
HAL Id: hal-00565845
https://hal.science/hal-00565845

Submitted on 14 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A design process enabling adaptation and customization
of services for the elderly

Jean-Baptiste Lezoray, Maria-Teresa Segarra, An Phung Khac, André
Thépaut, Jean-Marie Gilliot, Antoine Beugnard

To cite this version:
Jean-Baptiste Lezoray, Maria-Teresa Segarra, An Phung Khac, André Thépaut, Jean-Marie Gilliot, et
al.. A design process enabling adaptation and customization of services for the elderly. IWAAL-2010 :
International Workshop on Ambient Assisted Living, Sep 2010, Valancia, Spain. �hal-00565845�

https://hal.science/hal-00565845
https://hal.archives-ouvertes.fr

A Design Process Enabling Adaptation and

Customization of Services for the Elderly

Jean-Baptiste Lézoray Maria-Teresa Segarra An Phung-Khac

André Thépaut Jean-Marie Gilliot Antoine Beugnard

Institut Télécom, Télécom Bretagne, Département Informatique,

Technopôle Brest-Iroise - CS83818 - 29238 Brest cedex 3, France

{jb.lezoray, mt.segarra, an.phungkhac, andre.thepaut, jm.gilliot, antoine.beugnard}@telecom-bretagne.eu

Abstract

In the next decades, the growth in population age-

ing will cause important problems to most indus-

trialized countries. To tackle that issue, Ambient

Assistive Living (AAL) systems can reinforce the

well-being of elderly people, by providing emer-

gency services, autonomy enhancement services,

and comfort services. Those systems will postpone

the need of a medicalized environment, and will al-

low the elderly to stay longer at home.

However, most elderly have specific needs and

deployments of such systems are likely unique. Fur-

thermore, the needs evolve in time, and so does the

environment of the system. Making this observa-

tion, we propose the use of a design method, the

medium approach, to enable the dynamic adapta-

tion of AAL systems. We also study the possi-

ble customizations of the design method to make

it more suited to the AAL domain.

1 Introduction

In the next decades, most industrialized countries

will face important problems with the growth in

population ageing. Statistics data provide a clear

picture of the problem dimension. According to re-

sults of the SHARE survey [2] (Survey of Health,

Ageing and Retirement in Europe) funded by the

European Commission, in 2050 the share of the

above sixty-five age group will be around 28%, in-

stead of 16% nowadays. According to [20], the

number of octogenarians in France was tripled since

1960, and will be again multiplied by 2.4 by the

2050.

Specialized institutions will not be able to han-

dle that situation without any alternative solution.

One of them is the use of Ambient Assistive Living

(AAL) services that aim at enabling people to stay

at home for a longer time, delaying the need for a

specialized, medicalized institution. Those services

are therefore mainly health-oriented services. How-

ever, according to [25], elderly living alone and hav-

ing bad health feel ten times more lonely than oth-

ers. The study also shows a direct link between a

bad health and the fact that they feel lonely. Sim-

ilarly, Gaymu et al. in [28] identify the main fac-

tors for an elderly to move to a nursing home : a)

becoming disabled, b) having no living spouse or

child, and c) having no close family. That leads us

to the conclusion that having AAL services dedi-

cated to create or maintain social links with the rel-

atives is almost as important as health-oriented ser-

vices.

Most AAL applications are either too general or

too specific. A too general AAL application pro-

vides services not well suited to final users. Each

elderly has specific diseases, capabilities and habits,

and the system should consider them independently

from the provided services. Similarly, the needs

of the elderly may evolve over time (e.g., between

night and day, or between winter and summer), and

the application environment is different between

each deployment. On the other hand, if an AAL ap-

plication is too specific, only a very few people will

use it due to its inadequacy. Moreover, its imple-

mentation will restrict its use to very specific target

platforms and deployments. In the context of a de-

ployment at a large scale, designing customizable

and adaptive AAL systems is a solution to tackle

those problems.

We are currently working on a distributed AAL

system for the elderly that offers a set of services

(health oriented, communication-oriented, and in-

formation oriented) allowing them to live longer at

their preferred place in a safer way, and to main-

tain social links with their relatives and their circle

of friends. Our research aims at defining a design

methodology that eases the development of con-

figurable and auto-adaptive distributed applications.

In our methodology, we identify a set of concerns

that should be taken into account when developing

such applications, including the necessary mecha-

nisms to ensure architectural reconfiguration capa-

bilities that make an application able to dynamically

switch between configurations. We will extend it to

make it suitable for the specific constraints of AAL

systems.

This work is part of the SIGAAL project [26, 27],

which aims at reducing loneliness among elderly

people, by providing services that allow, for low

cost, maintaining or even strengthen social links

and detecting emerging vulnerabilities of the el-

derly.

The paper is organized as follows. The next sec-

tion analyses the specific needs of adaptation in

AAL systems for elderly people through some ex-

amples, and introduces the formal basic fonctionali-

ties that should be implemented to build an adaptive

software. The third section presents the background

used for our solution, which is the generic concept

of adaptive medium, and its underlying design pro-

cess which is based on Model Driven Engineering

techniques. The fourth section studies how to ex-

tend that method to make it applicable to the spe-

cific needs of AAL systems, especially by introduc-

ing heterogeneity concepts. Finally, sections five

and six positions our work in the research results

concerning AAL and adaptation, and discusses fu-

ture work, respectively.

2 Adaptation of AAL systems for the el-

derly

Ambient Assisted Living systems denotes the use

of computing technologies to improve the being of

users. The services provided by indoor AAL sys-

tems can be classified in three subdomains [18] :

• Emergency treatment services aims at predict-

ing, detecting and/or preventing unsafe situa-

tions by propagating alerts in emergency situ-

ations (e.g., sudden falls, heart attacks).

• Autonomy enhancement services aim at pro-

viding tools to postpone the need of assistance

by health caregivers or relatives (e.g., a cook-

ing assistance system).

• Comfort services are services that greatly en-

hance the quality of life (e.g., logistic services,

infotainment services, or services to maintain

or create social links).

We claim that AAL systems for the elderly must

be adapted to fit each situation as each elderly has

specific needs, and each deployment has also strong

specificities. Each elderly has specific :

• Diseases: an application will neither provide

the same services nor behave the same if the

system is deployed for a visually impaired per-

son or for a person with muscular problems:

the visually impaired person must have an in-

terface with specific fonts, colors contrast, or

even a vocalization of the provided services,

and the second one must have services with

specific simplified control interfaces. The ca-

pabilities of each individual must also be taken

into account.

• Acceptability: to be efficient, the system has

to be perceived positively by the elderly people

and by the circle of persons in charge of them

(relatives, medical staff...). The acceptability

of such a system has to be taken into account.

For some people, having a camera analyzing

their moves and position is inappropriate due

to privacy issues, even for a very useful ser-

vice. For others that option is not problematic.

Therefore, the AAL system must be customiz-

able depending of the acceptability.

• Habits: the application should dynamically

adapt to the habits of the elderly by providing

tailored services.

• Needs depending on the time: some services

must be adapted to the evolution of the elderly

needs over time, e.g., between night and day,

winter and summer, or in the case of a progres-

sive disease such as Alzheimer.

Moreover, each deployment has also specifici-

ties:

• Target platforms: to avoid being bounded

by a specific platform (e.g., a specific set-top

box1), the application should be runnable on

different target platforms.

• Home configuration: number of rooms, net-

work configuration, layout of the devices...

• Available resources: home automation cap-

tors and actuators, available devices (TV,

tablet PC...), each one having different capa-

bilities in terms of memory, computing capa-

bilities...

• A dynamic environment: the environment is

not static, and available resources may evolve

over time, e.g., by an upgrade or due to a dys-

function.

A combination of each of these specificities leads

to a likely complete customization of the AAL sys-

tem and of its provided services for each deploy-

ment. Considering those constraints, we strongly

believe that such AAL applications must be dis-

tributed, customizable, adaptable, and heteroge-

neous.

The distributed nature of AAL applications is

due to a) the multiplicity of the location of the ac-

cess points (for medical staff, for the elderly, for

the relatives), b) the pervasive nature of such sys-

tems, and c) security reasons : having a single cen-

tral point is not a reasonable solution as there is

a strong need of quality of service, a distribution

and/or replication of the internal parts of the appli-

cation is a common (partial) solution to settle this.

The customizable nature of AAL applications is

due to the fact that a) applications should be able to

run on devices with limited capacity to reduce the

costs; in order to reduce the need of resources, they

must be tailored to each particular device, and b)

each target environment is likely unique so a single

solution would be too specific.

1A set-top box is a programmable hardware connected to a TV

set and managing the display on it.

The adaptive nature of AAL systems is related

to the dynamicity of the environment and the el-

derly needs and habits. The application should be

able to dynamically adapt whether for a short time

scale (e.g., adaptation of the font scale for an elderly

reading news on TV, or an emergency mode) or for

a long time scale (e.g., adaptation of some services

between winter and summer, such as a temperature

monitoring system). Moreover, there is also an in-

herent need of adaptation due to the distributed na-

ture of such an AAL system, and to the need of

balancing between the non-functional requirements

(resource preservation, device availability, network

charge balancing...).

The heterogeneous nature of AAL applications

is related to their distributed nature. As the in-

ternal parts of the applications may run on differ-

ent target platforms (e.g., component-based, aspect-

based, script-based...), the capabilities of each of

them must be taken into account, including the het-

erogeneity of the adaptation mechanisms and capa-

bilities.

3 Homogeneous Adaptive Applications

The specification of a dynamically adaptive appli-

cation must tackle two major difficulties. The first

one is the specification of consistent variants of an

application, considering the common parts and the

variations. As a distributed application is composed

of multiple internal parts that collaborate to provide

a service, the design and distribution of the inter-

nals of variants of such an application is a hard task.

The second one is the specification of the transi-

tions between the variants of the application, lead-

ing to an adaptation plan deduced either by compu-

tation or by specification of transition assets. This is

also a hard task as each transition comprises multi-

ple changing tasks that could be either architectural,

configurational, and/or parametrical. Moreover, the

data and the state of the application have to be trans-

ferred to the new variant. During an adaptation in a

distributed application, those actions will also have

to be distributed and coordinated.

To build such an adaptive application, Phung-

Khac et al. propose a methodology that allows the

adaptation of a distributed application [21]. It is

based on a development process by Kaboré et al.

which allows the specification of multiple variants

of a distributed software [16]. It provides a frame-

work where the software is produced by applying a

set of successive refinements based on a MDA de-

sign approach [19]. We believe that the medium ap-

proach is a suitable solution to deal with the AAL

systems specificities.

3.1 The medium approach

The medium approach as originally described by

Cariou in [8] is defined by:

• Fixed provided services. The border of the

logical medium specifies its roles, which are

the points of interaction with its outside and

that define the functional properties of the

medium.

• A distributed architecture for the implemen-

tation. As the logical medium should allow

distributed collaborations among roles, its in-

ternals are implemented as a set of distributed

parts, called managers. Managers collabo-

rate to provide the services specified by the

roles. However, despite being distributed, the

medium is considered as a whole: the distri-

bution of its internals is considered as non-

functional.

• A design method a) where the communica-

tion is not specified as a functional require-

ment, and b) consisting in a set of refinements

applied successively, where each refinement

considers a particular design concern. Consid-

ered design concerns includes the specification

of the architecture and of the distribution of the

resources, such as algorithms, data types, data

management strategies...

The final application will be the interconnection

of the managers that implement the logical medium

services and a set of clients software components

that use the roles provided by the logical medium.

To illustrate this concept, we consider an applica-

tion that provides local news for the elderly people.

The news are provided in a raw textual format by

a local news provider, and the elderly can access

them, e.g., via an application running on a set-top

box. In that case, the logical medium consists of

two roles: the first one is the role for accessing the

news, the second one is the role for providing them

logical medium

access news provide news

1*

Logical

aggregation

 of physical

medium parts

set top box (a)

set top box (b)

local news provider

managers

(a)

(b)

refinement

Figure 1: Overview of the design process of a medium (a)

a logical medium (b) a refined medium

(fig.1.a). The refinement process is applied to the

logical medium until it is fully specified (fig. 1.b).

3.2 A design method to specify variants

Kaboré et al. in [16] has automated the design

method, using model transformations in a Model-

driven architecture (MDA) software design ap-

proach [19]. Running successive model transforma-

tions refines the logical medium, resulting in an im-

plementation variant. Applying the process several

times leads to the design of multiple implementa-

tion variants.

The development process of a medium is defined

by three successive steps, that must respectively be

realized by an expert, a solution designer, and an

application designer.

• The expert defines a framework composed of

a set of metamodels (fig.2). The first one de-

scribes the logical medium. Then, each suc-

cessive metamodel differs from the previous

one by the incorporation of a solution for a

specific concern. The expert also defines the

transitions (e.g., via a model transformation

language like Kermeta [11]) and the solutions

metamodels.

• A solution designer designs sets of solution

models conforming with the solution meta-

models provided by the expert. Each solution

model is stored in a solution repository.

M Medium

T1

MM
Medium

MM
Solution for
concern 1

M Solution
1 for C1

M Medium
with C1

T2

MM
Medium
with C1

MM
Solution for
concern 2

M Solution
1 for C2

M Medium
with

C1&C2

MM
Medium

with
C1&C2

M Solution
2 for C1

M Solution
2 for C2

M Solution
3 for C1

(...)

conforms with

MM A a metamodel

T1 a transformation
in out

M A a model

integration of concern 1

integration of concern 2

XOR

XOR

XOR

Figure 2: Overview of the refinement process.

• Finally, an application designer uses the pro-

cess designed by the expert, and resolves each

concern by choosing a solution from the solu-

tion repository. He can also specify multiple

alternative solutions for each concern, leading

to a specification of multiple implementation

variants for a single logical medium, where all

variants share the same functional definition.

For more details about the design method, the

reader can refer to [21].

3.3 Example

Let’s reconsider the previous example about the lo-

cal news provider. We want to build another ver-

sion of that medium, that would allow the reading

of articles by an avatar instead of a textual presen-

tation. Vocalization is a specialized process that in

this case cannot be computed neither by the news

provider nor by the news reader due to a lack of re-

sources: it has to be computed by a third element

in the distributed application. Also, the vocaliza-

tion result is a heavy file and the storage capabil-

ities of the news provider and the news reader are

inadequate for such files. Considering that the net-

work bandwidth is enough, using a centralized data-

storage can be a solution to preserve storage capac-

ities of the news provider and the news reader, and

0

1

7

2

Functional definition

Introducing
managers

Introducing data
storage strategies

centralized

publish / subscribeIntroducing presen-
tation strategies

3 4

textual audio

Introducing voca-
lization strategies

8

on demand

9

systematic

Introducing data
access strategies

5

replicated

6

centralized

A B C D

implementation variants

Figure 3: The decision tree for the local news provider

example.

to preserve storage waste due to multiple copies of

the same file. Moreover, the vocalization operation

could be made using two distinct strategies: on de-

mand or systematically. The first one vocalizes text-

based news just-in-time when an audio-version is

requested by a news reader, and is then stored on

the data-storage. On the latter, the text-based news

are vocalized systematically when provided by the

news provider. Both versions have distinct proper-

ties: the "on demand" one suits a situation where

only a few articles are accessed in a vocalized for-

mat, the "systematic" one fits better if the ratio vo-

calized/unvocalized grows.

Those modifications imply substantials architec-

tural changes to the text-based news system. The

latter may easily be implemented with the data be-

ing copied from the publisher to the client using a

simple publish / subscribe pattern [13]. With the

introduction of the vocalization, the architecture of

the distributed application is subject to substantial

changes as it gets more elaborate. Using the design

method of the medium approach, it is possible to

design those multiple variants of the application.

The decision tree represents the decisions made

by the application designer to specify the variants

of the logical medium. As presented on figure 3,

five concerns have been identified for our example,

leading to four variants. The input in the process is

a functional definition that specifies the two roles:

"access news" and "provide news" (0). The first

concern is the manager introduction, which intro-

duces the distributed nature of the software: each

role is associated with a manager (1). This is a

generic step for every application using the medium

approach. Then, a single data access strategy is

introduced, a publish/subscribe mechanism where

the "access news" role manager queries the medium

internals for the data (2). The next concern intro-

duces two data presentation strategies: textual for

text-based news (3), and audio for vocalized news

(4). In that step, the data formats are being defined.

Then, the data storage strategy is introduced. In one

case, the data is copied from the provider by the

reader (5); in another case, the data is centralized in

a specified point, accessed by the readers and fed by

the provider (6,7). Finally, the vocalization strate-

gies are introduced (8,9).

That process leads to the definition of four vari-

ants of the logical medium (fig. 4). Variants A

and B are text-based, variant C and D are audio

based. On variant A, the text data are provided by

the provider to the reader, and the client keeps a

copy in a local storage. On variant B, the only data

storage is a centralized point on the software. Vari-

ants C and D introduce the vocalization manager,

which is in charge of vocalizing submitted text. On

variant C, the data is vocalized "on demand" upon

request of the data storage, whereas on variant D it

is done "systematically" upon request of the news

provider.

3.4 Introduction of the adaptation mechanisms

Phung-Khac et al., in [21], extend this design

method by adding adaptation mechanisms in a step

called composition. The composition merges all the

variants and introduces an adaptation framework,

DYNACO [4], in the software (fig. 5). The in-

troduction of the adaptation mechanisms allows the

dynamic reconfiguration of the application.

The adaptation mechanisms are based on a map-

ping of the steps of the development process, rep-

resented by the decision tree defined by the ap-

NR NP

DS

NR NP

DS

VS

NR NP

DS

VS

NR

NP DS

VSNews Reader manager Vocalisation Service manager

News Provider manager Data Storage manager

Variant A

Variant B

Variant C Variant D

NR NP

DS DS

Figure 4: The resulting variants.

plication designer, in a component based architec-

ture during a step named modularization. Using

a component architecture allows manipulations on

the components, such as component control actions

(start, stop), component addition and removal ac-

tions (creation, removal, binding, and unbinding),

and state and data transfer actions (extract, inject).

The adaptation plan for adapting from the replaced

to the replacement variant is deduced from the deci-

sion tree, and consists in a set of those actions. The

data (and state) transfer actions are modeled using a

data transfer model. The model is introduced by the

application designer once all the variants are gen-

erated. The actions includes reading the state and

writing it to the new variant.

Let’s extend the previous example. The system

includes a mechanism that can detect whether an

elderly takes a too long average time to read the ar-

ticles that are provided. In this case, the applica-

tion is able to self-reconfigure from the text-based

version to the vocalized-based version. Also, an-

other detection mechanism triggers the reconfigura-

tion from the "on demand" version to the "system-

atic" version, when the ratio of vocalized articles

reaches a predefined number2.

4 Improvements of the medium develop-

ment process to fit better AAL systems

The medium approach is generic, and we plan to in-

troduce new features that will make it fit better for

distributed AAL systems. We identified the follow-

2We voluntarily don’t consider whether the triggering of the

adaptation is manual or automatic, as it is out of scope of this work

*1 1 1

Variant 1

*1 1 11 1
...

Variant n

1 1

Manager

Composition
Implementation of
the adapt-manager

1 1 1 1 1*

Adapt-Manager

Adaptive software

Figure 5: The composition process.

ing limits and potential improvements related to the

design method :

Management of heterogeneous target environ-

ments. The use of a PIM (Platform Independent

Model) in the MDA design method leads to an ab-

straction of the target platform. It should be possi-

ble to specify a new variability by introducing dif-

ferent target platforms from this abstraction, leading

to an heterogeneous system. In the context of the

AAL system considered in the examples, it should

be possible to "move" the reader role from a set-

top box to another device such as a hand-held tablet

computer, and to transfer data and state between

them.

Extending the adaptation beyond the software

architecture. The distribution of the medium in-

ternals introduces of a notion of cardinality among

the components of the assembly. The distinction

of "components assembly" and "models of compo-

nents assemblies" imposes cardinalities in the lat-

ter. A "components assembly" consists in the repre-

sentation of instances of components and their rela-

tions, whereas a "model of components assemblies"

are made up of representations of classes of compo-

nents with cardinalities.

Considering an adaptive application built on

models of component assembly instead of compo-

nents assembly, it is possible to infer new adap-

tation possibilities, e.g., to have two variants run-

ning simultaneously, by "merging" two models of

component assemblies. That can raise interesting

properties such as the manageability of disconnec-

tions of some instances during an adaptation, and

challenges such as the definition of mechanisms to

switch back to an homogeneous architecture.

Abstraction of the adaptation mechanism. The

use of an adaptation mechanism based on compo-

nents has consequences on the nature of the trans-

formations during the design process. As the target

platforms will became heterogeneous, the adapta-

tion mechanism must take into account the adapta-

tion capabilities of those target platforms, that can

differ from component based platforms which rely

on reconfiguration of component assemblies: dy-

namic weaving of aspects, hot updating of code,

mobile software agents or even lower level ones

such as a basic firmware updates. We plan to pro-

vide a model that will be able to handle heteroge-

neous target platforms by using a refineable abstrac-

tion of the adaptation mechanism and of the depen-

dancies on the design process.

A better specification of the state transfer Us-

ing the current process, the specification of the

transfer of the state and the data from the replaced

to the replacement variant during an adaptation is

done by an extraction/injection mechanism of data

that conforms to a state transfer model. However,

some data adaptations are impossible, and that sit-

uation is neither explicitly nor implicitly handled.

E.g., a variant stores some data using just a foot-

print of the data computed by a one-way-function.

A common example is the use of a sha1 footprint

to store passwords. In this case, it is by definition

impossible to retrieve the original abstracted data

from the replaced variant (aka retrieve the original

passwords) in order to reinject it to the new version.

Those cases have to be tackled using a specific data

transfer method that must be explicitly refineable

during the design method, to manage the necessary

data transformations and the specification of spe-

cific behaviors for the cases where the transformed

data is incomplete (e.g. to retrieve it for somewhere

else).

5 Related work

There are lots of works in the domain of extend-

ing the information society by providing services

for the elderly people. However, few of them con-

sider customization or adaptation of the provided

services.

In the context of the BelAmI project [5], Schnei-

der and Becker study solutions for adaptive com-

ponent based applications in the domain of AAL

systems [24]. Their solution aims at resolving

five adaptation scenarios: local adaptation, remote

adaptation, conflict negotiation, set point adapta-

tion, and manual adjustment. They define a compo-

nent architecture involving a Configurator, a Con-

textManager and an AdaptationManager, respec-

tively to specify configurable components, to get

information from the context, and to plan adapta-

tion actions. Also in the BelAmI project, Anasta-

sopoulos et al. propose a service oriented middle-

ware for service reconfiguration and dynamic in-

tegration: DoAmI (Domain-Specific Ambient In-

telligence middleware platform) [1]. Their solu-

tion is based on component assemblies, where each

component has different configurations (versions).

However, in both cases, the adaptation is limited to

a reconfiguration of the components or of their lay-

out.

The approach used by Cetina et al. in [9] is simi-

lar to ours. They design self-adaptive pervasive sys-

tems, with an application for smart homes, as SPL

(Software Product Lines) using MDA techniques.

The system resources are modeled in a PervML

model (Services, resources as Binding Providers,

communication channels as Interactions, Triggers),

and a specific feature model describes the function-

alities to support each user intentions. Then, a real-

ization model establishes relations between the Per-

vML model and the feature Model, to describe how

goals could be realized. Those models, described as

"Scope, Commonality, and Variability" models, are

transformed by model transformations to generate a

pervasive system. A variability model is also gener-

ated, for being used by an Autonomic Reconfigura-

tion Component in charge of reconfiguring the ap-

plication, in order to adapt to the addition/removal

of goals (services) and resources. This approach

is an interesting view of the problem, however the

variability is limited to services and resources. Our

approach aims at defining a more general variabil-

ity.

The context of home automation is rich of in-

teresting approaches in adaptive pervasive systems,

and some of those concepts could be reused in the

context of AAL systems. Hamaoui et al. pro-

pose an original solution for the adaptation of a

pervasive system to its environment [15] based on

a combined use of agents and components. The

application is able to react to the environment, in-

cluding the application structure, to provide tailored

services and to generate an adapted GUI. Cheung-

Foo-Wo proposes the concept of aspects of as-

sembly and a domain specific language to specify

them, ISL4Wcomp [10]. Aspects of assembly ex-

press the scenarios of the application, and allows

the generation of components and their assemblies.

This demonstrate that the combined use of multiple

adaptation paradigms could lead to powerful adap-

tive systems.

Some other works address specifically the hetero-

geneity problem. Dufrene et al. proposes an ADL

as a solution for distributed heterogeneous compo-

nents architectures [12]. Bottaro et al. provides a

methodology to facilitate the composition of ser-

vices offered by electronic devices in a pervasive

environment [3]. His solution, HomeSOA, uses an

OSGi extension, the refined driver, to resolve the

protocols heterogeneity, and the environment dy-

namicity. Nain et al. proposes an application of

the schizophrenic middleware to resolve the proto-

col heterogeneity [17]. However, the heterogeneity

considered in those works does not include the re-

configuration capabilities.

In MADAM [14] and its follow-up project called

MUSIC [23], the authors proposed an approach

for developing adaptive software. The approach

is based on 1) an adaptation conceptual model de-

scribing elements concerning adaptation and 2) an

application reference architecture allowing to spec-

ify applications as composition plans of compo-

nents. In the approach, the development of a soft-

ware system can be realized by using SPL tech-

niques that enable to identify different variation

points. Each point indicates several component

variants of a composition plan’s component type.

The developed software system is then executed and

controlled by the MADAM/MUSIC framework that

allows to reconfigure the system at runtime by se-

lecting running component variant. By the compo-

sition plans, the approach supports a large class of

adaptive software. However, the correctness of the

software depends on developers. Moreover, compo-

nent variants, that are provided by developers, must

implement reconfiguration interfaces that allow to

transfer their states during adaptations. This com-

plex task requires much efforts of the developers.

In ADAM [22], Pessemier et al. presented an ap-

proach to support evolution (and adaptation) of soft-

ware systems using components and aspects. Im-

plementation of an aspect is modularized and rep-

resented as an aspect component that can be con-

nected to traditional components through aspect

bindings. These concepts are supported by a com-

ponent platform called Fractal Aspect Component

(FAC). Thanks to facilities provided by the plat-

form, software systems’ evolution can be realized

by modifying components, including aspect ones.

While this approach focuses on merging the compo-

nent and the aspect approaches in order to support

adaptation, our approach takes into account the in-

herent heterogeneity of the architecture (some inter-

nal parts may be based on aspects, others on compo-

nents) from the abstraction level (logical medium)

to implementation level.

6 Conclusion

The main contribution of this article is the use of

a specific design method, based on the concept of

mediums, to specify an adaptive architecture for

AAL systems, and the identification of the poten-

tial improvements that can be done to this process

in order to make it more fitted to that specific do-

main.

We plan to extend and refine the design method

to enable some of those identified potential im-

provements, especially by refining and extending

the modeling of transformations. The final goal is

to specify an advanced software design methodol-

ogy for adaptive heterogeneous AAL systems, and

to use it to develop a prototype adaptive application.

We plan to test and validate our design method-

ology for adaptive applications in the Experi-

ment’AAL laboratory, which is a recreated flat for

elderly deployed at Télécom Bretagne by the SID

team (Innovative Services for Dependent people).

It is fully equipped with devices and captors.

7 Acknowledgement

The authors would like to thank the Direction

Générale des Entreprises for their funding, and the

members of the SIGAAL project [26].

References

[1] M. Anastasopoulos, H. Klus, J. Koch, D.

Niebuhr, E. Werkman, "DoAmI - A Middle-

ware Platform facilitating (Re-) configuration

in Ubiquitous Systems," System Support for

Ubiquitous Computing Workshop. 8th Annual

Conference on Ubiquitous Computing (Ubi-

comp’06), 2006.

[2] A. Borsch-Supan, H. Jürges, "The survey of

health, ageing and retirement in europe -

methodology.," Technical report, Mannheim

Research Institute for the Economics of Ag-

ing, 2005.

[3] A. Bottaro, A. Gérodolle, "Home SOA : Fac-

ing Protocol Heterogeneity in pervasive Ap-

plications," Proceedings of the 5th interna-

tional conference on Pervasive services, 2008,

pp. 73-80.

[4] J. Buisson, "Adaptation dynamique de pro-

grammes et composants parallèles," PhD the-

sis, INSA de Rennes, IRISA, 2006.

[5] The BelAmI project, http://www.belami-

project.org/, last visited on April 2010.

[6] N. Bencomo, P. Sawyer, G. Blair, and P.

Grace, "Dynamically Adaptive Systems are

Product Lines too : Using Model-Driven

Techniques to Capture Dynamic Variability of

Adaptive Systems," 2nd International Work-

shop on Dynamic Software Product Lines,

Limerick, Ireland, 2008.

[7] N. Bencomo, P. Grace, C. Flores, D. Hughes,

and G. Blair, "Genie: Supporting the model

driven development of reflective, component-

based adaptive systems," ICSE 2008 - Re-

search Demonstrations Track, 2008.

[8] E. Cariou, A. Beugnard, and J. Jézéquel, "An

architecture and a process for implementing

distributed collaborations," International En-

terprise Distributed Object Computing, pp.

132-143, 2002.

[9] C. Cetina, J. Fons, V. Pelechano, "Applying

Software Product Lines to Build Autonomic

Pervasive Systems," 12th International Soft-

ware Product Line Conference, pp. 117–126,

2008.

[10] D. Cheung-Foo-Wo, "Adaptation dynamique

par tissage d’aspects d’assemblage," p. 222,

2009.

[11] Z. Drey, C. Faucher, F. Fleurey, V. Mahé, D.

Vojtisek, "Kermeta language reference man-

ual," 2006.

[12] G. Dufrène, L. Seinturier, "Un ADL pour

les Architectures Distribuées Composants

Hétérogènes," 2ème Conférence Francophone

sur les Architectures Logicielles, Montréal,

Canada, 2008.

[13] P.T. Eugster, P.A. Felber, R. Guerraoui,

A. Kermarrec, "The many faces of pub-

lish/subscribe," ACM Computing Surveys,

vol. 35, pp. 114-131, 2003.

[14] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen,

K. Lund, E. Gjorven, "Using Architecture

Models for Runtime Adaptability," IEEE Soft-

ware, vol. 23, pp. 62–70, 2006.

[15] F. Hamoui, M. Huchard, C. Urtado, S. Vaut-

tier, "Specification of a Component-based Do-

motic System to Support User-Defined Scenar-

ios," Proc. of 21st Int. Conf. SEKE, Boston,

MA, USA, pp. 597ï¿ 1

2
602, 2009.

[16] E. Kaboré, A. Beugnard, "Implementing a

Data Distribution Variant with a Metamodel,

Some Models and a Transformation," In

Procs. 8th IFIP DAIS, Oslo, Norway, 2008.

[17] G. Nain, E. Daubert, O. Barais, J. Jézéquel,

"Using MDE to build a schizophrenic middle-

ware for home/building automation," In Ser-

viceWave 08 : NESSI Conference, Madrid,

Spain : Springer, 2008, p. 61.

[18] J. Nehmer, A. Karshmer, M. Becker, and R.

Lamm, "Living Assistance Systems - An Am-

bient Intelligence Approach -," International

Conference on Software Engineering, 2006.

[19] Model Driven Architecture,

http://www.omg.org/mda, Object Man-

agement Group, last visited on March 2010.

[20] Observatoire des Retraites, "Face à

l’Octoboom, quels Accompagnements ?",

La lettre de l’observatoire des retraites,

number 15, December 2007.

[21] A. Phung-Khac, A. Beugnard, J.M. Gilliot,

M.T. Segarra. "Model Driven Development of

Component based Adaptive Distributed Appli-

cations," In Procs. 23rd Annual ACM SAC,

Fortaleza, Bresil, 2008.

[22] N. Pessemier, L. Seinturier, L. Duchien, T.

Coupaye, "A Component-based and Aspect-

Oriented Model for Software Evolution," Int.

Journal of Computer Applications in Technol-

ogy, vol. 31, pp. 94–105, 2008.

[23] R. Rouvoy, F. Eliassen, J. Floch, S. Hallstein-

sen, E. Stav, "Composing components and ser-

vices using a planning-based adaptation mid-

dleware," Lecture Notes in Computer Science,

vol. 4954, pp. 52-67, 2008.

[24] D. Schneider, M. Becker, "Runtime Models for

Self-Adaptation in the Ambient Assisted Liv-

ing Domain," 2008.

[25] G. Sundstrom, E. Fransson, B. Malmberg, A.

Davey, "Loneliness among older Europeans,"

European Journal of Ageing, vol. 6, pp. 267-

275, 2009.

[26] Special Interest Group on Ambient Assisted

Living, http://www.sigaal.org, last visited on

April 2010.

[27] A. Thépaut, M. Segarra, C. Lohr, P. Chapon,

"Adaptation and customization of services for

the elderly," International Society for Geron-

technology, 7th World Conference, Vancou-

ver, Canada, 2010.

[28] J. Gaymu, P. Ekamper, G. Beets, "Qui prendra

en charge les Européens âgés dépendants en

2030 ?," Population 62, vol. 4, pp. 789-822,

2007.

