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Abstract—The routing in communication networks is typically
a multicriteria decision making (MCDM) problem. However,
setting the parameters of most used MCDM methods to fit
the preferences of a decision maker is often a difficult task.
A Russian doll method able to choose the best multicriteria
solution according to a context defined beforehand is proposed.
This context is given by a set of nested boxes in the criteria space,
the shapes of which can be established from objective facts such
as technical standards, technical specifications, etc. This kind
of method is well suited for self-adaptive systems because it is
designed to be able to give pertinent results without interaction
with a decision maker, whatever the Pareto front.

The Russian doll multicriteria decision method is used with a
reinforcement learning to optimize the routing in a mobile ad-hoc
network. The results on a case study show that the routing can
be finely controlled because of the possibility to include as much
parameters as desired to adjust the search of the best solution on
Pareto fronts a priori unknown. These results are clearly better
than those obtained with the optimization of a weighted sum or
the minimization of a Chebyshev distance to a reference point.

I. INTRODUCTION

A. Background on Routing Protocols for Mobile Ad-Hoc Net-

works

Mobile ad hoc networks (MANETs) are self adaptive

telecommunication networks formed by several wireless nodes

that attempt to build an efficient topology in order to commu-

nicate. The aim of the routing task is to find a path between

a source node and a destination node. As the transmission

range of the nodes is limited, the path often uses successive

forwarding nodes called hops. The routing should optimize

Quality of Service (QoS) parameters like hop count, delay

or bitrates. In addition, the mobility of nodes causes frequent

changes of the network topology, thus the routing mechanism

must be able to modify paths in order to adapt to changes.

Many works have been published on the field of routing in

MANET [1].

The most often, the protocols described in [1] deal with

a single performance parameter namely hop count. Neverthe-

less, many applications like video and voice require different

performance parameters; therefore a new range of protocols is

needed.

Recently, some protocols based on reinforcement learning

methods [2] have emerged in order to deal with QoS opti-

mization in MANET. These protocols are either based on Q-

learning [3] like LQ-Routing [4], or on “Ant Colony Opti-

mization”, which is a special case of reinforcement learning

[5].

B. Routing as a Multi-criteria decision problem

The performance based routing problem is typically a multi-

criteria decision making problem (MCDM). It should be

solved in such a way that several QoS criteria are taken

into account simultaneously. However, these criteria are often

contradictory. Moreover, the importance given to the different

criteria depends on the requirements of the applications using

the network. For example, a telephony application could accept

quite high error rates, but the maximum transmission delay

should be of the order of 0.1 second. On the contrary, a file

transfer application will be efficient if the error rate is low,

while the delay could be quite high, of the order of several

seconds.

C. Related works

Especially for wireless networks, the task of selecting

among many candidates the multicriteria solution fitting at

best the preferences of a decision maker is discussed in many

research works. Common approaches use parametric prefer-

ence functions where the parameters, designated as “weights”,

have to be adjusted to express the relative importance given to

each criterion. Often these approaches transform the MCDM

problem into a single-objective optimization problem. How-

ever, it is difficult to determinate good values for the weights

according to the preferences of the decision maker, especially

when criteria are incommensurable. Thus, in [10], the authors

minimize a weighted sum in order to optimize the delay and

the distance from a source node to a destination node, to

deal with the issue of greedy-forwarding mechanism in ad

hoc networks. The values of the two weights are fixed using

multiple simulation scenarios. In [9] the authors formulate the

routing task in a mobile ad hoc network as a MCDM problem

that they solve by the weighted sum method. However, no

idea is suggested for the setting of the weight values. The

authors study the sensitivity of the optimization process results

according to these weights. They claim that a good estimation



of the weight values is very important to obtain a good

efficiency and depend only on the application classes. In

[11], the authors consider the network selection problem as

a MCDM problem. The aim is to optimize two contradictory

objectives namely cost (price) and transmission time when

a set of components (data, video, voice, etc.) is transmitted

through different network connections. The problem is solved

by minimizing the weighted Chebyshev distance between the

solution and a reference point. Again, the authors state that the

weight values have to be chosen by the user himself. However

they argue that the proposed method is not very sensitive to

them thanks to their choice of a specific reference point.

In [8], the authors solve the problem of multicast routing

with a multi objective genetic algorithm (MOGA) [6], which

tries to approximate the set of non-dominated solutions. The

aim is to construct a multicast tree that optimizes several

objectives like delay and bandwidth. The choice of the best so-

lution among the set of non-dominated solutions is performed

by a decision maker according to the requirement of the

application. [7] use a reference solution given by the decision

maker to guide the search process of the best multicriteria

solutions during the selection step of a MOGA. But, an

adequate choice of the reference point is strongly dependent

on the optima locations, which are a priori unknown.

D. Multicriteria routing for autonomous networks

Our work is in the line of autonomic networks [12], which

have a self-adaptive capacity. Such networks should be able to

learn from their environment, to configure themselves and they

should take intelligent decisions without external help. In this

context, it is unacceptable that human decision makers help

the network to choose best multicriteria routing decisions.

However, the standard MCDM approaches based on para-

metric preference functions need an a priori knowledge of

the location of optima to give pertinent results. But, this

knowledge is a priori not available. When results are dis-

appointing, interactions with a decision maker are required

for choosing new parameters. For this reason, we think that

standard MCDM approaches are quite adequate for human

machine interactions, but not for autonomous systems. In the

frame of self-adaptive machines, a more suitable way could

be to consider multicriteria decision problems in terms of

homeostasis. With this point of view, the importance of criteria

changes according to their value in order to regulate them.

Section II presents a Russian doll method to implement

multicriteria decision making. Section III shows how the

Russian doll method is used by a reinforcement learning

method able to optimize routing in a mobile ad-hoc network.

Section IV describes a case study involving an ad-hoc network

of boats. Results of experiments are then given and discussed.

II. A MULTICRITERIA DECISION MAKING METHOD FOR

AUTONOMOUS SYSTEMS

A. Pareto dominance

The criteria are represented by vectors defined in a criteria

space C ⊂ Rm, for which each coordinate should be mini-

mized. A vector of criteria F(x) is associated with each vector

x in search space Ω ⊂ Rn.

The Pareto dominance is defined as follows: Let a =
(a1, ..., am) and b = (b1, ..., bm) be criteria vectors, a domi-

nates b if and only if

∀i ∈ [1,m], ai ≤ bi and ∃j ∈ [1,m] such that aj < bj

Let F(x) = (f1(x), ..., fm(x)) be the objective functions of

the multi-criteria optimization problem. The resolution of this

problem consists in finding the Pareto optimal set of vectors

X∗ such that each criteria vector z = F(x) with x ∈ X∗

is non dominated. The Pareto front F is defined as the set

F = {F(x),∀x ∈ X∗}.

Multi-criteria decision consists in choosing a Pareto optimal

point that is recognized as the best choice by a decision maker.

B. Decision making by autonomous systems

We propose in this paper a MCDM approach suitable for

autonomous systems where the parameters of the multicriteria

decision are directly deduced from the requirements we want

to reach. Typically, this kind of information could come

from technical standards, technical specifications of system

components or experiments.

For example, for a high quality Voice over IP (VoIP)

application, the delay d should be lower than 0.1 s and the

bit error rate BER should be lower than 10−6. The problem

is finding routes maximizing the QoS. Table I gives as an

example a series of thresholds associated to different levels of

quality.

TABLE I
DIFFERENT LEVELS OF QUALITY FOR A VOIP APPLICATION

Delay d BER

High quality [0, 0.1) [0, 10−6)

Degraded quality [0.1, 0.5) [10−6, 10−4)

Unacceptable ≥ 0.5 ≥ 10−4

Figure 1 can be used to illustrate an example of Pareto front

in the criteria space generated by the BER (in abscissa) and

the delay. Please note that this figure is only given to support

explanations and does not come from experiments. Box 0 is

defined as the whole criteria domain. According to Table I, box

2 contains high quality VoIP communications criteria vectors

while vectors of box 1 that are not in box 2 are associated to

degraded communications. Criteria vectors of box 0 but not in

box 1 are in the “unacceptable” domain.

Figure 1 shows that box 2 does not contain any solution of

Pareto front F . So there are only “degraded quality” solutions

at best for this Pareto front. The best solution chosen is the

closest to box 2 (high quality domain box) according to a

distance to define.

This example has given an idea about the working of the

proposed MCDM algorithm. It is described in details in the

following.
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Fig. 1. Choice of a non dominated criteria vector with the help of nested
boxes

C. Russian doll decision making method

Without loss of generality, we consider the case of a

minimization problem for all the criteria. A box is defined by

the Cartesian product of m intervals [li, ui] with i ∈ [1,m].
A set of k + 1 boxes Bj =

∏

[li0, uij ] indexed from 0 to

k must be defined in the criteria space in such a way that

any box, except box 0, is nested in another box like Russian

dolls. Box 0 is the whole criteria domain. The parameters of a

box are given by bounding values or threshold values for each

criterion. The lower bounds li0 of boxes are the lower bounds

of the whole criteria domain.The required number of boxes and

their shapes are specification-dependent. Many nested boxes

allow the system designer to accurately control the choice of

a solution on the Pareto front.

In the following, we need to define a distance between

vectors and boxes. We propose to use the weighted Chebyshev

distance d∞
w

to ensure that any point of the Pareto front could

be reached [13] by defining appropriate shapes for boxes. Let

a and b be two vectors of Rm.

d∞
w

(a,b) = max
i∈[1,m]

wi|ai − bi| with wi ≥ 0

Now, we define the normalized Chebyshev distance between

a criteria vector x ∈ Bj−1 and box Bj as follows:

d∞(x) = max
i∈[1,m]

δij , with δij =











0 if xi ∈ [lij , uij ]
0 if uij = uij−1

xi − uij

uij−1 − uij

otherwise

In this way, every point on the upper borders uij−1 of a box

Bj−1 is at the same distance from the nested box Bj except

if uij = uij−1.

Let u and v be two criteria vectors to compare. B(u) and

B(v) are defined as the smallest boxes containing vectors u

and v respectively. Let d∞(u) be the Chebyshev distance

between u and the largest box contained in B(u). If u is

contained by the smallest box Bk, d(u) is not defined.

• Let i(B) be the index of box B. If i(B(u)) > i(B(v)),
then u is said “better than” v.

• If B(u) = B(v) and i(B(u)) 6= k and d∞(u) < d∞(v),
then u is said “better than” v.

• If B(u) = B(v) and i(B(u)) 6= k and d∞(u) = d∞(v)
and u dominates v, then u is said “better than” v.

• In the other cases, u and v are said “indifferent”.

By applying these simple rules, it is easy to show that

the relation “is better than or indifferent to” is reflexive and

transitive. However, this relation is not antisymmetric because

of the “indifferent” rule and it is not symmetric because of the

“better than” rules. Moreover, this relation is total: all couples

of criteria vectors can be compared.

The Russian doll decision making method is implemented

by comparing couples of criteria vectors with the comparison

rules described above. The best criteria vector is the one that is

the closest of the largest box that does not contain any criteria

vector.

III. MULTI-CRITERIA REINFORCEMENT LEARNING FOR

ROUTING IN AD-HOC NETWORKS

A. Choosing the best routes according to the returns of the

environment

For each class of application (VoIP, FTP, video streaming,

etc.), there is a specific routing policy fitting at best the

requirements for each of them. The criteria evaluation for a

packet is made when it reaches its destination.

Let a, s, d and n respectively stand for “application class”,

“source node”, “destination node” and “neighbor node”. A

router r has to choose a neighbor n* according to a and d

such that the criteria vector evaluated on the destination node

d satisfies at best the QoS requirements according to a. The

criteria vectors are seen as realizations of a random vector C.

It is assumed that each router r, keeps in memory expected

criteria vector estimations Q(a, d, r, n) = Ê(C|a, d, r, n).
Note that (a, d) are given by the packet transmitted by router r.

Let n∗ be the best neighbor according to the QoS requirements

for application class a. n∗ is chosen by router r by comparing

the expected criteria vectors Q(a, d, r, n) for every neighbor

n. These multicriteria comparisons are implemented by the

Russian doll method.

B. Discovering routes by reinforcement learning

Reinforcement learning (RL) [2] takes place in the com-

putation of Q(a, d, s, n) only at the source node of a packet

indexed by t according to the following expression:

Qt(a, d, s, n) = Qt−1(a, d, s, n)
+α(ct − Qt−1(a, d, s, n)), if t > 0

Q0(a, d, s, n) = 0 otherwise

where

• criteria vector ct is evaluated for packet number t at its

destination. It is seen as the return of the environment of

router s ;

• α is a constant step-size parameter: α ∈ [0, 1).

Our RL approach has been designed to work well with the

Interleave Division Multiple Access (IDMA) method [14] that

allows several nodes to transmit data simultaneously. However,



the number of simultaneous communications must be as small

as possible. For this reason we have not used a protocol of

the Q-routing family.

Reinforcement learning requires finding a good equilibrium

between exploitation and exploration [2] in order to be able

to converge as quickly as possible towards optimal or near

optimal solutions. Exploitation consists in choosing the action,

i.e. the neighbor of a node, with the best-expected return.

However a learning process with too much exploitation, leads

to sub-optimal solutions. Exploration is required to improve

the quality of the best found solution. Exploration consists in

choosing an action at random, i.e. choosing the neighbor of a

node at random. However, too much exploration results in a

waste of resources and low returns.

It is impossible to have an a priori estimation of the packet

QoS involved in the exploration process. The exploration

packets should then be used only for the computation of the

Qt vectors. When an exploration packet is sent by source s

towards destination d, router s chooses a neighbor randomly.

The other routers of a path choose their best neighbor accord-

ing to their Qt vectors.

IV. EXPERIMENTS

A. The case study

An access method allows several users to share the same

medium, i.e. electromagnetic waves for wireless communi-

cations. The Interleaved Division Multiple Access (IDMA)

method [14] is a new access method similar to CDMA: users

can send the data simultaneously and in the same band. The

separation of the different users is based on the attribution of

different interleavers but the code remains the same. Recent

studies [15] have shown that it is even possible to use the same

interleaver for all the users provided that the communications

are asynchronous. This property is well suitable for MANETs.

However, the greater the number of simultaneous transmitting

nodes in the neighborhood, the lesser the signal to noise ratio

and the greater the error rate. That involves that the quality of

links between nodes is not stable and changes quickly. It is a

challenge for the conception of good routing policies.

The experiments aim to estimate the efficiency of the

Russian doll multicriteria decision method. The case study

involves 20 boats in a rectangular region 100 × 150 km2 that

transmit data towards a terrestrial station located at coordinates

(0, 75km). All the boats use the IDMA method.

During communications, boats are considered as station-

ary because of their low speed compared to distance be-

tween them. However, the features of communication channels

change quickly because of the variability of the signal to noise

ratios.

B. Simulations

The integration of the physical layer on a standard network

simulator involves a high software complexity. There is no

current simulator able to offer this feature. To overcome this

difficulty, we have decided to work with the combination of

two simulators that we have developed: one dedicated for the

physical layer and IDMA access method simulation and the

other for the network layer in charge of the routing tasks.

The source nodes are chosen at random. Node 0, which is the

terrestrial station, is the only destination of data packets.

A time period is a set of 40 successive time slots. For every

time slot, a random number of simultaneous messages from

1 to 5 are sent through the network. A half of the messages

is used to train the routers. The other half is used to provide

performance results.

In the frame of the presented experiments, Qt(a, d, r, n)
is a vector (δt, εt) composed of the expected delay δt and

expected error rate εt at time period t. These values have to

be minimized by choosing adequate neighbors n* for every

router r and destination 0. Four application classes are defined

for these experiments. Class 1 requires minimizing ε only.

Class 2 requires the minimization of δ only. Class 3 requires

simultaneous minimization of δ and ε if δ ≤ 3.5. If δ > 3.5, δ

is minimized only. Class 4 requires simultaneous minimization

of δ and ε if δ ≤ 4.5. If δ > 4.5, δ is minimized only. Two

experiments are performed.

Experiment 1 uses standard MCDM methods. However,

such methods are unable to meet the exact requirements for

application classes 3 and 4. So, they are simplified by dropping

the thresholds 3.5 and 4.5 for classes 3 and 4 respectively.

We differentiate class 3 and 4 by using two MCDM methods

with the same objectives in order to compare them with

the Russian doll method. The MCDM method for class 3

minimizes the weighted Chebyshev distance d∞
w

(x, ρ) between

solution x = (δ, ε) and the reference point ρ = (1, 0) with

weight 0.1 for δ and weight 0.9 for ε:

d∞(x, ρ) = max (0.1(δ − 1), 0.9ε)

The weights have been chosen as normalizing coefficients

since no indication was given about the importance of criteria.

The MCDM method for class 4 minimizes the weighted sum

of δ and ε with the same weights as for class 3.

Experiment 2 uses the Russian doll method. Now, the

specification of classes 3 and 4 can be fully implemented by an

appropriate choice of shapes for the nested boxes. According

to section II, box 0 is defined as the whole criteria domain

defined by the extreme points (0, 0) and (10, 1) where the

first coordinate stands for δ and the second one stands for ε.

The nested boxes for the different application classes are

represented in figure 2. The box upper bounds are given in

table II.

TABLE II
BOX UPPER BOUNDS ACCORDING TO THE APPLICATION CLASSES

Class box 1 box 2

1 (10, 0)

2 (1 , 1)

3 (3.5, 1) (1, 0)

4 (4.5, 1) (1, 0)

In summary, box 1 implements the threshold 3.5 or 4.5 on
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Fig. 2. Nested boxes of the Russian doll method for the four application
classes

δ for classes 3 or 4 respectively. Definition of box 2 allows

the MCDM algorithm to minimize simultaneously δ and ε.

C. Results

Each simulation gives 4 sets of numbers dt(a), st(a), δt(a)
and εt(a) for each application class a, where t is the time

period number:

dt(a): average of measured delays over all packets sent

during time period t for application class a.

st(a): average of success rates, st(a) = 1 − et(a), where

et(a) is the measured error rate.

δt(a): average of Qt(a, 0, s, n∗) first coordinate (expected

delay) at source nodes. For each packet, source node s is

randomly chosen. Its destination is always 0.

εt(a) : average of Qt(a, 0, s, n∗) second coordinate (ex-

pected error rate) at source nodes.

Fig. 3 and 4 give the delays dt(a) and success rates st(a) vs.

time period t, for experiment 2. The figures show that dt(a)
and st(a) are clearly differentiated according to application

class a. Thus, the network is able to configure itself to route

simultaneously data packets according to the specifications of

the different application classes.

In order to show how the learning process adapts the routing

policy following a failure of some nodes, the success rates

and delays for two nodes close to the destination (over 4)

are suddenly and strongly degraded from the 300-th time

period. Figures show that the routes are changed after some

time periods to prevent the routers to choose these nodes.

The network is then able to almost recover its previous

performance.

Figure 5 presents the histograms of the expected delays

estimations δ(a) for the Russian doll decision making. They

are not displayed as bar charts as usual, but as continuous

functions for the sake of readability. The width of each bin is

0.1. The frequency at abscissa x is obtained from the number

of values in interval (x − 0.1, x].
The effect of the boundaries of box 1 of the Russian doll

method are clearly visible on fig. 5 for application classes 3

and 4. Indeed, the difference of frequencies between bins 3.4
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and 3.5 for the application 3 histogram is the greatest among
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consecutive bins, while 3.5 is the δ boundary for box 1 of

application class 3. Similarly, the same phenomenon occurs

between bins 4.4 and 4.5 for the application 4 histogram, while

4.5 is the δ boundary for box 1 of application class 4.

The standard deviation for application class 1 is quite high

as expected because the only minimized criterion is ε. For the

other classes, standard deviations of δ(a) are notably lower.

These values show that the δ boundaries of box 1, for a = 3
or 4, behave like an attractor. These values will be compared

below with results of experiment 1.

Experiment 1 carries out standard MCDM methods only.

Figure 6 presents the histograms of the expected delays estima-

tions δ(a) for the weighted Chebyshev distance minimization

(application class 3) and for the weighted sum minimization

(application class 4).

Compared to experiment 2, standard deviations for appli-

cation classes 3 and 4 are notably higher. The histograms of

δ(a) for these classes are not very different from the one of

application class 1. So, the “attraction effects” towards desired

objectives are much less marked than for experiment 2.

V. CONCLUSION

Setting the parameters of most MCDM methods to fit the

preferences of a decision maker is a difficult task. This paper

has presented a method able to choose the best multicriteria

solution according to a context defined beforehand, whatever

the Pareto front. This context is given by a set of nested

boxes in the criteria space, the shapes of which are defined by

objective facts as technical standards, technical specifications,

etc. This kind of method is well suited for self-adaptive

systems because it does not need the intervention of a decision

maker to adjust parameters and to assess the quality of the

method results.

The Russian doll multicriteria decision method has been

used with a reinforcement learning to optimize the routing in

a wireless network. The results on a case study show that the

routing can be finely controlled because of the possibility to

include as much parameters as desired to adjust the search

of the best solution on Pareto fronts a priori unknown. These

results was clearly better than those obtained with the min-

imization of a weighted sum or a Chebyshev distance to a

reference point.

More work has to be done to refine the Russian doll

multicriteria decision method for self-adaptive systems. In

particular, the method could be improved when the Pareto front

is strongly concave by using polyhedral nested boxes instead

of hyper-rectangular boxes only. Its applicability should also

be evaluated in multiple contexts.
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