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Abstract. Foams, gels, emulsions, polymer solutions, pastes [1] and even cell assemblies [2,3] display both

liquid and solid mechanical properties. On a local scale, such “soft glassy” systems [4] are disordered as-

semblies of deformable rearranging units, the complexity of which gives rise to their striking flow behaviour

[5]. On a global scale, experiments show that their mechanical behaviour depends on the orientation of

their elastic deformation with respect to the flow direction [6], thus requiring a description by tensorial

equations for continuous materials. However, due to their strong non-linearities, the numerous candidate

models [7–10] have not yet been solved in a general multi-dimensional geometry to provide stringent tests

of their validity. We compute the first solutions of a continuous model [11] for a discriminant benchmark,

namely the flow around an obstacle [12,13]. We compare it with experiments of a foam flow [14] and find

an excellent agreement with the spatial distribution of all important features: we accurately predict the

experimental fields of velocity, elastic deformation, and plastic deformation rate in terms of magnitude,

direction, and anisotropy. We analyse the role of each parameter, and demonstrate that the yield strain is

the main dimensionless parameter required to characterize the materials. We evidence the dominant effect

of elasticity, which explains why the stress does not depend simply on the shear rate [15–18]. Our results

demonstrate that the behaviour of soft glassy materials cannot be reduced to an intermediate between

that of a solid and that of a liquid: the viscous, the elastic and the plastic contributions to the flow, as

well as their couplings, must be treated simultaneously. Our approach opens the way to the realistic multi-

dimensional prediction of complex flows encountered in geophysical, industrial and biological applications,

and to the understanding of the link between structure and rheology of soft glassy systems.



PACS − 47.57.Bc Foams and emulsions − 83.60.La

Viscoplasticity; yield stress− 83.60.Df Nonlinear viscoelas-

ticity − 02.60.Cb Numerical simulation; solution of equa-

tions

1 Introduction

Materials such as pastes or polymer solutions display both

solid-like and liquid-like behaviors; they are successfully

described by visco-elastic (VE) or visco-plastic (VP) mod-

els. However, we still lack testable predictions of the time-

and space-dependent flows of soft glassy materials [6,7],

that are made of disordered assemblies of deformable, re-

arranging units [6,19]. It had been suggested that fluctu-

ations remain relevant even at large scale, in which case

detailed statistical theories of long-range correlations and

avalanches would be required [20,21]. This view is chal-

lenged by recent experiments which suggest that even these

materials can be treated as continuous materials described

by tensorial equations [6,14]; thus in principle partial dif-

ferential equations could lead to the long-awaited predic-

tions.

Based on our experience with foams, we believe that

the reason of the difficulty comes from the fact that these

materials are simultaneously viscous, elastic, and plastic

(VEP). Under small deformation, a foam reversibly comes

Send offprint requests to: pierre.saramito@imag.fr,

francois.graner@curie.fr

a Present address: Laboratoire de Physique de la Matière

Condensée, UMR 6622 CNRS and Univ. Nice-Sophia Antipo-

lis, Parc Valrose, F-06108 Nice Cedex 2, France

back to its shape; at large deformation, it can be irre-

versibly sculpted and gets a new shape; under an increas-

ing deformation rate, it irreversibly flows, with an increas-

ing viscous stress [22–26]. Existing continuous models of

foam flows include for instance either a phenomenological

scalar description [17,27], or a complete tensorial descrip-

tion of the elasticity [9] or plasticity [19] based on the

micro-structure. Overall, continuous VEP models tend to

successfully reproduce some experimental measurements,

such as elastic and loss moduli, or compliance (see for in-

stance refs. [3,9,11,25]).

We want here to understand and predict VEP flows.

Our approach is to test whether a continuous VEP model

can capture the essence and complexity of the flow prop-

erties, especially the elasticity and its advection by the

flow. We thus need a VEP model as simple as possible:

with linear and isotropic coefficients, without fluctuations

nor long-range interactions. We require to use only phys-

ically relevant parameters, which in principle are measur-

able. We need a tensorial model in a multidimensional

space (what follows applies both in 2D and 3D). We need

a closed system of equations: constitutive equations, spe-

cific to the material under consideration; generic conser-

vation laws, in the spirit of hydrodynamics; and closure

equations, to unify the solid and liquid descriptions.

To really test a model, and also lead to practical appli-

cations, we address the full spatial and orientational het-

erogeneity of a flow. We need to investigate a controlled,

reproducible flow which displays significantly different V,

E and P contributions. It should involve a large range of
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shear rates, of tensorial orientations, and of elastic defor-

mations. It should display elastic deformations either par-

allel, perpendicular or at odd angles with respect to the

shear rate. Most discriminant, it should actually depends

on two or more dimensions of space, so that the advection

of elastic stress couples the shear and normal stress com-

ponents (see eqs. (8-9)). This latter point, overlooked by

most models, is crucial to test whether the elastic stress

could be entirely determined by the shear rate, leading to

a VP rheology (such as Bingham [28] or Herschel-Bulkley

[29]). Recent experiments [15,16] suggest that it is not the

case: in fact, the stress, the shear rate and the elastic de-

formation should be treated as independent variables, so

that a full VEP treatment is required.

One such flow is the well documented flow around an

obstacle [12] (Fig. 2). It displays a strong spatial hetero-

geneity, simultaneous VEP behaviors, a large range of elas-

tic deformations, several elongation and rotation rates,

and various relative orientations of the relevant tensors

[19]. It enables to follow a bubble at different stages, while

it stretches, then while it relaxes: thus, even in a steady

flow, transient effects and relaxation times are apparent.

It is classically used as a stringent test to discriminate

between different models [30] (Fig. 3).

We use foams as model systems of VEP materials. Ex-

periments with foams or emulsions, especially in 2 dimen-

sions, enable an easy, simultaneous visualisation of the

micro-structure (bubbles or droplets, which act as tracers

of velocity and deformation) and the large scale (global

flow heterogeneities).

To compare mesurements from discrete experiments

with continuous predictions from partial differential equa-

tions, we use the experimental tools we have developed

[19]. V, E and P contributions are expressed in the same

units, favoring a unified description of solid and liquid be-

haviors; each of them is valid in all regimes (so that e.g.

elastic contributions can be measured even out of the elas-

tic regime). These are local (in situ) measurements which

link the foam structure and rheology.

Our plan is as follows. In order to make this paper

self-contained, Section 2 recalls Saramito model [11]; here

we write it by emphasizing how it unifies solid and liquid-

like behaviours. Section 3 briefly recalls the experimental

methods. It explains the careful resolution algorithm we

had to develop to deal with the strong non-linearities of

VEP equations, and a well controlled space- and time dis-

cretisation. Section 4 first fits the solutions to a wet foam

flow, fixing the values of the parameters. It then turns to

predictions of a foam with a higher yield strain, which

accurately match a dry foam flow. Section 5 includes con-

cluding remarks. An Appendix explains why it is impor-

tant to solve the full time-dependent equations, even if we

are interested only in stationary flows. Another Appendix

lists part of our systematic tests of the predictions: all of

them are available upon request.
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2 Model

2.1 Characteristics and past results of the model

We choose to use Saramito’s VEP model [11] because it

has a positive dissipation, thanks to the convexity of its

energy function. This implies that, at least for small de-

formations, it obeys by construction the second principle

of thermodynamics. It includes as limiting cases both the

VP Bingham model [28] and the VE Oldroyd model [31],

and generalises them to VEP. It can extend to large de-

formations and high velocities.

It has already been used for space- and time-dependent

predictions [11]. It has first been used to solve simple cases,

such as steady uniaxial elongation. It has also applied to

oscillatory regimes, and calculations of G′, G”, rigidity

and loss moduli.

It has then been implemented to calculate both time-

dependent and steady shear Couette flows, which depend

on one space variable (circular [32] or planar [33] geome-

tries). It involves two strong non-linearities, intrinsic to

VEP flows, and thus independent of the model: one be-

cause the plasticity appears above a yield point (eq. 3),

and the other because of the advection of elastic stress

(eqs. (8-9)). Despite these unavoidable difficulties, the model

has been solved [34,35]. The resulting velocity, elasticity

and plasticity fields agreed with experimental measure-

ments.

This improved our understanding of Couette flows [35].

The localization of the velocity field results from the stress

heterogeneity, so that the circular geometry by itself can

induce localisation. In planar geometry, where the stress is

a priori homogeneous, localisation necessarily relies on an-

other cause of heterogeneity, such as an external friction.

Initial normal stresses can be preserved even in a steady

flow, so that there are residual normal stresses which de-

pend on initial conditions linked with the foam prepara-

tion method: the steady flow is not unique. Despite its

simplicity, a Couette flow displays specific VEP features

[34]. For instance, at the boundary of the localised region,

the discontinuity of velocity gradient depends on the resid-

ual normal stresses, and thus on initial conditions. For all

these reasons, and because the range of experimental data

is limited, Couette flows have only a limited ability to dis-

criminate between models, or between parameter values.

2.2 Notations and equations

2.2.1 Constitutive equations: solid mechanics

We start with constitutive equations specific of a semi-

fluid semi-solid material (see Fig. 1). In order to emphasize

the dominant role of elasticity, we express them here in

terms of deformations and their rates, as is usual in the

context of solid mechanics:

σtot = −pI + 2η1ε̇ + 2µεe, (1)

ε̇ = ε̇e + ε̇p, (2)

ε̇p =



























1

λ

|εe| − εY

|εe| εe when |εe| > εY ,

0 otherwise.

(3)

Eq. (1) is a constitutive equation for the Cauchy stress

σtot, with pressure, viscous and elastic terms. Here p is the
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pressure, I the identity tensor; ε̇ is the total deformation

rate tensor, η1 is the viscosity of the material apparent at

small deformation (in the foam, it includes the dissipation

inside the soap films); εe is the elastic deformation tensor,

µ the shear modulus.

Eq. (2) recalls that ε̇ is shared between elastic ε̇e and

plastic ε̇p contributions.

Eq. (3) is a plasticity equation, which specifies ε̇p by

stating that plasticity increases above the yield strain εY :

under a strong shear rate, the elastic deformation |εe| can

become higher than εY . Here |εe| is the norm of εe, which

we define as |εe| = [(εe
yx)2 + (εe

xx − εe
yy)2/4]1/2 to facili-

tate the comparison with a scalar shear (fixed shear di-

rection xy with a given amplitude ε), i.e. εe
xx − εe

yy = 0

and εe
yx = ε, so that |εe| = ε [6]; the externally measured

scalar shear is then γ = 2|εe|. Another acceptable defini-

tion would be the euclidian norm of the deviatoric elastic

strain tensor [35], ([(εe
xx − εe

yy)/2]2 + (εe
xy)2 + (εe

yx)2 +

[(εe
yy − εe

xx)/2]2)1/2 = [2(εe
yx)2 + (εe

xx − εe
yy)

2/2]1/2, which

is
√

2 times larger than |εe|. The value of εY is defined

consistently with that of |εe|.

In soft disordered materials, plasticity is related with

local rearrangements. In foams, these happen when bub-

bles swap neighbors and are called “T1” processes [22,

23,36]. They create a transient local deformation. Here λ

is the relaxation time of the material after such a local

deformation [37]. We can construct the dissipation due

to plasticity, which has the dimension of an effective vis-

cosity η2 = λµ: it determines the loss modulus at large

amplitude. The softness and deformability of the mate-

rial appears in the value of εY , of order of unity, so that

both the elastic and plastic behaviors are experimentally

observable; its glassy (i.e. disordered) nature implies that

λ, µ, εY are isotropic [6].

2.2.2 Conservation equations: fluid mechanics

Generic conservation equations for an isothermal flow are

expressed in terms of the velocity v and its derivatives, as

is usual in the context of fluid mechanics:

ρv̇ = div σtot + fext, (4)

div v = 0. (5)

Eq. (4) is the equation of dynamics; ρ is the density,

v̇ = ∂tv+v.∇v, and ρv̇ denotes the inertia term (which we

neglect below, see Section 3.3); fext is the external force:

in the bidimensional flow experiments studied below, the

friction on the top and bottom boundaries (e.g. horizon-

tal glass or perspex plates) is approximately fext = −kv,

where k is a constant. We find experimentally (see Section

3.3) that k is small enough that in the present flows the

effect of fext is not measurable, so that we neglect it.

Eq. (5) describes the incompressibility of the flow: it

applies to slow flows when the compressibility modulus

is much higher than the shear modulus, as is the case in

foams [22–24].

2.2.3 Closing equations: linking solid and fluid mechanics

To close the system of eqs. (1-3) and eqs. (4-5) requires to

couple the deformations to the velocity.
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First, the total deformation rate equals the symmetrized

velocity gradient:

ε̇ =
∇v + ∇vT

2
. (6)

Second, the time variation of the elastic deformation

tensor εe accounts for its advection by the flow velocity v.

The model should be objective, that is, the expression of

the equations should remain the same for an observer who

has a movement of translation or rotation with respect to

the experiment. The advection of the elastic deformation

tensor is thus described with a frame invariant tensorial

derivative [38]:

ε̇e =
Dεe

Dt
. (7)

The objective derivative is [38,11]:

Dεe

Dt
=

∂εe

∂t
+ (v · ∇)εe + βa(εe,∇v), (8)

where

βa(εe,∇v) = εe ·W (v)−W (v)·εe−a(D(v)·εe+εe ·D(v)),

(9)

Here W (v) = 0.5(∇v − ∇vT ) is the antisymmetric part

of the velocity gradient, and a ∈ [−1, 1] is the so-called “a

parameter” [11,38], which effect is discussed in section

3.3.

3 Methods

3.1 Experimental methods

Experimental set-ups have been described in refs. [14,19,

39]. Bubble distributions are monodisperse in size (area

16 mm2) and disordered in geometry (shape, number of

neighbors). While bubbles pass through the field of view,

no rupture is observed, and coarsening is negligible.

The wet foam is prepared by direct bubbling into the

1 m long channel. At its entrance in the channel, it displays

normal differences in elastic deformation, εe
xx − εe

yy (axis

2 in Fig. 7).

For the dry foam, bubbles pass first through a chamber

(in which the foam drains): this chamber enables to vary

the liquid fraction over more than three decades, and ho-

mogeneizes the foam while relaxing its normal differences

in elastic deformation [39].

Experimental measurements treat solid and liquid be-

haviors with a unique set of mutually compatible tools

[19]. We derive the continuous description directly from

averages over almost a thousand of images of discrete

measurements performed on all bubbles which can be au-

tomatically identified using image analysis, that is, which

do not touch the obstacle. The entrance velocity V is mea-

sured ±2% as the average over the side of the field of view.

The texture (bubble size, elongation and packing) and its

variation (bubble stretching and rearrangements) enable

to measure in situ the velocity gradient (not shown), the

elastic deformation ±2% and the plastic deformation rate

±7% [19]. We plot here deviatoric terms, see section 3.3.

3.2 Resolution

Eqs. (1)-(5) can be solved in 2D or in 3D. Their main dif-

ficulties are intrinsinc to VEP flows, independently of the

details of the model. They reduce to a set of three partial

differential equations with three unknowns (εe,v, p) and
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the coupled system is highly non-linear : its numerical res-

olution needs to be performed carefully.

Here we solve these equations in 2D with a finite el-

ement algorithm first used for a simple Couette circular

geometry [35], extended here to handle more complex flow

domains [34]. As in 1D, the stationary solution is obtained

by solving the time-dependent problem with a second or-

der time-splitting algorithm, already used for VE [40], gen-

eralized here to VEP; it allows to treat separatly the two

main non-linearities of the equations, namely the plas-

ticity term in eq. (3) and the stress transport term in

the objective derivative (eq. (8)). Unlike in 1D [41], the

stress transport term needs to be treated specifically by

upwinding techniques; we chose a robust method, the dis-

continuous Galerkin scheme [42]. In addition, the non-

linearity linked to plasticity needs a much more careful

discretization than for the Couette resolution [35] to en-

sure a proper decreasing of the residue of the stationnary

problem. The spatial discretization is performed with a

mixed finite-element method as in [30]. In order to get a

general method suitable for any geometry, the domain is

discretized with triangles.

The calculation domain is a channel, 15 R = 22,5 cm

upstream and 30 R = 45 cm downstream of the obstacle.

The mesh, made of 1100 triangles, is locally refined near

the obstacle (see Fig. 5a). We start from a foam at rest

and enforce the entrance velocity V . Unlike for most liquid

flows, but in agreement with foam flow experiments [14],

we use slip boundary conditions. Careful tests have been

performed [34] in order to ensure that the mesh is suffi-

ciently refined and that discretization does not affect the

results presented here. Iterations are performed (Fig. 5b)

until the residue of the stationary problem is less than

10−7 (see Fig. 5c). Calculations in 2D run in half a day on

a Intel T7300 Core 2 Duo processor (2 GHz, 4 Mb cache,

32 bits). The 2D algorithm has been validated by repro-

ducing the 1D Couette calculation [35], which runs in a

few minutes.

3.3 Choice of parameters

The parameter with the main effect is εY : a change of

±20% suffices to visibly affects the main features of the

flow. In a foam, its value is expected to depend mostly

on the liquid fraction and on the dimension (2D or 3D),

and possibly on the area dispersity; on the opposite, the

average area and the physico-chemical properties of the

foam are not expected to affect the value of εY .

We have tested the effect of varying the other param-

eters, one by one. Like in Couette flow [35], they barely

affect the flow, even if varied over a large range, as we now

discuss.

The value k of the friction on the plates can be deter-

mined experimentally from the overall pressure gradient

∇p across the channel length: k = ∇p/V = 9300 Pa s

m−2. If we take this value, we obtain a prediction indis-

cernable from k = 0. Only by taking a ten times larger

friction, k = 105 Pa s m−2, does the change become vis-

ible. It means that here the limit k → 0 is regular. This

case is similar to cylindrical Couette geometry, but differ-

ent from planar Couette geometry [35].
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We choose η1/η2 = 0.1 according to the Couette case

[35], since it lies in the middle of a range where its ex-

act value barely affects the flow, even up to a factor of 10.

Since the Reynolds number Re = ρV R/(η1 + η2) ≈ 5 × 10−3,

we neglect the inertia term ρv̇ in Eq. (4).

We choose the co-rotational derivative [38], with a = 0,

so that εe is deviatoric. In that case, the term βa in eqs. (8-

9) has a zero trace: hence if the trace of εe is initially zero,

it remains zero [34]. In the low velocity regime explored

here, any other choice of the objective derivative, with a

parameter ranging from a = −1, lower-convected deriva-

tive, to a = 1, upper convected [38], would only change

the trace of εe. Further investigations might determine the

value of a by comparison with the experimental values of

this trace.

The relaxation time λ is related to the Weissenberg

number We = λV/R. We distinguish three velocity regimes.

At high velocity, We of order 1 or higher, the material

rheology can display non-linearities in addition to those

already present in the model. Since foams rupture at high

velocities [39,43], this regime would be easier to investi-

gate with other materials. In the low velocity range, We

greater than 10−2 but smaller than 1, the exact value of

We does not affect the flow. This is the case for both ex-

periments considered here, as well as for several foam flow

experiments reported in the literature. Further decreasing

We over two or three decades would lead to the ultra slow

range, where the fore-aft asymmetry strongly increases.

This is done in very few well-controlled experiments [39]

The limit We → 0 at constant εY is singular: it implies a

divergence of the Bingham number Bi = 2εY /We [11]. In

fact, the ultra slow regime is not quasi-static [25,27,44].

and does not exactly match quasi-static simulations [27].

3.4 Representations

Results are plotted either as maps or graphs.

Maps enable a global quantitative comparison between

calculations and experiments: spatial distribution, magni-

tude, orientation of different quantities. Velocities are dis-

played as arrows. For clarity, they are presented in the

average referential of the foam, as if a movable obstacle

was displaced towards the left within a fixed foam, i.e.

(vx − V )/V . Traceless tensors are represented by circles.

Their two eigenvalues have same absolute value. We indi-

cate the direction of the positive one by a thin line. The

direction of the negative one, not represented, is perpen-

dicular. The top half, in red, is the present calculation

using a continuous model, performed in the half-plane as-

suming top-bottom symmetry. Thin lines are isovalues of

the stream function. The bottom half, in blue, are experi-

mental data obtained as averages over bubbles. Thin lines

are trajectories deduced from the experimental velocity

field, plotted with approximately the same density as in

calculations.

Graphs of components along selected axes enable de-

tailed quantitative comparisons between calculations and

experiments: position and amplitude of extrema, shape of

curves, concavity, inflexion points, precision of the agree-

ment. Axes are chosen to coincide with the measurements

of ref. [14]: axis 1 is the symmetry axis, passing through
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the obstacle center, parallel to the flow, y = 0; axis 2 is

parallel to the flow, close to the obstacle y = ±2.5 cm;

axis 3 is perpendicular to the flow, passing through the

obstacle center, x = 0; axis 4 is perpendicular to the flow,

upstream of the obstacle, x = −2.4 cm; axis 5 is perpen-

dicular to the flow, downstream of the obstacle, x = 2.4

cm. We do not plot components which vanish due to sym-

metry, such as vy or εe
xy along the symmetry axis. Red

lines are predictions, blue symbols are experimental tests.

4 Results

4.1 Wet foam flow

First, as a preliminary characterization, we study the flow

of a wet foam (7% liquid fraction, Fig. 2a). We calculate

the measurable fields: velocity v, elastic deformation εe,

plastic deformation rate ε̇p. We use the parameters ob-

tained in ref. [35] and rescale them to the geometry of

the present set-up. We investigate separately the effect of

each parameter (see Section 3.3). We check that, with a

yield strain εY = 0.1±0.02, the calculations agree well si-

multaneously with all available experimental data (Fig. 3

and Figs. 6-8). Such value of εY is the expected order of

magnitude for a foam with this liquid fraction [19].

Other parameters have less effect. We use λ = 0.2 ±

0.1 s [14] and η1/η2 = 0.1. We take k = 0 without signif-

icantly affecting the results. With a shear modulus esti-

mated [14] around µ = 13 ± 1 N.m−2, this translates into

actual values: σY = 2µεY = 2.6 N.m−2, η2 = λµ = 2.6

Pa.s and η1 = 0.1 η2 = 0.26 Pa.s.

In such a VEP flow, elastic deformations are present in

the wake of the obstacle at arbitrarily low velocity. Plas-

ticity prevents the increase of extensional deformation,

breaking the up-downstream (fore-aft) symmetry (Fig. 3).

A velocity overshoot, the so-called “negative wake”, is

clearly visible behind the obstacle (Fig. 3). This charac-

teristic feature of VEP flows is barely affected even if we

vary V across the low velocity regime, confirming experi-

mental observations [14]. For instance, dividing V by 20

barely changes the overshoot (Fig. 3).

This strongly contrasts with VP flows, which are al-

ways fore-aft symmetric [30]. VE flows represent a mixed

situation, where the negative wake has already been evi-

denced, both experimentally [45] and numerically [46,47].

In fact, it occurs for low extensional viscosity fluids and

models (e.g. FENE-CR [47] but not Oldroyd-B [31]), at

elongational rates large enough in comparison with the in-

verse relaxation time, so that the elastic deformation does

not vanish. However, at the low velocity investigated here,

the VE flow is completely fore-aft symmetric (Fig. 3), and

even indiscernable from viscous flows, whatever the viscos-

ity. To interpret this set of observations, it seems that the

overshoot appears when the elastic deformation ceases to

follow passively the total deformation rate. This can occur

if there is a mechanism which saturates the value of elastic

deformation, which is the case in some VE models at high

velocity, and in any VEP model because of plasticity.

To summarize this first test, by adjusting only one pa-

rameter, which value has the expected order of magnitude,

we can adjust both qualitative and quantitative features
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of all available data. We reproduce the observed negative

wake and evidence the specificity of VEP flows.

4.2 Dry foam flow

Second, we turn to prediction. Since the parameter which

has the most significant effect on the flow is the yield strain

[14] (section 3.3), we choose to predict the flow for a twice

larger value, εY = 0.2.

These predictions are plotted on Fig. 4a, top and Fig. 4b-

e, lines. The overshoot on the symmetry axis (Fig. 4b) is

larger and closer to the obstacle than for εY = 0.1: this re-

flects a larger effect of the elastic deformation. The elastic

deformation field extends more than the velocity gradient

(Fig. 4a, top), which itselfs extends more than the plastic

deformation rate field (Fig. 11, top): this confirms that

the three fields are physically independent quantities [19].

To check this prediction, we then perform a dry foam

experiment, since decreasing the liquid fraction of a foam

is expected to affect especially the yield strain. With 1.2%

liquid fraction, Fig. 2b), we observe that εe
max, the max-

imum value of εe measured on the experiment, is twice

as much that of the wet foam. The effect of elasticity is

even stronger and the agreement with our prediction even

better, without adjusting any parameter. Measurements

confirm the predicted spatial distribution, magnitude, di-

rection, anisotropy of fields.

The bubble velocity (Fig. 4) passes the three most

stringent tests. First, the position and magnitude of over-

shoot on the symmetry axis (Fig. 4b). Second, the graph

along the axis 5 (Fig. 4c). And third, the exact position of

the arrest points, defined in the referential of the foam, as

points where vx −V = 0: close to axis 5, on y = 0 and ±5

cm, see Fig. 4a. Other axes confirm the agreement (Fig. 9).

The bubble elastic deformation too agrees remarkably

well in spatial distribution, amplitude and direction (Figs.

4a,d,e and Fig. 10). Interestingly, its orientation does not

directly correlate with that of streamlines, or equivalently

of the velocity vectors. This confirms that the elastic de-

formation should be treated as a variable independent of

the velocity; we have also checked (data not shown) that

it does not directly correlate with the total deformation

rate. Note that residual normal stresses are visible be-

yond the obstacle. Unlike in the Couette case, here they

are reproducible and their origin is understood: they are

a direct effect of the obstacle, and do not depend on the

foam preparation method.

The plastic deformation rate is calculated as the total

deformation rate minus the elastic deformation rate (eq.

2). Its predicted spatial distribution and directions agree

with that of the experimental measurements, which repre-

sent the time-averaged orientation, frequency and anisotropy

of the bubble rearrangements (Fig. 11).

5 Discussion and conclusion

To summarize, a continuous description of viscous, elas-

tic, plastic material with physically meaningful parame-

ters can reproduce and even successfully predict a tenso-

rial, spatially developed flow of a disordered rearranging

structure.
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We analyse and interpret the effect of each parameter

separately. We emphasize the dominant role of elasticity

and thus identify the yield strain as the most important

parameter. The flow does not reduce to VE or VP sep-

arately, so that we emphasize the specific complexity of

VEP materials.

Our method opens the way to computing two- or three-

dimensional flows under any type or amplitude of deforma-

tion. It applies to those depending on one space variable:

for instance a flow through a channel [15,16], or during

simultaneous squeezing and shearing [6]. It also applies to

those depending on two space variables: for instance a flow

through a hole in 2D [19,48], or in 3D with axisymmetry.

At the expense of longer calculations, it can even apply to

flows which depend on three space variables, for instance

through a twisted or branching pipe.

The model has been kept as simple as possible. On

one hand, if we suppress one or another of its ingredi-

ents, our algorithm still can solve it, and the resulting

solution lacks some of the experimental features. On the

other hand, it can be progressively enriched by incorpo-

rating additional non-linearities, for instance related with

the physico-chemistry of foams. When the velocity or the

rigidity of the surfactant layer increases, shear thinning

effects [26] could be introduced by an extended version

of the VEP model [49] based on an Herschel-Bulkley vis-

coplasticity [29] instead of a Bingham one, as observed in

[17,50]. The friction on walls too scales non-linearly with

high velocity [26]. Non-linear elasticity at large deforma-

tion, although seldom reached in foams [19], can too be

taken into account [9,24]. At low velocity, plasticity seems

to appear progressively: some bubbles begin to rearrange

below the yield strain [19].

More generally, the model can be adapted specifically

to any given VEP material of known properties. The value

of the parameters of eqs. (1)-(5) depends on the micro-

structure, its disorder and its physico-chemical properties.

This is where the present approach can be enriched by

statistical models based on the micro-structure [7,15,16,

20,21,24,44,51].

Acknowledgements

We thank Y. Jiang for discussions at the beginning of this
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Appendix

Convergence

Fig. 5 represents how the time-dependent calculations con-

verge towards the stationnary solution. The residual term

decreases first rapidly, until n = 200. It then reaches a

plateau from n = 200 to 3000 which corresponds to the ad-

vection of initial defects. It eventually reaches an asymp-

totical regime with a constant slope of convergence. Itera-

tions were stopped when the residual term reached 10−7.

Complete set of graphs

We have performed systematic calculations of all fields for

several values of the parameters. They are all available

upon request. Figs. 6-11 present the main ones.
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Figures

η2

εY

η1

µ

ε

εe εp

Fig. 1. Symbolic representation of the viscous, elastic, plastic

(VEP) model [11]: The spring symbolises an elastic stress pro-

portional to the elastic deformation, and stands for the elastic

modulus µ. The dashpots, with a viscous stress proportional

to the total deformation rate, stand for viscous dissipations

η1, η2. The solid friction element, which does not move until

a sufficient force is appplied, and exerts a constant resistance

when it moves, stands for the plastic flow occurring when the

elastic deformation is larger than the yield strain εY .

(a) (b)

O

y

x

Fig. 2. Top view of the experiments. The foam is quasi-

bidimensional, the flow (from left to right) is exactly bidimen-

sional. The channel is rectangular: length 1 m (only partially

shown), width 10 cm. The obstacle is circular, with radius

R = 1.5 cm. (a) Wet foam [14], liquid fraction φ = 7%, en-

trance velocity V = 1 cm/s. (b) Dry foam, φ = 1.2%, V = 0.6

cm/s. Definition of axes x and y. The origin O is in the middle

of the obstacle.

experimental
slow VEP
VEP
VP
VE

vx − V
V

x/R

420-2-4

0.25

0

-0.25

-0.5

Fig. 3. Comparison of the flow around a circular obstacle with

different models. Reduced velocity (vx−V )/V along axis y = 0

in wet foam experiment (closed squares, measured on Fig. 2a) is

compared with the VEP calculation (present model, εY = 0.1,

λ = 0.2 s, η1/η2 = 0.1, k = 0), slow VEP (entrance velocity

V divided by 20), VP (Bingham model [28], with the same

Bingham number), VE (Oldroyd model [31], with the same λ).
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vy/V �
(vx − V)/V �

axis 1

(b)

x/R

420-2-4

0.4

0.2

0

-0.2

-0.4
axis 5

(c)

y/R

20-2

εe
xy ◦

(εe
xx − ε

e
yy)/2•

axis 1

x/R

(d)

420-2-4

0.2

0.1

0

-0.1

-0.2

axis 5

y/R

(e)

20-2

Fig. 4. Test of dry foam flow prediction, represented as explained in section 3.4. (a) Map. Thick colored arrows: velocity field.

Circles: elastic deformation tensors; the positive (resp. negative) eigenvalue corresponding to elongation (resp. compression) is

represented by a line (resp. not represented). Thin lines: stream lines. Top half (red): present calculation using a continuous

model. εY = 0.2, λ = 0.2 s, η1/η2 = 0.1, k = 0. Bottom half (blue): experimental data obtained as averages over bubbles shown

in Fig. 2b. Scale: bar: 1 (dimensionless) for the elastic eigenvalues (circle diameter); black arrow: entrance velocity V . (b-e)

Graphs of the same data along axes 1 (b,d) and 5 (c,e). Red lines are predictions, blue symbols are experimental tests. (b,c):

(vx − V )/V : solid thick lines and closed squares; vy/V : dashed thin lines and open squares. (d,e): elastic normal differences

(εe
xx − εe

yy)/2: solid thick lines and closed circles; elastic shear εe
xy: dashed thin lines and open circles.
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(a)

(b)

(c)

Fig. 5. Numerical convergence of calculations (see text). (a) Mesh used for the actual calculations; for convergence tests, the

results have been compared with calculations performed on a finer mesh [34]. (b) The L2 norm of the stationnary residues of

eqs. (1-5) is displayed during the calculation which led to Figs. 4 and 9-11. From top to bottom: n = 10, 200, 1000 and 3000 time

iterations. Figures indicate x/R, where R is the obstacle radius. (c) The same L2 norm of the stationnary residues is plotted

versus time iterate.



Cheddadi et al.: Prediction of a complex viscous, elastic, plastic flow 17

vy/V �
(vx − V)/V �
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Fig. 6. Velocity and elastic deformation of wet foam (εY = 0.1). Red lines are calculations (same as Fig. 2a), blue symbols are

experimental data (from Fig. 3). (top) Superimposition of velocity and elastic deformation fields, and streamlines. Scale: bar:

1 (dimensionless) for the elastic eigenvalues (circle diameter); black arrow: entrance velocity V . (bottom) Plots along axes 1-5.

Same caption as Fig. 4.
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εe
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Fig. 7. Elastic deformation of wet foam (same as Figs. 2a and 3): plots along axes 1-5. Same caption as Fig. 4.
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Fig. 8. Plastic deformation rate of wet foam, as Fig. 6. (top) Plastic deformation rate field, same caption as Fig. 4a. Scale: bar:

1 s−1 for the plastic deformation rate eigenvalues (circle diameter) ; black arrow: entrance velocity V . (bottom) Plots along

axes 1-5. Red lines are calculations, blue symbols are experimental data: (ε̇p
xx − ε̇p

yy)R/2V : solid thick lines and closed triangles;

ε̇p
xyR/V : dashed thin lines and open triangles.
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Fig. 9. Velocity of dry foam (εY = 0.2). Same caption and data as Fig. 4.
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Fig. 10. Elastic deformation of dry foam. Same caption and data as Fig. 4.
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Fig. 11. Plastic deformation rate of dry foam (same as in Figs. 2b and 4). (top) Plastic deformation rate field, same caption

as Fig. 4. Scale: bar: 1 s−1 for the plastic deformation rate eigenvalues (circle diameter) ; black arrow: entrance velocity V .

(bottom) Plots along axes 1-5. Same caption as Fig. 8.


