
0 h(s)kϕ(s)ds. On the other side,

we know that G(ϕ, σ, h) can be expressed as in (3.2). This implies that ϕ is absolutely continuous and
kϕ(s) = ϕ̇(s)− b(ϕ(s), σs).

From Cauchy-Schwarz inequality and H being dense in L
2([0, 1]), J(ϕ) = 1

2‖kϕ‖22. Then the second
equality follows from the computation of the Hilbert transform of the semicircular distribution recalled
in (3.4) and ϕ(t) ≥ 2

√
t. �

We can now show the following :

Proposition 3.2 The function Iθ : Cθ([0, 1],R) → R is lower semicontinuous.

Proof: From Lemma 3.1, Iθ(ϕ) = suph∈H F (ϕ, σ;h) where

F (ϕ, σ;h) = h(1)ϕ(1) − h(0)ϕ(0) −
∫ 1

0
ϕ(s)ḣ(s)ds−

∫ 1

0
b(ϕ(s), σs)h(s)ds −

1

2

∫ 1

0
h2(s)ds.

We shall prove that for fixed h ∈ H, ϕ 7→ F (ϕ, σ;h) is continuous. From the definition of F ,
performing an integration by part in the term of the integral in b, it is enough to prove the continuity
of ϕ 7→ Λ(ϕ) :=

∫ .
0 b(ϕ(s), σs)ds (the other terms are obviously continuous in ϕ). As we know that

0 ≤ b(ϕ(t), σt) ≤ 1√
t
for ϕ(t) ≥ 2

√
t, by dominated convergence, if ϕn converges towards ϕ, Λ(ϕn)

converges to Λ(ϕ) pointwise. Now, since the functions involved are increasing, the convergence holds
uniformly on the compact [0, 1]. �
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4 The lower bound

In this section, we prove the lower bound. For any ϕ ∈ Cθ([0, 1];R), any δ > 0, B(ϕ, δ) will denote the
ball centered at ϕ with radius δ with respect to the uniform metric, that is the subset of C([0, 1];R)
of functions ψ such that sup

t∈[0,1]
|ψ(t) − ϕ(t)| < δ. We want to show

Proposition 4.1 Let θ ≥ 0 be fixed. For any ϕ ∈ Cθ([0, 1];R),

lim
δ↓0

lim inf
N −→∞

1

N
lnP

(

λθ,N1 ∈ B(ϕ, δ)
)

≥ −Iθ(ϕ).

The bound is trivial if Iθ(ϕ) = ∞ so that it is enough to consider ϕ such that Iθ(ϕ) < ∞. In
fact, following the classical way, we shall prove the above inequality for ϕ belonging to a well chosen
subclass Hθ dense among the functions of finite entropy. To introduce this subclass, we need a few
more notations.

For ϕ such that Iθ(ϕ) <∞, we recall from Section 3 that

kϕ(s) := ϕ̇(s)− b(ϕ(s), σs) = ϕ̇(s)− 1

2s
(ϕ(s)−

√

ϕ2(s)− 4s). (4.1)

and that

Iθ(ϕ) =
1

2

∫ 1

0
k2ϕ(s)ds =

1

2
‖kϕ‖22.

We define

Hθ = {ϕ ∈ Cθ([0, 1];R);ϕ(t) > 2
√
t ∀t ∈ [0, 1]; kϕ smooth} for θ > 0

H0 =

{

ϕ ∈ C0([0, 1];R);∃t0 > 0,
ϕ(t) = 2

√
t for t ≤ t0

ϕ(t) > 2
√
t for t > t0

; kϕ smooth

}

,

(4.2)

where smooth obviously means infinitely differentiable on [0, 1]. For ϕ ∈ H0, we denote by t0(ϕ) :=
sup{t;ϕ(t) = 2

√
t} the corresponding threshold.

In Lemma 4.4 will be proven that Hθ is dense in {ϕ ∈ Cθ([0, 1]); Iθ(ϕ) < ∞} after some preliminary
considerations in the next subsection.

4.1 Some properties of the functions with finite entropy when θ = 0

As will be seen further, the proof of that Hθ is dense will be quite straightforward in the case when
θ > 0 but more delicate when θ = 0. In this latter case, we first need to understand some features of
the functions with finite entropy that we gather here.
We need the following notations : for any ϕ such that ϕ(s) ≥ 2

√
s, ∀s ∈ [0, 1], we define xϕ by

xϕ(s) =
ϕ(s) +

√

ϕ2(s)− 4s

2
, ∀s ∈ [0, 1]. (4.3)

so that ϕ and kϕ can be reexpressed in terms of xϕ. More precisely, ∀s ∈ (0, 1],

ϕ(s) = xϕ(s) +
s

xϕ(s)
(4.4)
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and

kϕ(s) = 2ẋϕ(s)

(

1− s

x2ϕ(s)

)

. (4.5)

The following lemma gives the behaviour of ϕ near 0.

Lemma 4.2 (θ = 0) Let ϕ satisfy I0(ϕ) <∞. Then,

lim
t−→ 0

ϕ(t)√
t

= 2.

Proof: Set

It(ϕ) =

∫ t

0

(

ϕ̇(s)− 1

2s

(

ϕ(s)−
√

ϕ2(s)− 4s
)

)2

ds.

Then, from the finiteness of I0(ϕ), limt−→ 0 I
t(ϕ) = 0. From Cauchy-Schwarz inequality,

∣

∣

∣

∣

∫ t

0
ϕ̇(s)− 1

2s

(

ϕ(s)−
√

ϕ2(s)− 4s
)

ds

∣

∣

∣

∣

≤
√
t(It(ϕ))1/2

and
∣

∣

∣

∣

ϕ(t)√
t
− 1√

t

∫ t

0

1

2s

(

ϕ(s)−
√

ϕ2(s)− 4s
)

ds

∣

∣

∣

∣

≤ (It(ϕ))1/2.

Now, we have, using (4.4),

0 ≤
∫ t

0

1

2s

(

ϕ(s)−
√

ϕ2(s)− 4s
)

ds =

∫ t

0

ds

xϕ(s)
≤
∫ t

0

ds√
s
= 2

√
t.

Thus, on one hand,
ϕ(t)√
t

≥ 2, whereas 0 ≤ 1√
t

∫ t

0

1

2s

(

ϕ(s)−
√

ϕ2(s)− 4s
)

ds ≤ 2 and the difference

of the two terms tends to 0 as t tends to 0. It follows that:

lim
t−→ 0

ϕ(t)√
t

= lim
t−→ 0

1√
t

∫ t

0

1

2s

(

ϕ(s)−
√

ϕ2(s)− 4s
)

ds = 2.

�

The following lemma will be useful in the proof of the lower bound itself.

Lemma 4.3 (θ = 0) Let ϕ ∈ H0. Then kϕ is positive in a right neighborhood of t0(ϕ).

Proof of Lemma 4.3: For ϕ ∈ H0, kϕ ≡ 0 on [0, t0(ϕ)].
Since ϕ(s) > 2

√
s for s > t0(ϕ), we have that xϕ(s) >

√
s, for s > t0(ϕ). As ẋϕ(t0(ϕ)) =

1

2
√
t0(ϕ)

>

0 and ẋϕ is continuous (as ϕ is smooth), ẋϕ(s) > 0 in a neighborhood of t0(ϕ) and thus, from (4.5),
kϕ(s) > 0 for t0(ϕ) < s < t0(ϕ) + ε for some ε > 0. �

4.2 Denseness of Hθ

The goal of this subsection is to establish the following lemma

Lemma 4.4 Let ϕ ∈ Cθ([0, 1]) satisfying Iθ(ϕ) < ∞. There exists a sequence (ϕp)p∈N∗ of functions
in Hθ such that, as p goes to infinity,

• ϕp converges to ϕ in Cθ([0, 1],R)

• Iθ(ϕp) converges to Iθ(ϕ).
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4.2.1 Proof of Lemma 4.4 when θ > 0

Let ϕ such that Iθ(ϕ) < ∞. As ϕ(0) = θ > 0 and ϕ is continuous, there exists t1 > 0 such that for
any t ∈ [0, t1], ϕ(t) > 2

√
t.

For any p ∈ N
∗, we define

χp(t) =







ϕ(t), if t ≤ t1,
ϕ(t) + (t− t1) if t1 ≤ t ≤ t1 +

1
p ,

ϕ(t) + 1
p , if t ≥ t1 +

1
p .

It is easy to check that χp is continuous and for p large enough, for any t ∈ [0, 1], χp(t) > 2
√
t and

Iθ(χp) <∞. Moreover, as p goes to infinity, χp converges to ϕ in the uniform norm and kχp converges
to kϕ in L

2([0, 1]).

It is now enough to check that χp can be approximated by a sequence of functions in Hθ. As we know

that for any t ∈ [0, 1], χp(t) > 2
√
t, we have that infs∈(0,1]

(

1− s
x2χp

(s)

)

> 0. As kχp ∈ L
2([0, 1]), from

(4.5) we get that so does ẋχp . It can be approximated by a sequence of smooth functions ẋp,q. Set

xp,q(t) = θ +
∫ t
0 ẋp,q(s)ds. The corresponding χp,q is defined by

χp,q(s) = xp,q(s) +
s

xp,q(s)

and

kp,q(s) = 2ẋp,q(s)

(

1− s

x2p,q(s)

)

,

so that kp,q is smooth. For q large enough, for any s ∈ [0, 1], xp,q(s) >
√
s, so that χp,q(s) > 2

√
s.

Moreover, as q grows to infinity, the sequence xp,q converges towards xχp in uniform norm on [0, 1] so
that χp,q converges towards χp in the same sense and kp,q converges to kχp in L

2([0, 1]).
To conclude the proof of the lemma, it is enough to notice that one can find an increasing function ψ
from N to N such that ϕp := χp,ψ(p) ∈ Hθ converges towards ϕ and kϕp = kp,ψ(p) converges to kϕ in
L
2([0, 1]).

4.2.2 Proof of Lemma 4.4 when θ = 0

As in the latter paragraph, we establish the proof in two steps: first, we approximate ϕ by a sequence
of functions that are equal to 2

√
t in a neighborhood of 0 and strictly greater than 2

√
t away from 0.

Next, we approximate those functions by smooth ones.

Let r > 0 and define χr by:

χr(t) =















2
√
t, t ≤ y2r

yr +
t

yr
, y2r ≤ t ≤ r

ϕ(t) + r(t− r), t ≥ r

with yr =
ϕ(r)−

√
ϕ2(r)−4r

2 ≤ √
r so that χr is continuous.

‖ϕ− χr‖ ≤ sup
s≤r

|ϕ(s)− χr(s)| ∨ r ≤ 2 sup
s≤r

|ϕ(s)− 2
√
s| ∨ r −→

r−→ 0
0
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using Lemma 4.2. It remains to show that I0(ϕ)− I0(χr) tends to 0. If we set Jr(f) =
∫ r
0 k

2
f (s)ds and

J ′
r(f) =

∫ 1
r k

2
f (s)ds, we get

I0(ϕ) − I0(χr) = (Jr(ϕ) − Jr(χr)) + (J ′
r(ϕ)− J ′

r(χr))

with Jr(ϕ)−→ 0 as r−→ 0.

Jr(χr) =

∫ r

y2r

(

1

yr
− yr

s

)2

ds =
r

y2r
− y2r

r
− 2 ln

(

r

y2r

)

−→
r−→ 0

0

since yr/
√
r tends to 1 thanks to Lemma 4.2.

On the other hand, if we define hϕ,r by

hϕ,r(t) := r − 1

2t

(

r(t− r) +
√

ϕ2(t)− 4t−
√

(ϕ(t) + r(t− r))2 − 4t
)

then, by Cauchy-Schwarz inequality, we have

|J ′
r(ϕ)− J ′

r(χr)|2 ≤
∫ 1

r
(2kϕ(s) + hϕ,r(t))

2dt

∫ 1

r
(hϕ,r(t))

2dt

Therefore it is enough to show that
∫ 1
r (hϕ,r(t))

2dt goes to zero as r goes to zero.
To show that, we notice that, for t ∈ [r, 1],

∣

∣

∣

∣

r(t− r)

2t

∣

∣

∣

∣

≤ r

2
. (4.6)

Moreover,

∣

∣

∣

∣

1

2t

(

√

ϕ2(t)− 4t−
√

(ϕ(t) + r(t− r))2 − 4t
)

∣

∣

∣

∣

=
1

2t

2rϕ(t)(t − r) + r2(t− r)2
√

ϕ2(t)− 4t+
√

(ϕ(t) + r(t− r))2 − 4t

≤
√

2rϕ(t)(t− r)

2t
+

|r(t− r)|
2t

≤ Cr1/4 +
r

2
, (4.7)

where we used that, from Lemma 4.2, t 7→ ϕ(t)√
t
is bounded on [0, 1] by a constant C. Putting (4.6) and

(4.7) together, we get
∫ 1
r (hϕ,r(t))

2dt goes to zero as r goes to zero.

Now χ̇r(s) =
1√
s
on [0, y2r ] and χ̇r ∈ L

2([y2r , 1]) since kχr ∈ L
2([y2r , 1]). For any r > 0, there exists a

sequence of function χ̇r,q smooth on ]0, 1] such that χ̇r,q(s) = 1√
s
on [0, y2r ] and χ̇r,q tends to χ̇r in

L
2([y2r/2, 1]). Setting χr,q(t) =

∫ t
0 χ̇r,q(s)ds, we have:

- χr,q tends to χr in uniform norm.

- kχr,q is smooth.

- kχr,q converges to kχr in L
2([0, 1]) so that I0(χr,q) converges to I0(χr)

Putting everything together, we conclude that there exists an increasing function ψ such that the
sequence of functions ϕp = χp,ψ(p) satisfies the requirements of Lemma 4.4. �
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4.3 Almost sure convergence of λ
θ,N
1 and νN under P

kϕ

The strategy of the proof of the lower bound will be classical : we will make a proper change of
measure so that the function ϕ becomes “typical” under the new measure. We will therefore need to
study more precisely the behavior of λθ,N1 under the new measure P

kϕ .
To be more precise, for h ∈ L

2([0, 1]), we define the exponential martingale Mh such that for any
t ∈ [0, 1],

Mh
t = exp

[

N

(∫ t

0
h(s)

1√
N
dβ1(s)−

1

2

∫ t

0
h2(s)ds

)]

, (4.8)

where β1 is the standard Brownian motion appearing in the SDE for λθ,N1 (see (1.1)). We denote by
(Ft)t≥0 its canonical filtration.

We now introduce P
kϕ the probability defined by P

kϕ := M
kϕ
1 ♯P, meaning that for any t ≤ 1, the

Radon-Nikodym derivative of Pkϕ with respect to P on Ft is given by M
kϕ
t and we also denote by E

kϕ

the expectation under Pkϕ . Recall that νN is the empirical distribution of all but the largest eigenvalue
defined in the introduction. For any r > 0, α > 0, we also define

Br(σ, α) := B(σ, α)
⋂

{µ ∈ C([0, 1],P(R)); ∀s, supp(µs) ⊂]−∞, 2
√
s+ r]}.

The goal of this subsection will be to show

Proposition 4.5 For any r > 0, δ > 0, α > 0 and ϕ ∈ Hθ,

P
kϕ(λθ,N1 ∈ B(ϕ, δ); νN ∈ Br(σ, α))) −−−−→

N→∞
1

The proof of the proposition relies on some lemmata.

Lemma 4.6 Under P
kϕ, µN and νN converge as N goes to infinity to the semicircular process σ.

Proof: a) It is well known that µN is exponentially tight in scale N2, under P (see [CDG], [G]).
Let A ∈ C([0, 1],P(R)), then

P
kϕ(µN ∈ A) = E

(

M
kϕ
1 1µN∈A

)

≤ E((M
kϕ
1 )2)1/2(P(µN ∈ A))1/2

= exp

(

N

2

∫ 1

0
k2ϕ(s)ds

)

P(µN ∈ A)1/2 (4.9)

From the exponential tighness of µN under P, there exists a compact KL in C([0, 1],P(R)) such that

P(µN ∈ Kc
L) ≤ exp(−N2L).

Therefore, from (4.9)
P
kϕ(µN ∈ Kc

L) ≤ exp(−N2L/4)

for N large enough. This proves the exponential tightness of µN under P
kϕ and thus its a.s. pre-

compactness in C([0, 1],P(R)).

b) From Girsanov’s theorem, we have that under Pkϕ , the process (λθ,Ni (t))t≤1,i=1,...N satisfies the
system of stochastic differential equations:



















dλi(t) =
1√
N
dβi(t) +

1

N

∑

j 6=i

1

λi(t)− λj(t)
dt, i = 2, . . . , N

dλ1(t) =
1√
N
dβ1(t) + kϕ(t)dt+

1

N

∑

j 6=1

1

λ1(t)− λj(t)
dt

(4.10)
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where (βi)1≤i≤N are independent Brownian motions under Pkϕ .
The proof of the convergence of µN towards σ follows the same proof as in Rogers and Shi [RS]

(see also Guionnet [G], Chan [C]): any limit point µt satisfies a deterministic evolution equation (the
term in kϕ disappears in the limit)

∫

f(x)dµt(x) =

∫

f(x)dµ0(x) +
1

2

∫ t

0

∫

f ′(x)− f ′(y)
x− y

dµs(x)dµs(y)ds

for which uniqueness holds. When µ0 = δ0 as in our setting, µt is the semicircular law σt. Therefore
µN converges a.s. to the semicircle process σ. Since d(µN , νN ) ≤ 2

N , the same convergence holds for
νN . �

Lemma 4.7 For any r > 0, α > 0,

P
kϕ(νN ∈ Br(σ, α)) −−−−→

N→∞
1.

Proof: Since we already know the convergence of νN towards σ under Pkϕ , it is enough to prove that
under Pkϕ ,

lim sup
N→∞

λ2(t) ≤ 2
√
t. (4.11)

We define (λ
(ε)
i (t), i = 1, . . . N) the strong solution of the system of SDE (4.10) with initial conditions

λ
(ε)
1 (0) = θ + ε and λ

(ε)
i (0) = ε

i , for i = 2, . . . , N, so that in particular λ2(t) = λ
(0)
2 (t).

We also introduce (λ
(ε)
i , i = 2, . . . , N) the strong solution of the system of SDE:

dλ(ε)i(t) =
1√
N
dβi(t) +

1

N

N
∑

j=2,j 6=i

1

λ(ε)i(t)− λ(ε)j(t)
dt, i = 2, . . . , N, (4.12)

with initial conditions λ
(ε)
i (0) = ε

i , for i = 2, . . . , N.

The process (λ(0)i, i = 2, . . . , N) is distributed as the eigenvalues of
√

N−1
N HN−1(t) where HN−1 is a

standard Hermitian Brownian motion of size N − 1. Therefore, limN −→∞ λ
(0)
2 (t) = 2

√
t a.s..

Our goal is now to compare λ
(0)
2 (t) with λ

(0)
2 (t).

The first step is to show that for any ε > 0 fixed, N fixed, for all t ∈ [0, 1], λ
(ε)
2 (t) ≤ λ

(ε)
2 (t).

Let R > 0 large enough so that 1
R < ε

N2 and

TR = inf

{

t ≥ 0,∀i, j = 2, . . . , N, i 6= j,
∣

∣

∣λ
(ε)
i (t)− λ

(ε)
j (t)

∣

∣

∣ ∨
∣

∣

∣

∣

λ
(ε)
i (t)− λ

(ε)
j (t)

∣

∣

∣

∣

≤ 1

R

}

On [0, TR], the drift of the two systems of SDE are uniformly Lipschitz and we can apply Example 2.1

of [Ber] to get that λ
(ε)
2 (t) ≤ λ

(ε)
2 (t).

Moreover, from [CL], we know that TR goes to infinity as R goes to infinity. In particular, if we choose
R large enough for TR to be larger than 1, our inequality holds for any t ∈ [0, 1].
Now, the solutions of (4.12), resp. (4.10), are continuous with respect to the initial condition (see

[Ce]); thus, letting ε → 0, we obtain λ
(0)
2 (t) ≤ λ

(0)
2 (t) a.s. Putting everything together, we have that

lim supN→∞ λ2(t) ≤ 2
√
t. �

Lemma 4.8 Let ϕ ∈ Hθ .
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1) For θ > 0, the differential equation dy(t) = (kϕ(t) + b(y(t), σt))dt on [0, 1] with initial value
y(0) = θ admits a unique solution larger than 2

√
t, namely ϕ.

2) For θ = 0, the differential equation dy(t) = (kϕ(t) + b(y(t), σt))dt on [0, 1] with value at time
t0(ϕ) y(t0(ϕ)) = 2

√

t0(ϕ) admits a unique solution larger than 2
√
t, namely ϕ.

Proof: Let us first check that in both cases there is a unique solution larger than 2
√
t. We recall

that for x ≥ 2
√
t,

b(x, σt) =
1

2πt

∫

1

x− y

√

4t− y2dy =
1

2t
(x−

√

x2 − 4t).

It is easy to see that x 7→ b(x, σt) is decreasing on [2
√
t,∞[. Let x, y two solutions of dy(t) =

(kϕ(t) + b(y(t), σt))dt such that for any t ∈ [0, 1], x(t), y(t) ≥ 2
√
t. Then,

(x(t)− y(t))2 = 2

∫ t

0
(x(s)− y(s))(b(x(s), σs)− b(y(s), σs))ds ≤ 0.

In the first case, it is very easy to check that ϕ is a solution. In the second case, notice that for
t ≤ t0(ϕ), kϕ(t) = 0 and we know that t 7→ 2

√
t is a solution of dy(t) = b(y(t), σt)dt with initial

condition y(0) = 0. �

The last lemma to complete the proof of Proposition 4.5 is the following

Lemma 4.9 For any θ ≥ 0 and ϕ ∈ Hθ, under P
kϕ, the process λθ,N1 converges a.s. to ϕ.

Proof : As in Lemma 4.6, from the exponential tightness in scale N of λ1 under P, we deduce the
exponential tighness of λ1 under Pkϕ and the a.s. pre-compactness of λ1. Let x(t) be a limit point.

There exists f : N → N strictly increasing such that λ
θ,f(N)
1 (t) converge to x(t). In the sequel we omit

the superscript θ, f(N).
The crucial step of the proof, which is similar for any value of θ is to show that x(t) ≥ ϕ(t).

From the a.s. convergence of (µN )t towards σt and using that σt([2
√
t − ε, 2

√
t]) > 0, it follows

that lim infN λ1(t) ≥ 2
√
t and thus x(t) ≥ 2

√
t. From Itô’s formula, we get

((ϕ(t) − λ1(t))
+)2 = − 2√

N
(ϕ(t)− λ1(t))

+dβ1(t)

+2

∫ 1

0
(ϕ(t) − λ1(t))

+[b(ϕ(t), σt)− bN (λ1(t), (νN )t)]dt

+
1

N
1ϕ(t)−λ1(t)≥0dt.

The first and last term converge to zero and we decompose the second term in three 2(A1(t) +
A2(t) +A3(t)) where

A1(t) = A1
f(N)(t) =

∫ 1

0
(ϕ(t) − λ1(t))

+[b(ϕ(t), σt)− b(λ1(t), σt)]dt

and

A2(t) =

∫ 1

0
(ϕ(t) − λ1(t))

+[b(λ1(t), σt)− b(λ1(t), (νf(N))t)]dt

and

A3(t) =

∫ 1

0
(ϕ(t)− λ1(t))

+[b(λ1(t), (νf(N))t)− bN (λ1(t), (νf(N))t)]dt.
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Passing to the limit, we obtain:

((ϕ(t) − x(t))+)2 = 2 lim
N −→∞

(A1(t) +A2(t) +A3(t)).

We now use the continuity on R and the monotony on [2
√
t,∞[ of the function x 7→ b(x, σt), the lower

semicontinuity of (x, µ) 7→ b(x, µ) to conclude that :

lim
N −→∞

A1(t) =

∫ 1

0
(ϕ(t)− x(t))+[b(ϕ(t), σt)− b(x(t), σt)]dt ≤ 0

and
lim

N −→∞
A2(t) ≤ 0.

We also easily get that
lim

N −→∞
A3(t) = 0.

Therefore, we obtain that x(t) ≥ ϕ(t).

In the case when θ > 0, we therefore get that x(t) is well separated from the support of σt, we
can argue as before, using (4.11), and obtain that limN −→∞ bN (λ1(t), (νN )t) = b(x(t), σt). Therefore,
letting N −→∞ in the equation of λ1, we obtain that x is a solution of the differential equation
dy(t) = (kϕ(t) + b(y(t), σt))dt and therefore equal to ϕ.
In the case when θ = 0, we have to treat first the case t ≤ t0. On this interval, kϕ = 0, so that λ1(t)
converges to 2

√
t, that is ϕ(t).

For any t > t0, x(t) is well separated from the support of σt, and we get as before
lim

N −→∞
bN (λ1(t), (νN )t) = b(x(t), σt) so that x is a solution of the differential equation dy(t) =

(kϕ(t) + b(y(t), σt))dt with initial condition x(t0) = 2
√
t0 and therefore equal to ϕ. �

Proposition 4.5 is straightforward from Lemmata 4.6 to 4.9.

4.4 Lower bound for a non null initial condition: θ > 0

We want to show Proposition 4.1 under the assumption that θ > 0.
Thanks to Lemma 4.4 above, it is enough to show this lower bound under the additionnal hypothesis
that ϕ ∈ Hθ. We make this assumption in the sequel. We set r := 1

2 infs∈[0,1](ϕ(s)− 2
√
s) > 0.

From our assumptions on ϕ, there exists δ > 0 small enough such that:

∀χ ∈ B(ϕ, δ),∀µ ∈ Br(σ, α),∀s ∈]0, 1] and y ∈ supp(µs), χ(s)− y ≥ r

4
. (4.13)

For h ∈ H and (ϕ, µ) ∈ Cθ([0, 1];R) × C([0, 1];P(R)) such that for all t ∈ [0, 1], ϕ(t) > r(µt), we
can define

GN (ϕ, µ;h) = h(1)ϕ(1) − h(0)ϕ(0) −
∫ 1

0
ϕ(s)ḣ(s)ds −

∫ 1

0
bN (ϕ(s), µs)h(s)ds

FN (ϕ, µ;h) := GN (ϕ, µ;h) −
1

2

∫ 1

0
h2(s)ds, (4.14)

where bN =
N − 1

N
b.

Therefore, similarly to (4.8), we have Mh
1 = exp(NFN (λ1, νN ;h)).
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We get

P(λ1 ∈ B(ϕ, δ)) ≥ P (λ1 ∈ B(ϕ, δ); νN ∈ Br(σ, α))

= E

(

1λ1∈B(ϕ,δ);νN∈Br(σ,α)
M

kϕ
1

M
kϕ
1

)

= E
kϕ
(

1λ1∈B(ϕ,δ);νN∈Br(σ,α) exp(−NFN (λ1, νN ; kϕ))
)

≥ exp

(

−N sup
(ψ,µ)∈Cα,δ,r

FN (ψ, µ; kϕ)

)

P
kϕ (λ1 ∈ B(ϕ, δ); νN ∈ Br(σ, α))

where
Cα,δ,r = B(ϕ, δ) × Br(σ, α). (4.15)

Therefore

lim inf
N −→∞

1

N
lnP(λ1 ∈ B(ϕ, δ)) ≥ − sup

(ψ,µ)∈Cα,δ,r

F (ψ, µ; kϕ)

+ lim inf
N −→∞

1

N
lnPkϕ(λ1 ∈ B(ϕ, δ); νN ∈ Br(σ, α)). (4.16)

From the property (4.13) above, the fonction (ψ, µ) 7→ F (ψ, µ; kϕ) is continuous on Cα,δ,r and we
checked in Lemma 3.1 that F (ϕ, σ; kϕ) = Iθ(ϕ).
Moreover, from Proposition 4.5, we get that the last term in (4.16) is equal to zero.
We have thus obtained that for ϕ ∈ Hθ,

lim
δ↓0

lim inf
N −→∞

1

N
lnP(λθ1 ∈ B(ϕ, δ)) ≥ −Iθ(ϕ). (4.17)

4.5 Lower bound for a null initial condition

We want to show Proposition 4.1 under the assumption that θ = 0.

Again from Lemma 4.4, we can assume that ϕ ∈ H0 and we set t0(ϕ) as defined in (4.2). Then, kϕ = 0
on [0, t0(ϕ)]. We choose ε given by Lemma 4.3 and we denote by r := r(ε) = 1

2 infs∈[t0(ϕ)+ε,1](ϕ(s) −
2
√
s) > 0. As in the case when θ > 0, we perform a change of measure via the martingale Mkϕ . Recall

that FN is defined by (4.14). We define F
(ε)
N by

F
(ε)
N (ϕ, µ; kϕ) = kϕ(1)ϕ(1) −

∫ 1

t0(ϕ)
ϕ(s)k̇ϕ(s)ds−

∫ 1

t0(ϕ)+ε
bN (ϕ(s), µs)kϕ(s)ds

−1

2

∫ 1

0
k2ϕ(s)ds,

in other words,

FN (ϕ, µ; kϕ) = F
(ε)
N (ϕ, µ; kϕ)−

∫ t0(ϕ)+ε

t0(ϕ)
bN (ϕ(s), µs)kϕ(s)ds.

Therefore, for such ε, FN ≤ F
(ε)
N and we obtain (as in the previous subsection)

P(λ1 ∈ B(ϕ, δ)) ≥ exp

(

−N sup
(ψ,µ)∈Cα,δ,r

F
(ε)
N (ψ, µ; kϕ)

)

P
kϕ(λ1 ∈ B(ϕ, δ); νN ∈ Br(σ, α))
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where Cα,δ,r is defined in (4.15) and, using Proposition 4.5,

lim inf
N→∞

1

N
lnP(λ1 ∈ B(ϕ, δ)) ≥ − sup

(ψ,µ)∈Cα,δ,r

F
(ε)
N (ψ, µ; kϕ).

Now, for δ = δ(ε) small enough, F
(ε)
N is continuous on Cα,δ,r, since

∀ψ ∈ B(ϕ, δ),∀µ ∈ Br(σ, α),∀s ∈ [t0(ϕ) + ε, 1] and y ∈ supp(µs), ψ(s) − y ≥ r

4
.

and therefore

lim
δ−→ 0

lim inf
N −→∞

1

N
lnP(λ1 ∈ B(ϕ, δ)) ≥ −F (ε)(ϕ, σ; kϕ),

where

F (ε)(ϕ, σ; kϕ) =
1

2

∫ 1

t0(ϕ)+ε
(ϕ̇(s)− b(ϕ(s), σs))

2ds−
∫ t0(ϕ)+ε

t0(ϕ)
ϕ(s)k̇ϕ(s)ds−

1

2

∫ ε

0
k2ϕ(s)ds.

This last quantity tends to I0(ϕ) as ε tends to 0. �

5 The upper bound

We first prove the following

Proposition 5.1 Let θ ≥ 0 and ϕ ∈ Cθ([0, 1];R) such that there exists t0 ∈ [0, 1] so that ϕ(t0) < 2
√
t0.

Then

lim
δ↓0

lim
N→∞

1

N
lnP(λθ,N1 ∈ B(ϕ, δ)) = −∞.

We proceed as in [BADG]. From [CDG], we know that the process µN satisfies a LDP in the scale
N2 with a good rate function whose unique minimizer is the semicircular process σ for which we know
that the support of σt is [−2

√
t, 2

√
t].

Let δ0 = 2
√
t0 − ϕ(t0). By continuity of ϕ, there exists ε > 0, such that for any t ∈ [t0 − ε, t0 + ε],

ϕ(t) < 2
√
t− δ0

2 .
For any t ∈ [t0 − ε, t0 + ε], there exists ft such that ft(y) = 0 if y ≤ ϕ(t) and

∫

ft(x)dσt(x) > 0. We
let F := {µ ∈ C([0, 1];P(R))/

∫

ft(x)dµt(x) = 0 ∀t ∈ [t0 − ε, t0 + ε]}, which is a closed set.
For any δ < δ0

2 ,
P(λ1 ∈ B(ϕ, δ)) ≤ P(µN ∈ F ).

As σ /∈ F, lim supN→∞
1
N2 lnP(µN ∈ F ) < 0, which gives the Proposition. �

We thus consider the case where ϕ(t) ≥ 2
√
t and as a first step, we prove the upper bound for a

function ϕ which satisfies ϕ(t) > 2
√
t for all t ∈ [0, 1] (this implies in particular that θ > 0).

5.1 The upper bound for functions ϕ well separated from t 7→ 2
√
t

Proposition 5.2 Let ϕ ∈ Cθ([0, 1];R) such that for any t ∈ [0, 1], ϕ(t) > 2
√
t. Then

lim
δ↓0

lim sup
N→∞

1

N
lnP(λθ,N1 ∈ B(ϕ, δ)) ≤ −Iθ(ϕ). (5.1)

Let ϕ ∈ Cθ([0, 1];R) such that ϕ(t) > 2
√
t for all t ∈ [0, 1]. We recall that r := 1

2 inft(ϕ(t)− 2
√
t) > 0.

The strategy of the proof will heavily rely on the fact that only a finite number of eigenvalues can
deviate strictly above t 7→ 2

√
t.

More precisely, we have
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Proposition 5.3 For any η > 0, L > 0, there exists K := K(η, L) (independent of N) such that

lim sup
N→∞

1

N
lnP(∃t ∈ [0, 1], λK+1(t) > 2

√
t+ η) ≤ −L. (5.2)

We will first prove a fixed time version of the same result stated in the following lemma:

Lemma 5.4 For any η > 0, L > 0, there exists K := K(η, L) such that for any t ∈ [0, 1],

lim sup
N→∞

1

N
lnP(λN,θK+1(t) > 2

√
t+ η) ≤ −L.

Proof of Proposition 5.3: We fix η > 0 and L > 0. If C is the universal constant of Lemma 2.2, let
R be such that Cη2R > 18L and choose a subdivision (tk)1≤k≤R of the interval [0, 1] such that for all
1 ≤ k ≤ R, |tk − tk+1| ≤ 2

R . Now, for any K ∈ N
∗

P(∃t ∈ [0, 1], λK+1(t) > 2
√
t+ η) = P[∪k(∃t ∈ [tk, tk+1], λK+1(t) > 2

√
t+ η)]

≤ R max
1≤k≤R

P(∃t ∈ [tk, tk+1], λK+1(t) > 2
√
t+ η) (5.3)

Then

P(∃t ∈ [tk, tk+1], λK+1(t) > 2
√
t+ η) ≤ P

(

λK+1(tk) > 2
√
tk +

η

2

)

+P

(

∃t ∈ [tk, tk+1], λK+1(t) > 2
√
t+ η ;λK+1(tk) ≤ 2

√
tk +

η

2

)

≤ P

(

λK+1(tk) > 2
√
tk +

η

2

)

+ P

(

sup
tk≤t<tk+1

|λK+1(t)− λK+1(tk)| ≥
η

3

)

From Lemma 5.4, we can find K := K(η, L) such that

lim sup
N

1

N
lnP

(

λK+1(tk) > 2
√
tk +

η

2

)

≤ −L.

From Lemma 2.2 applied for p = K(η, L),

lim sup
N

1

N
lnP

(

sup
tk≤t<tk+1

|λK+1(t)− λK+1(tk)| ≥
η

3

)

= −L.

As R is independent of N, (5.3) gives the lemma. �

Proof of Lemma 5.4:

The first observation is that, as Hθ
N (t) = H0

N(t) + diag(θ, 0, . . . , 0), with θ ≥ 0, by Weyl’s inequalities,
λθK+1(t) ≤ λ0K(t) so that

P(λθK+1(t) > 2
√
t+ η) ≤ P

(

λ0K(t) > 2
√
t+ η

)

= P

(

λ0K(1) > 2 +
η√
t

)

≤ P(λ0K(1) > 2 + η).

Therefore, Lemma 5.4 will be a direct consequence of the fact that for any p ≥ 1, the law of
(λ01(1), . . . , λ

0
p(1)) satisfies a LDP in the scale N with good rate function

F : (x1, . . . , xp) 7→ 1x1≥x2≥...≥xp

p
∑

i=1

K0(xj),

17



with K0 the individual rate function at time 1 as defined in Theorem 1.3. This is a particular case of
Theorem 2.10 in [BGM] in the case when the potential V is just Gaussian (V (x) = x2) therein.
From this, if we define K ≥ L

K0(2+η)
,we deduce that,

lim sup
N

1

N
lnP(λθ,NK+1(t) > 2

√
t+ η)

≤ lim sup
N

1

N
lnP(λ0,NK (1) > 2 + η) = lim sup

N

1

N
lnP(λ0,N1 (1) > 2 + η, . . . , λ0,NK (1) > 2 + η)

≤ −KK0(2 + η) ≤ −L. �

Lemma 5.5 Let K fixed as in the above proposition. Let j ∈ {1, . . . K}. We denote by µ
(j)
N the

spectral measure of the N − j smallest eigenvalues µ
(j)
N =

1

N − j

N
∑

p=j+1

δλp . Then,

d(µ
(j)
N , µN ) ≤

2K

N
.

Therefore, if µN ∈ B(σ, α), µ
(j)
N ∈ B(σ, 2α) for N ≥ N0.

Proof: Let f ∈ FLip,

µ
(j)
N (f)− µN (f) =

j

N(N − j)

∑

p>j

f(λp)−
1

N

j
∑

p=1

f(λp)

and

|µ(j)N (f)− µN (f)| ≤
j

N
+

j

N
≤ 2K

N
.

�

Proof of Proposition 5.2: Let ϕ ∈ Cθ([0, 1];R) such that for any t ∈ [0, 1], ϕ(t) > 2
√
t. We recall

that r = 1
2 inf(ϕ(t)− 2

√
t)

For k ∈ N
∗, let δ > 0 such that δ < r

4K and α > 0. We have

P(λ1 ∈ B(ϕ, δ)) ≤ P(AN,δ,α,K) + P(∃t ∈ [0, 1], λK+1(t) > 2
√
t+ r) + P(µN 6∈ B(σ, α)) (5.4)

with
AN,δ,α,K :=

{

λ1 ∈ B(ϕ, δ);∀p > K,∀t, λp(t) ≤ 2
√
t+ r; µN ∈ B(σ, α)

}

We now choose a subdivision (tk)1≤k≤R as in the proof of Proposition 5.3, such that |tk−tk+1| ≤ 2
R .

We choose R such that sup|t−s|≤ 2
R
|ϕ(s) − ϕ(t)| ≤ δ

6 . From the choice of the parameters, for each

t ∈ [0, 1], if we are on AN,δ,α,K , there exists at least a gap between two eigenvalues (among the K
largest ones) larger than δ. For 1 ≤ k ≤ R, we can define a random variable Ik with values in
{1, . . . ,K} by

Ik := inf{i ≤ K,λi(tk)− λi+1(tk) > δ}.
We write

AN,δ,α,K ⊂
⋃

i∈{1,...K}R
AN,i,δ,α (5.5)

18



where, for i = (ik, k ≤ R),

AN,i,δ,α = {λ1 ∈ B(ϕ, δ),∀k ≤ R,∀i < ik, λi(tk)− λi+1(tk) ≤ δ, λik(tk)− λik+1(tk) > δ, µN ∈ B(σ, α)} .

As, for i ≤ ik, λi(tk) ≥ ϕ(tk)− iδ.

AN,i,δ,α ⊂ {λ1 ∈ B(ϕ, δ),∀k ≤ R,∀i < ik, λi(tk) ≥ ϕ(tk)− iδ, λik (tk)− λik+1(tk) > δ, µN ∈ B(σ, α)} .

Now, if we let

BN,i,δ,α =

{

λ1 ∈ B(ϕ, δ),∀i < ik,∀t ∈ [tk, tk+1[, λi(t) ≥ ϕ(t)− (i+ 1)δ, λik (t)− λik+1(t) >
2

3
δ, µN ∈ B(σ, α)

}

,

then

AN,i,δ,α ⊂ BN,i,δ,α
⋃

{

∃k,∃t ∈ [tk, tk+1],∃i ≤ ik + 1, |λi(t)− λi(tk)| >
δ

6

}

(5.6)

and the second term will again be controlled by Lemma 2.2.

We now work on BN,i,δ,α. Let j ≤ K and Xj(t) :=
1
j

∑j
i=1 λi(t) is a solution of the SDE

dXj(t) =
1√
N

1

j

∑

i≤j
dβi(s) +

1

N

1

j

∑

i≤j

∑

p>j

1

λi(t)− λp(t)
dt (5.7)

We denote by dBj(s) = 1√
j

∑j
i=1 dβi(s), which is a standard Brownian motion. Let h ∈ H, we define

the exponential martingale

Mh
t = exp

[

N

(

∫ t

0

∑

k

h(s)1[tk ,tk+1[(s)
1√
N

1√
ik
dBik(s)− 1

2

∫ t

0

∑

k

1[tk ,tk+1[(s)
1

ik
h2(s)ds

)]

1√
N

1√
ik
dBik(t) = dXik(t)−

1

N

1

ik

∑

i≤ik

∑

p>ik

1

λi(t)− λp(t)
dt

= dXik(t)−
N − ik
N

1

ik

∑

i≤ik

∫

µ
(ik)
t (dx)

λi(t)− x
dt

and

Mh
1 = exp



N
∑

k



[hsXik(s)]
tk+1
tk

− N − ik
N

1

ik

∑

i≤ik

∫ tk+1

tk

∫

µ
(ik)
t (dx)

λi(t)− x
h(t) dt−

∫ tk+1

tk

ḣ(s)Xik(s)ds

− 1

2ik

∫ tk+1

tk

h2(s)ds

)]

We recall from Lemma 5.5 that if µN ∈ B(σ, α), µ
(ik)
N ∈ B(σ, 2α).

Mh
1 can be written as a functional

Mh
1 = exp

(

NFN (λ1, . . . λK , µ
(1)
N , . . . , µ

(K)
N ;h)

)

.

We denote by

Λi,δ,α = {(ψ1, . . . ψK , ν1, . . . νK) : ψ1 ∈ B(ϕ, δ),∀i < ik,∀t ∈ [tk, tk+1[, ψi(t) ≥ ϕ(t)− (i+ 1)δ,

ψik(t)− ψik+1
(t) >

2

3
δ; νi ∈ B(σ, 2α), supp(νik(.)) ⊂]−∞, ψik+1(.)}
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where in the above set, the functions are such that ψ1 ≥ ψ2 . . . ≥ ψK . We denote by ψ = (ψ1, . . . ψK)
and ν = (ν1, . . . , νK). Then,

P(BN,i,δ,α) = E[1BN,i,δ,α

Mh
1

Mh
1

]

≤ exp(−N inf
(ψ,ν)∈Λi,δ,α

FN (ψ, ν;h)E[M
h
1 ]

≤ exp(−N inf
(ψ,ν)∈Λi,δ,α

FN (ψ, ν;h))

and
1

N
lnP(BN,i,δ,α) ≤ − inf

(ψ,ν)∈Λi,δ,α

FN (ψ, ν;h).

lim sup
1

N
lnP(BN,i,δ,α) ≤ − inf

(ψ,ν)∈Λi,δ,α

Fi(ψ, ν;h)

where

Fi(ψ, ν;h) = [hsΨik(s)]
tk+1
tk

− 1

ik

∑

i≤ik

∫ tk+1

tk

∫

ν
(ik)
t (dx)

ψi(t)− x
h(t) dt−

∫ tk+1

tk

ḣ(s)Ψik(s)ds

− 1

2ik

∫ tk+1

tk

h2(s)ds

with Ψj =
1
j

∑

i≤j ψi.
Let us take α−→ 0. The function ν 7→ Fi(ψ, ν;h) is continuous on the set Λi,δ,α since for i ≤ ik,

ψi(t)− x ≥ 2

3
δ ∀x ∈ supp((νik)t).

We obtain

lim
α→0

lim sup
1

N
lnP(BN,i,δ,α) ≤ − inf

ψ∈Λi,δ

Fi(ψ, σ;h)

where σ = (σ, . . . σ) and Λi,δ is defined as in Λi,δ,α without the conditions on νi. Now, take δ → 0, the
above functional is continuous in ψ and

lim
δ→0

lim
α→0

lim sup
1

N
lnP(BN,i,δ,α) ≤ −Fi(ϕ, σ;h) (5.8)

where

Fi(ϕ, σ;h) = h(1)ϕ(1) − h(0)ϕ(0) −
∫ 1

0

∫

R

σt(dx)

ϕ(t) − x
h(t)dt −

∑

k

1

2ik

∫ tk+1

tk

h2(s)ds

and
−Fi(ϕ, σ;h) ≤ −F (ϕ, σ;h)

where F is defined by (3.3).
We have proved that for any K ∈ N

∗, any h ∈ H, and any subdivision (tk)1≤k≤R of [0, 1],

lim
δ→0

lim
α→0

lim sup
1

N
lnP(BN,i,δ,α) ≤ −F (ϕ, σ;h).
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We now go back to the decompositions (5.5) and (5.6). Let us first treat the case when Iθ(ϕ) <∞.
We choose L = −2Iθ(ϕ) and K as given in Proposition 5.3 so that

lim sup
N

1

N
lnP(∃t ∈ [0, 1], λK+1(t) > 2

√
t+ η) ≤ −2Iθ(ϕ).

Moreover

lim sup
N

1

N
lnP(µN 6∈ B(σ, α)) = −∞.

and from Lemma 2.2, if we choose R, the number of points of the subdivision such that R > 26Iθ(ϕ)
Cδ2

,

lim sup
N

1

N
lnP

(

∃k,∃t ∈ [tk, tk+1],∃i ≤ ik + 1|λik(t)− λik(tk)| >
δ

6

)

≤ −2Iθ(ϕ).

We thus obtain, for any h ∈ H,

lim
δ→0

lim sup
1

N
lnP(λ1 ∈ B(ϕ, δ)) ≤ − inf(F (ϕ, σ;h), 2Iθ(ϕ)).

Optimizing in h gives

lim
δ→0

lim sup
N

1

N
lnP(λ1 ∈ B(ϕ, δ)) ≤ −Iθ(ϕ).

In the case where Iθ(ϕ) = ∞, for any L, we can associate K as in Proposition 5.3 such that

lim sup
N

1

N
lnP(∃t ∈ [0, 1], λK+1(t) > 2

√
t+ η) ≤ −L (5.9)

In the same way as above, with R > 18L
Cδ2

, we then show that

lim
δ→0

lim sup
1

N
lnP(λ1 ∈ B(ϕ, δ)) ≤ −L

and since the left-hand side does not depend on L,

lim
δ→0

lim sup
1

N
lnP(λ1 ∈ B(ϕ, δ)) = −∞.

�

We now extend Proposition 5.2 to any function ϕ such that ϕ(t) ≥ 2
√
t.

5.2 The upper bound for functions ϕ not well separated from t 7→ 2
√
t

Proposition 5.6 Let ϕ ∈ Cθ([0, 1];R) such that for any t ∈ [0, 1], ϕ(t) ≥ 2
√
t. Then

lim
δ↓0

lim sup
N→∞

1

N
lnP(λθ1 ∈ B(ϕ, δ)) ≤ −Iθ(ϕ).

Proof of Proposition 5.6: For any ǫ > 0, let Jǫ = {t ∈ [0, 1], ϕ(t) > 2
√
t+ ǫ}. Jǫ is an open set in

[0, 1] and J ǫ is compact so that we can find a set Vǫ of the form Vǫ = ∪Nǫ
i=1]ai(ǫ), bi(ǫ)[ such that

J̄ǫ ⊂ Vǫ ⊂ Jǫ/2.

Then, on Vǫ, ϕ(t) > 2
√
t. For a function f on [0, 1], we denote by f |A its restriction to a subset A of

[0, 1]. Then,
P(λ1 ∈ B(ϕ, δ)) ≤ P(λ1|Vǫ ∈ B(ϕ|Vǫ , δ)).
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From Proposition 5.2,

lim
δ↓0

lim sup
N→∞

1

N
lnP(λ1|Vǫ ∈ B(ϕ|Vǫ , δ)) ≤ −

Nǫ
∑

i=1

Iθ(ϕ|[ai(ǫ),bi(ǫ)])

where

Iθ(ϕ|[a,b]) =
1

2

∫ b

a

(

ϕ̇(s)− 1

2s

(

ϕ(s)−
√

ϕ(s)2 − 4s
)

)2

ds,

this quantity may be infinite. Let ǫ−→ 0, by monotone convergence,

lim
δ↓0

lim sup
N→∞

1

N
lnP(λ1 ∈ B(ϕ, δ)) ≤ −1

2

∫

J

(

ϕ̇(s)− 1

2s

(

ϕ(s)−
√

ϕ(s)2 − 4s
)

)2

ds

where J = {t ∈ [0, 1], ϕ(t) > 2
√
t} (the right-hand side can be infinite).

Assume that ϕ is differentiable almost everywhere (a.e.) on [0, 1]. Since ϕ(t) ≥ 2
√
t, if ϕ is differentiable

in s0 such that ϕ(s0) = 2
√
s0: then, ϕ̇(s0) =

1√
s0

and

ϕ̇(s0)−
1

2s0

(

ϕ(s0)−
√

ϕ(s0)2 − 4s0

)

= 0.

Thus,
∫

J

(

ϕ̇(s)− 1

2s

(

ϕ(s)−
√

ϕ(s)2 − 4s
)

)2

ds = Iθ(ϕ).

If ϕ is not differentiable a.e., then Iθ(ϕ) = ∞. Consider first the case θ > 0. From the lower
semicontinuity of Iθ, for all C > 0, there exists ǫ such that

B(ϕ, ǫ) ⊂ {ψ; Iθ(ψ) > C}.

Define
{

ψ(t) = ϕ(t) on J̄ǫ
ψ(t) = 2

√
t+ ǫ on (J̄ǫ)

c

Then, ψ ∈ B(ϕ, ǫ) and

∫

(J̄ǫ)c

(

ψ̇(s)− 1

2s

(

ψ(s)−
√

ψ(s)2 − 4s
)

)2

ds =

∫

(J̄ǫ)c

(

1

2s

(

ǫ−
√

ǫ2 + 4
√
sǫ

))2

ds

≤ Kǫ

for some constant K. The last inequality follows from the fact that since θ > 0, (J̄ǫ)
c ⊂ [a, 1] for

a strictly positive a. Therefore, for ǫ small enough, Iθ(ψ|J̄ǫ) = Iθ(ϕ|J̄ǫ) ≥ C
2 . Moreover, Iθ(ϕ|Vǫ) ≥

Iθ(ϕ|J̄ǫ) so that we get

lim
δ↓0

lim sup
N→∞

1

N
lnP(λ1 ∈ B(ϕ, δ)) ≤ −C

2
.

Since the inequality is true for all C,

lim
δ↓0

lim sup
N→∞

1

N
lnP(λ1 ∈ B(ϕ, δ)) = −∞.

Now for θ = 0, if I0(ϕ|[a,1]) < ∞ for all a > 0, then, ϕ would be a.e. differentiable. Therefore, we
can assume that there exists a a such that I0(ϕ|[a,1]) = ∞ and argue as before, using that P(λ1 ∈
B(ϕ, δ)) ≤ P(λ1|[a,1] ∈ B(ϕ|[a,1], δ)). �
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6 Contraction principle

The goal of this section is to get from Theorem 1.1 a new proof of the following results concerning the
deviations of the largest eigenvalue at fixed time (say t = 1).
Note that this fixed time result has been used in the preceding section for the proof of the upper
bound in the case θ = 0, the goal here is to extend it to any θ > 0.

Proof: As ϕ 7→ ϕ(1) is continuous, by contraction principle (Theorem 4.2.1 in [DZ]), we get that
λ1(1) satisfies a LDP with good rate function J0,θ, where, for any η ∈ [0, 1[, we denote by

Iη(ϕ) =

∫ 1

η
f(t, ϕ(t), ϕ̇(t))dt,

with

f(t, x, y) =
1

2

(

y − 1

2t

(

x−
√

x2 − 4t
)

)2

and, for x ≥ 2, θ ≥ 2
√
η,

Jη,θ(x) = inf
ϕ s.t.ϕ(η) = θ,

ϕ(1) = x

Iη(ϕ).

As Iη(ϕ) is a good rate function, the infimum in the above problem is reached, and we denote by
ϕη an infimum. We first show the following lemma :

Lemma 6.1

For any η ∈]0, 1[, if, for any t ∈ [η, 1], ϕη(t) > 2
√
t, then,

ϕη(t) =
x− θ

1− η
(t− η) + θ.

Proof: Let η ∈ [0, 1[ be fixed. We denote by ǫ := inft∈[η,1](ϕ
η(t)− 2

√
t) > 0.

It is easy to check that the infimum of Iη is finite, therefore, we know that ϕη is absolutely
continuous with ϕ̇η ∈ L

1. Following the proof of Theorem 4 in Chapter 9.2.3 in [I-T], we first show
that it is a solution to the DuBois-Reymond equation, i.e. there exists a constant r such that for any
t ∈ [η, 1],

∂f

∂y
(t, ϕη(t), ϕ̇η(t))−

∫ t

η

∂f

∂x
(s, ϕη(s), ϕ̇η(s)) = r. (6.1)

Let x(.) be a function such that |x(.)| ≤ ǫ
2 , x(η) = 0, ẋ(.) is in L

∞ and its integral between η and
1 is zero.We set, for t ∈ [η, 1] and ξ ∈ [0, 1],

d(t, ξ) = x(t)
∂f

∂x
(t, ϕη(t) + ξx(t), ϕ̇η(t) + ξẋ(t)) + ẋ(t)

∂f

∂y
(t, ϕη(t) + ξx(t), ϕ̇η(t) + ξẋ(t))

so that, for all λ ∈ [0, 1],

∫ λ

0
d(t, ξ)dξ = f(t, ϕη(t) + λx(t), ϕ̇η(t) + λẋ(t))− f(t, ϕη(t), ϕ̇η(t)).

By continuity, for all t ∈ [η, 1],

e(t, λ) :=
1

λ

∫ λ

0
d(t, ξ)dξ −→λ→0 d(t, 0).
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Moreover, as
∂f

∂y
(t, x, y) = y − 1

2t
(x−

√

x2 − 4t)

and
∂f

∂x
(t, x, y) = − 1

2t

(

y − 1

2t
(x−

√

x2 − 4t)

)(

1− x√
x2 − 4t

)

,

and for any ξ ∈ [0, 1], inft∈[η,1](ϕ
η(t) + ξx(t)− 2

√
t) ≥ ǫ

2 , we get that there exists qη,ǫ integrable such
that for any t ∈ [η, 1] for any ξ ∈ [0, 1], |d(t, ξ)| ≤ qη,ǫ(t). Therefore, by dominated convergence,

lim
λ→0

∫ 1

η
e(t, λ)dt =

∫ 1

η
d(t, 0)dt.

By definition

lim
λ→0

∫ 1

η
e(t, λ)dt = lim

λ→0

1

λ
(Iη(ϕ

η + λx)− Iη(ϕ
η)),

and
∫ 1

η
d(t, 0)dt =

∫ 1

η
x(t)

∂f

∂x
(t, ϕη(t), ϕ̇η(t)) + ẋ(t)

∂f

∂y
(t, ϕη(t), ϕ̇η(t))dt.

But, as we know that ϕη is a minimizer, it gives that the latter integral is equal to zero. By integration
by parts, we get that

∫ 1

η
ẋ(t)

(

∂f

∂y
f(t, ϕη(t), ϕ̇η(t))−

∫ t

η

∂f

∂x
(s, ϕ(s), ϕ̇(s))ds

)

dt = 0,

where we used that x(η) = x(1) = 0. As this relation is linear in x(.) we can relax the condition that
its norm is less than ǫ

2 .

As the relation above holds for a dense subset of the functions y ∈ L∞ such that
∫ 1
η y(t)dt = 0, we

deduce that ϕη is a solution of the DuBois-Reymond equation (6.1).

The next step is to check that ϕη is a C2 solution of the Euler-Lagrange equation, that is, for any
t ∈ [η, 1],

d

dt

∂f

∂y
(t, ϕη(t), ϕ̇η(t))− ∂f

∂x
(t, ϕη(t), ϕ̇η(t)) = 0. (6.2)

We denote by

g(t, y) = f(t, ϕη(t), y)− y

∫ t

η

∂f

∂x
(s, ϕη(s), ϕ̇η(s))ds − ry.

With our expression of f, g(t, .) is a convex quadratic polynomial, therefore it has a unique minimizer
y(t), which is solution of the equation

∂g

∂y
(t, y(t)) = 0.

We can compute y explicitely, it is given by

y(t) =
ϕη(t)

2t
− 1

2t

√

ϕη(t)2 − 4t+
1

2t

ϕη(t)
√

ϕη(t)2 − 4t
+ r.

As we know that ϕη is absolutely continuous, so is y. But, by unicity of the minimizer, we have that
y = ϕ̇η so that we get that ϕη is continuously differentiable. Therefore ∂g

∂y is continuously differentiable
in both variables and from the implicit function theorem, we get that y(t) is continuously differentiable,
so that ϕη is twice continuously differentiable. Differentiating (6.1) we get (6.2).
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Straightforward computations leads to ϕ̈η ≡ 0 and thus

ϕη(t) =
x− θ

1− η
(t− η) + θ.

�

Another useful lemma will be the following

Lemma 6.2 For any η ∈ [0, 1[, if there exists t0 ∈ [η, 1] such that ϕη(t0) = 2
√
t0, then

Iη(ϕ
η) ≥

∫ x

2

√

u2 − 4 du.

Proof: We have

Iη(ϕ
η) ≥

∫ 1

t0

f(t, ϕη(t), ϕ̇η(t))dt.

For any ϕ such that Iη(ϕ) <∞, for t ≥ η, we denote

Kt(ϕ) =
1

2

∫ 1

t

(

ϕ̇(s)− 1

2s
(ϕ(s) +

√

ϕ2(s)− 4s)

)2

ds.

If we let y(s) = ϕ(s)√
s
, one has

Kt(ϕ) = It(ϕ)−
∫ y(1)

y(t)

√

u2 − 4 du.

But Kt ≥ 0 so that

Iη(ϕ
η) ≥

∫ x

ϕη(t0)√
t0

√

u2 − 4 du =

∫ x

2

√

u2 − 4du.

�

From there, we can prove

Lemma 6.3 For any η ∈ [0, 1[, if θ = 2
√
η or

(

2
√
η < θ < 1 + η and x ≤ θ+

√
θ2−4η
2 + 2

θ+
√
θ2−4η

)

,

then

Jη,θ(x) =

∫ x

2

√

u2 − 4 du.

Proof: We first start with the case when η > 0. Let us assume that θ = 2
√
η or 2

√
η < θ < 1 + η

and x ≤ θ+
√
θ2−4η
2 + 2

θ+
√
θ2−4η

. Let ϕη be a minimizer.By Lemma 6.2, we have that Jη,θ(x) ≥
∫ x
2

√
u2 − 4 du. But we can exhibit functions for which this bound is reached.

For θ = 2
√
η and x ≥ 2, we let t∗ be such that

√
t∗ := x+

√
x2−4
2 and

ϕ∗
η(t) =

{

2
√
t if η ≤ t ≤ t∗

2
√
t∗ + 1√

t∗
(t− t∗) if t∗ ∨ η ≤ t ≤ 1

Taking into account that

∫ x

2

√

z2 − 4dz =
1

2
x
√

x2 − 4− 2 ln

(

x+
√
x2 − 4

2

)

, (6.3)
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we get that ϕ∗
η realises the infimum.

For 2
√
η < θ < 1 + η and x ≤ θ+

√
θ2−4η
2 + 2

θ+
√
θ2−4η

, we let s∗ be such that
√
s∗ =

θ+
√
θ2−4η
2 , and

ϕ∗
η(t) =











θ + 1√
s∗
(t− η) if η ≤ t ≤ s∗

2
√
t if s∗ ≤ t ≤ t∗

2
√
t∗ + 1√

t∗
(t− t∗) if t∗ ≤ t ≤ 1

realises the infimum.
Now, the extension to the case when η = 0 is easy to obtain. Let us assume that θ = 0 or 0 < θ < 1
and x < θ + 1

θ . Let ϕ be a path such that I(ϕ) < ∞. It implies in particular ϕ is continuous and
therefore it is easy to check that there exists η > 0 such that ϕ(η) = 2

√
η or 2

√
η < ϕ(η) < 1 + η

and x ≤ ϕ(η)+
√
ϕ(η)2−4η

2 + 2

ϕ(η)+
√
ϕ(η)2−4η

. From the first part of the proof applied to θ = ϕ(η), we get

that I0(ϕ) ≥ Iη(ϕ) ≥
∫ x
2

√
u2 − 4du. To conclude the proof, it is easy to check that ϕ∗

0 realises this
infimum. �

We now go to

Lemma 6.4 For any η ∈]0, 1[, if θ > 1 + η or

(

2
√
η < θ < 1 + η and x >

θ+
√
θ2−4η
2 + 2

θ+
√
θ2−4η

)

,

then
Jη,θ(x) = Iη(dη,θ,x),

where for any t ∈ [η, 1],

dη,θ,x(t) =
(x− θ)

1− η
(t− η) + θ.

Proof: From Lemma 6.1, we know that dη,θ realises the infimum over the functions that do not touch
t 7→ 2

√
t and from Lemma 6.2 that the infimum over the functions that do touch t 7→ 2

√
t is always

greater than
∫ x
2

√
u2 − 4 du.

In the case when 2
√
η < θ < 1 + η and x >

θ+
√
θ2−4η
2 + 2

θ+
√
θ2−4η

, it is a direct computation to check

that Iη(dη,θ,x) ≤
∫ x
2

√
u2 − 4 du.

We now assume that θ > 1 + η. Let ϕ be a function that do touch t 7→ 2
√
t and t0 be such that

ϕ(t0) = 2
√
t0 and for t ∈ [η, t0[, ϕ(t) > 2

√
t. Obviously, Iη(ϕ) =

∫ t0
η f(t, ϕ(t), ϕ̇(t))dt + It0(ϕ). We

know for above that It0(ϕ) >
∫ x
2

√
u2 − 4du.

Furthermore, by the same reasoning as in the proof of Lemma 6.1, we can show that the optimum in

the first integral is reached at the affine function h(t) = 2
√
t0−θ

t0−η (t−η)+θ. A quite tedious computation
allows us to get that, for any t0 ∈ [η, 1],

Iη(dη,θ,x) ≤
∫ x

2

√

u2 − 4du+

∫ t0

η
f(t, h(t), ḣ(t))dt

and this concludes the proof. �

The last point, to complete the proof of the Theorem is to extend the above lemma to the case
when η = 0. More precisely, we have,

Lemma 6.5 If θ ≥ 1 or
(

0 < θ < 1 and x ≥ θ + 1
θ

)

, let ϕ∗(t) = (x − θ)t + θ for t ∈ [0, 1], then for
any ϕ, I0(ϕ∗) ≤ I0(ϕ)
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This would conclude the proof by the following computation. We set α = x− θ.

I(ϕ∗) =
1

2

∫ 1

0

(

α− 1

2t
(θ + αt−

√

(θ + αt)2 − 4t)

)2

dt

=
1

2

∫ 1

0

(

α− 2

θ + αt+
√

(θ + αt)2 − 4t

)2

dt

The change of variable u = θ + αt+
√

(θ + αt)2 − 4t leads after some tedious computations

I(ϕ∗) = − ln

(

x+
√
x2 − 4

2θ

)

+
1

4
x
√

x2 − 4 +
1

4
x2 − θx+

θ2

2
+

1

2
.

This agrees with the formulae giving Mθ and Lθ since we have (6.3). �

Let us now go to the proof of Lemma 6.5. Let ϕ be a function on [0, 1] such that I0(ϕ) < ∞. From
Lemma 4.4, one can always assume that ϕ is smooth. Let ε > 0 be fixed. Let η small enough, such
that

∫ η
0 f(t, ϕ∗(t), ϕ̇∗(t))dt ≤ ε and ϕ(η) > 1 or

2
√
η < ϕ(η) ≤ 1 + η and x >

ϕ(η) +
√

ϕ(η)2 − 4η

2
+

2

ϕ(η) +
√

ϕ(η)2 − 4η
.

Then

I0(ϕ)− I0(ϕ∗) =

∫ η

0
f(t, ϕ(t), ϕ̇(t))dt−

∫ η

0
f(t, ϕ∗(t), ϕ̇∗(t))dt

+

∫ 1

η
f(t, ϕ(t), ϕ̇(t))dt−

∫ 1

η
f(t, dη,ϕ(η),x(t), ḋη,ϕ(η),x(t))dt

+

∫ 1

η
f(t, dη,ϕ(η),x(t), ḋη,ϕ(η),x(t))dt−

∫ 1

η
f(t, ϕ∗(t), ϕ̇∗(t))dt.

On the first line, the first term is positive and the second one is greater than −ε. The second line is
positive, as we know from Lemma 6.4 that dη,ϕ(η),x realises the infimum in this case. Now, using the

continuity of ϕ and the fact that θ−ϕ(η)
η is bounded, it is a straightforward computation to check that

the last term can be bounded by a function of η going to zero with η. Therefore, for η small enough,
I0(ϕ)− I0(ϕ∗) ≥ −2ε. But this is true for any ε so that I0(ϕ)− I0(ϕ∗) ≥ 0. �
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