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Abstract

This paper deals with the identification of the multivariate fractional Brownian motion, a recently
developed extension of the fractional Brownian motion to the multivariate case. This process is a p-
multivariate self-similar Gaussian process parameterized by p different Hurst exponents Hi, p scaling
coefficients σi (of each component) and also by p(p − 1) coefficients ρij , ηij (for i, j = 1, . . . , p with
j > i) allowing two components to be more or less strongly correlated and allowing the process to
be time reversible or not. We investigate the use of discrete filtering techniques to estimate jointly
or separately the different parameters and prove the efficiency of the methodology with a simulation
study and the derivation of asymptotic results.

Keywords : Self similarity ; Multivariate process ; Long-range dependence ; Discrete variations ;
Parametric estimation.

1 Introduction, main results

The last decade has seen a dramatic effort of research to understand real networks, or complex networks,
of any kind [32, 36, 38]. Indeed, many systems whether natural or man-made constitute networks of
interacting systems. These networks are usually considered as complex systems, in the sense that a
global behavior emerges from the interaction and cannot be predicted from the sole observation of the
individuals. In general, the complexity of the system gives to measurements taken at individuals difficult
properties such has nonstationarity, fractality, long-range dependence, . . . This for example occurs in
functional magnetic resonance imaging (fMRI), where data collected from different parts of the brain
are of course correlated between each other, but also present long-range dependence [3, 2]. In internet
tomography, it is now well recognised that time series corresponding to IP packets or bytes are correlated
and long-range dependent [1]. But mutlivariate time series depicting long-range dependence have also
been encountered in fields as different as physics or economics [21, 5].

When measurements are collected simultaneously at several nodes of the networks, the global data
set has to be modeled as a multivariate time series. Conversely, given a multivariate signal, a goal may
be to solve an inverse problem: identification of the network underlying the multivariate measurement
(each component is associated to a node of the network; a link between two nodes assesses for dependence
between the components.) This problem is a problem of graphical modeling [43, 26]. To model long-
range multivariate processes, we studied in [12] the extension to the multivariate case of the fractional
Brownian motion (and its increments). The mfBm is a Gaussian multivariate signal, whose components
are correlated scalar fBm with a priori different Hurst exponents. This model is interesting for modeling
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fMRI data. In this paper, we work for the converse problem, developing a methodology to identify the
mfBm.

The multivariate fractional Brownian motion is characterized by the Hurst exponents of its compo-
nents, by its covariance matrix at time 1, and also by an antisymmetric matrix ηij which controls the time
assymmetry of the multivariate process. We provide here a framework to estimate all these characteris-
tics from the observation of one sample path of the mfBm. This multivariate process is a nonstationary
process with stationary increments. Thus in order to perform time average we work on the increments
directly. However, as we recall in section 2, the components of the increments process may be long-range
dependent individually, and may also present what we call long-range interdependence, meaning that
their cross-correlation function may be not summable. This leads to considerable difficulties in the in-
ference methods, especially implying very poor convergence rates (see [10] for example). To circumvent
the problem in the scalar case, it is well-known that derivatives smoother than increments have to be
considered. The most popular smooth derivative is provided by the wavelet transform when the wavelet
is chosen to be orthogonal to polynomial of sufficient high degrees (see [18, 19, 40] for early references).
Here, we use a slightly different approach using discrete, compactly supported filters, that need to be
orthogonal to some polynomial, but are not necessarily linked to wavelet theory (in that they do not
necessarily are the base for a multiresolution analysis).

The filtering is performed for dilated version of the filter with factor m. Each component of the
multivariate signal is so filtered. We show that the cross-covariance between the components of the
filtered version is a power law of m. This generalizes the well-known power law behavior as a function
of scale of the variance of the wavelet coefficients in the scalar fractional Brownian motion case. Thus
we perform a linear regression in log variables to estimate the exponents (linked to Hurst index) and the
other parameters.

However, since we calculate cross-covariance as well as covariances, we have an overdetermined set of
equations to estimate the Hurst parameters. We experimentally show that it is preferable to eliminate this
overdetermination for the estimation of the Hurst exponents. Therefore, the first conclusion of the study
is that for the estimation of the Hurst exponents of the components, it is not advantageous to consider
the whole multivariate process, but better to process each component separately. The second conclusion
is the fact that the quality of these estimations is almost independent of the correlation between the
components. Finally we illustrate the fact that the estimation of the correlation structure is easy whereas
it is very difficult to estimate the asymmetry parameters. Our finding are based on experiments as well
as theoretical proof of convergence of the estimators we exhibit. We show there almost sure convergence
and provide a central limit theorem proving usual

√
n convergence rate if the filters are properly chosen.

The paper is structured as follows. We present in the following section the essential facts on the
mfBm needed for the paper to be self consistent. We also present the filters that we are using and the
statistical properties of the filtered mfBm. Section 3 then presents the methodology we adopt. We first
present basic identities highlighting the power law behavior, and then discuss the least square regression
that solve our inference problem. Section 4 is dedicated to the theoretical study of the estimators, where
we first exhibit almost sure convergence and then prove a central limit theorem. In section 5,then, we
illustrate our findings using Monte-Carlo experiments, and we present an illustration of the method on a
high dimensional example. Note that the proofs of the results are given in the last section.

2 Multivariate fBm, Filters

We recall here some basic facts about the multivariate fractional Brownian motion. For more information
and proofs of the results recalled here, we refer the reader to [6, 12, 28, 14].
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2.1 Some facts on the mfBm

The p dimensional multivariate fractional Brownian motion x(t) is defined as a Gaussian process having
stationary increments and having components jointly self-similar with parameters (H1, . . . , Hp) ∈ (0, 1)p.

The self-similarity property can be stated as follows: for any real λ > 0, x(λt)
fidi
= λHx(t) where H =

diag(H1, . . . , Hp) and λH is intended in the matrix sense. The notation
fidi
= stands for equality of all the

finite-dimensional probability distributions.
Joint self-similarity imposes many constraints on the correlation structure of the process. This has

been studied in [28] where the general form of the covariance structure of a jointly self-similar process
with stationary increments is obtained, without recoursing to the Gaussian assumption. This form is
further studied in [6, 12]. The covariance structure is shown to be characterized by p2 real numbers
ρij ∈ (−1, 1), ηij ∈ R, σi > 0, i = 1, . . . , p; j > i. Parameter σi is the standard deviation of the ith
component at time 1, ρij is the correlation coefficient between the components i and j at time 1, and
as such satisfies ρij = ρji. Parameters ηij are linked with the time-reversibility of the process. They
are characterized by the antisymmetry property ηij = −ηji. In special cases, these parameters are
known [6, 12]. If the process is time-reversible, they are all equal to zero; if the process admits a causal
(or an anticausal) representation, they are function of ρij , Hi and Hj . In general otherwise, they are
unconstrained.

The covariance structure of the process is as follows. The process is marginally a fractional Brownian
motion. Thus the covariance function of the ith component is the usual function [31, 34]

E[xi(s)xi(t)] =
σ2
i

2

{
|s|2Hi + |t|2Hi − |t− s|2Hi

}
, (1)

with, as mentioned, σ2
i := var(xi(1)). The cross-covariances are given by [6] ([28] for the proof and a

different parametrization)

Proposition 1 For all (i, j) ∈ {1, . . . , p}2, i 6= j,

rij(s, t) := E[xi(s)xj(t)] (2)

=
σiσj

2
{wij(−s) + wij(t)− wij(t− s)} , (3)

where the function wij(h) is defined by

wij(h) =

{
(ρij − ηijsign(h))|h|Hi+Hj if Hi +Hj 6= 1,
ρij |h|+ ηijh log |h| if Hi +Hj = 1.

(4)

As shown in [6, 12], the form obtained for Hi + Hj = 1 can be recovered by continuity from the case
Hi +Hj 6= 1. Furthermore, setting evidently ρii = 1 and noticing that ηii = 0 allows us to remark that
the definition is valid if i = j since it is equivalent to (1).

The constraints on ρij and ηij are only necessary conditions to ensure that the matrix given by (3)
together with (4) is the cross-covariance matrix of a process. A necessary and sufficient condition has
been exhibited in [6]. This condition is the positive-definiteness of the matrix with entries

Γ(Hi +Hj + 1)
(
ρij sin

(π
2
(Hi +Hj)

)
− iηij sin

(π
2
(Hi +Hj)

)
, (5)

where i =
√
−1. Interestingly, the condition emerges when studying moving average and spectral rep-

resentations of the mfBm. For example, a moving average representation can be shown to be given by
(assuming Hi 6= 1/2 for i = 1, . . . , p)

xi(t) =

p∑

j=1

∫

R

M+
i,j

(
(t− x)Hi−.5

+ − (−x)Hi−.5
+

)
+M−

i,j

(
(t− x)Hi−.5

− − (−x)Hi−.5
−

)
Wj(dx), (6)
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where W (dx) = (W1(dx), · · · ,Wp(dx)) is a Gaussian white noise with zero mean, independent compo-
nents and covariance E[Wi(dx)Wj(dx)] = δi,jdx. For given parameters σ, ρ, η, we can find easily the
terms M±

ij of the matrices M± (see [6]). This representation is interesting since it shows that we have
access to a whole family of different processes with different characteristics governed by the parameters.
In this paper, we will for example particularly focus on the so-called causal and well-balanced cases, for
which we have respectively M− = 0 and M+ = M−. The case M− = 0 sets a close link between ρij and
ηij whereas the case M+ = M− makes the process time-reversible leading to ηij = 0. The problem of
simulation of such a process has been investigated in [6] using the Chan and Wood algorithm, [9]. Figure
(1) presents some examples in order to illustrate the process.

The mfBm has by definition stationary increments. It is easy to derive the covariance structure of
the increments process. Let ∆x(t) = x(t + 1) − x(t) be this process (with increments of size 1) that we
will refer to the multivariate fractional Gaussian noise. Then

γij(h) := E[∆xi(t)∆xj(t+ h)] (7)

=
σiσj

2

(
wij(h− 1)− 2wij(h) + wij(h+ 1)

)
. (8)

The asymptotic behavior has been studied in [6, 12]. We have as |h| → +∞

γij(h) ∼ σiσj |h|Hi+Hj−2κij(sign(h)) (9)

with

κij(sign(h)) =

{
(ρij − ηijsign(h))(Hi +Hj)(Hi +Hj − 1) if Hi +Hj 6= 1,
η̃ijsign(h) if Hi +Hj = 1.

(10)

We recover here the usual behavior of the scalar fGn: each component of the mfGn can be short or long-
range dependent if its corresponding Hurst parameter is smaller or greater than 1/2, respectively. But
in the multivariate case, long-range (inter)dependence can also appear in the cross-covariance. Indeed,
from (9) we easily conclude that γij(h) is not summable as soon as Hi+Hj ≥ 1, a case which can appear
in three situations:

1. Hi = 1/2 = Hj

2. Hi < 1/2 and Hj > 1−Hi

3. Hi > 1/2 and Hj > 1/2

In those cases, some troubles may appear when it comes to infer parameters of the models from data.
Indeed, long-range dependence may lead to very slow convergence of estimators.

As already observed in many works [19, 41, 11], recoursing to wavelet types of transformation is an
elegant way to overcome the problem. Indeed, using wavelet types of transformation with a correctly
chosen filter allows to extract the stationary part from the fBm and allows us to “whiten” the increments.
We describe such an approach in the following section.

2.2 Discrete filtering technique and its consequence on the mfBm

In the identification problem, we suppose to have access to a sampled version of the mfBm. We thus turn
to discrete time. Let ℓ and q be two positive integers. We consider the following set of filters Aℓ,q:

Aℓ,q =
{
(ak)k∈Z : ak = 0, ∀k ∈ Z

−,∗ ∪ {ℓ+ 1, . . . ,+∞} and
∑

k∈Z

klak = 0, ∀l = 0, . . . , q − 1
}
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Figure 1: Examples of discretized sample paths of a well-balanced (ηij = 0) mfBm of length n = 1024, with
p = 20 components. The Hurst exponents are equally spaced in [0.3, 0.4] (upper plot), [0.6, 0.7] (middle plot) and
[0.4, 0.8] (bottom plot). The correlation parameters are set to 0.7 (upper and middle plot) and to 0.3 (bottom
plot). The components are translated artificially in the upper plot for the sake of visibility.
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Typical examples are the difference filter δl,0 − δl,1 and its compositions, Daubechies wavelet filters, and
any known wavelet filter with compact support and a sufficient number of vanishing moments.

For a ∈ Aℓ,q and an integer m ≥ 1 we define the mth dilated version of a, say am as

amk =

{
ak/m if k ∈ mZ

0 if k 6∈ mZ

Evidently, a1 = a and am ∈ Aℓ,q for any m. The mth dilated version is thus simply obtained by
oversampling a by a factor of m, i.e. by adding m− 1 zeros between each of the first ℓ+1 coefficients of
the impulse response ak.

Let x(t) be a mfBm in discrete time. We mean by this that we have at hand a collection of samples
regularly taken from a continuous time mfBm. Let xm be the signal obtained by filtering x with filter
am. Since x is multivariate, xm is also, and its components are the components of x filtered by am,
xm(t) = (xm

1 (t), . . . , xm
p (t))t where

xm
i (t) =

∑

k∈Z

amk xi(t− k),

x being Gaussian with zero mean, xm is also. Now we have

γm1,m2

ij (h) := E[xm1

i (t)xm2

j (t+ h)]

=
∑

k,l∈Z

am1

k am2

l rij(t− k, t+ h− l)

= −σiσj

2

∑

k,l∈Z

am1

k am2

l wij(h+ k − l).

The last equation is obtained since for any member of Aℓ,q,
∑

l∈Z
al = 0. Using the definition of am and

of wij we get

γm1,m2

ij (h) = −σiσj

2

∑

k,l∈Z

akal
(
ρij − ηijsign(h+m1k −m2l)

)∣∣h+m1k −m2l)
∣∣Hi+Hj

(11)

The behavior of γm1,m2

ij (h) has been studied in [12] in the case of the continuous wavelet analysis of the
continuous time mfBm. The result proved in Proposition 7 of the referenced paper can be developed
also in the same way in the case of discrete wavelet transform or in the setting used here. We thus state
without proof the following expansion and its consequence on the summability of |γm1,m2

ij (·)|α for α ∈ N
∗.

Proposition 2

(i) As |h| → +∞, the following equivalence holds for any m1,m2 ≥ 1 and any a ∈ Aℓ,q

γm1,m2

ij (h) ∼ −σiσj

2
κ(a, q)|h|Hi+Hj−2qτij(h)

where κ(a, q) :=
(
2q
q

)
(m1m2)

q |∑k k
qak|2 and

τij(h) =





(ρij − ηijsign(h))
(
Hi+Hj

2q

)
if i = j and Hi 6= 1/2

or i 6= j and Hi +Hj 6= 1
η̃ijsign(h)
2q(2q−1) if Hi +Hj = 1 and Hi 6= 1/2.

(ii) Let us denote by H∨ := max(H1, . . . , Hp), then for any α ∈ N
∗

q > H∨ +
1

2α
⇒ γm1,m2

ij (·) ∈ ℓα(Z), ∀i, j = 1, . . . , p. (12)
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Choosing the filter δl,0 − δl,1 allows us to recover (9). The interest of filtering is revealed by taking
higher order filters. Indeed, for a filter with two zero moments, the cross-covariance will be summable
for all the possible values of the Hurst exponents. In some sense, the filtering aims at reducing the
dependence of the cross-covariances function along time. Let us add that the key-ingredient for obtaining
a central limit theorem for our proposed estimators is the square summability of all the cross-covariances
functions. As stated, in (12), this will be realized if q = 1 and H∨ < 3/4 or as soon as q ≥ 2.

We now turn to the core of the paper.

3 Estimation method

From now on, we assume having at our disposal a sample path of a mfBm (with p > 1 components)
regularly sampled at times t = 1, . . . , n. For the sake of simplicity, we shall also restrict ourselves on the
most interesting case Hi +Hj 6= 1, ∀i, j = 1, . . . , p.

3.1 Basic identities

The estimation principle relies on the covariance (11) for a given m = m1 = m2 ≥ 1. We have

γm
ij (h) := γm,m

ij (h) = −σiσj

2

∑

k,l∈Z

akal
(
ρij − ηijsign(h+m(k − l))

)∣∣h+m(k − l))
∣∣Hi+Hj

.

In particular, at lag 0 we obtain

γm
ii (0) = m2Hiσ2

i

(
− 1

2

∑

k,l∈Z

akal
∣∣k − l

∣∣2Hi

)
(13)

γm
ij (0) = mHi+Hjρijσiσj

(
− 1

2

∑

k,l∈Z

akal
∣∣k − l

∣∣Hi+Hj

)
. (14)

To obtain (13), we have made use of the fact that
∑ℓ

k,l=0 sign(k − l)|k − l|Hi+Hj = 0. We note that
the parameters of interest appears in the slope of the log covariance at lag 0 when considered as a
function of logm. To obtain such a relation for the remaining parameters ηij , we must remember that
these parameters characterize the time asymmetry of the process. Since for a Gaussian process, time
reversal invariance is equivalent to γij(h) = γji(h), ∀i, j, it is tempting to extract ηij from differences like
γij(h)− γji(h). Indeed, we have

γm
ij (mℓ) = mHi+Hjσiσj(ρij − ηij)

(
− 1

2

∑

k,l∈Z

akal
∣∣ℓ+ k − l

∣∣Hi+Hj

)
,

where we have used the fact that the filters are zero as soon as k > ℓ and thus sign(ℓ+ k − l) = 1 in the
double sum. Let us introduce the function

πa
ij(h) := −1

2

∑

k,l∈Z

akal
∣∣h+ k − l

∣∣Hi+Hj
,

where the indices i, j correspond to the fact that π depends on the corresponding Hurst exponents. Let
us underline that for all Hi, Hj ∈ (0, 1), πa

ij(0) > 0 for any filter a. We thus have obtained the following

p2 equations

γm
ii (0) = m2Hiσ2

i π
a
ii(0), ∀i = 1, . . . , p (15)

γm
ij (0) = mHi+Hjρijσiσjπ

a
ij(0), ∀i = 1, . . . , p, j > i (16)

γm
ij (mℓ)− γm

ji (ml) = 2mHi+Hjηijσiσjπ
a
ij(ℓ), ∀i = 1, . . . , p, j > i (17)

7



Equations (15) and their wavelet counterparts in the scalar case have been used by many people to
estimate the Hurst exponent (e.g. [19, 41, 11] to cite some but a few). The two others are direct extension
and are going to be used in the sequel to identify the mfBm.

At this point, the question “which parameters do we want to estimate and how” must be asked. If
we want to only estimate Hurst parameters H1, . . . , Hp, do we have to use only the p equations (15),
or do we gain something by adding the p(p− 1) others? The parameters H will be estimated by linear
regression (in the log variables). Can we use these regressions to estimate the other parameters σ, ρ and
η, or is it better to consider usual empirical estimates?

We try to adress all these questions in the following.

3.2 Methodology

We apply the filtering for all values of m taken from a discrete set M of cardinal |M|, and we thus obtain
the multivariate signal xm(t). We then evaluate the empirical estimators

Cm
ij (h) =

1

n−mℓ− h

n−h∑

t=mℓ+1

xm
i (t)xm

j (t+ h), (18)

Cm
ii (0) thus corresponding to the empirical moment of order 2 of the signal xm

i . As we may expect that
Cm

ij (h) correctly estimates γm
ij (h), we will use this estimator to estimate the parameters of the model.

Precisely, inspired by (15,16,17), let us introduce

vmi := logCm
ii (0) αi := log

(
σ2
i π

a
ii(0)

)
,

cmij := log
∣∣Cm

ij (0)
∣∣ µi := log

(
σiσj |ρij |πa

ij(0)
)
,

dmij := log 0.5
∣∣Cm

ij (mℓ)− Cm
ji (mℓ)

∣∣ νi := log (σiσj |ηijπa
ii(ℓ)|) .

(19)

We have to underline here that it is assumed that none of the parameters ρij and ηij is equal to zero.
This could be a limitation since zero expresses the absence of correlation or the time reversibility but as
we will see later the derived estimates of ρij and ηij actually do not depend on this assumption. Then,
we can then write

vmi = 2Hi logm+ αi + εmvi ∀ i = 1, . . . , p ,
cmij = (Hi +Hj) logm+ µi + εmcij ∀ i = 1, . . . , p; j > i ,

dmij = (Hi +Hj) logm+ νi + εmdij
∀ i = 1, . . . , p; j > i.

The noise terms ε measure the deviation of the model and can be written as

εmvi = vmi − log γm
ii (0),

εmcij = cmij − log
∣∣γm

ij (0)
∣∣,

εmdij
= dmij − log 0.5

∣∣γm
ij (mℓ)− γm

ji (mℓ)
∣∣.

Let us now consider the vectors H = (H1, . . . , Hp)
t, α = (α1, . . . , αp)

t, µ = (µij)
t
i=1,...,p;j>i, ν =

(νij)
t
i=1,...,p;j>i. For these two last, the ordering chosen to create a vector is of no importance. However,

to fix ideas we will use the identification k(i, j) = (i−1)p+j−i(i+1)/2 which corresponds to a numbering
following rows. In all the following, we will often switch from matrix notation to the vector one, but the
context will make it clear.

We suggest to obtain the above parameters by minimizing the following weighted mean square error
objective

f(H,α, µ, ν) =
∑

m∈M


wv

p∑

i=1

(
εmvi
)2

+ wc

p∑

i=1,j>i

(
εmcij
)2

+ wd

p∑

i=1,j>i

(
εmdij

)2

 .

8



The interest of this objective function is in the fact that it combines the three different types of “obser-
vations”, empirical variances, empirical correlation and empirical measure of asymmetry. The weights
allow us to consider the advantage of including one of these types of observation in the inference problem.
For example, in the usual setting, we will set wc = wd = 0 and this will allow us to estimate the Hurst
exponents. Considering only wd = 0 allows to add in the observation the empirical correlation in the
hope that it will ameliorate the estimation of the Hurst exponents.

We now solve the optimization problem

(
Ĥ, α̂, µ̂, ν̂

)
= argmin f(H,α, µ, ν).

The details of the calculation are provided in section (6.1). To write down the result, we introduce the
vector of R|M|, L := (logm1, . . . , logm|M|)

t. The variables vi, cij and dij without exponent m stand for

the vectors of R|M| collecting respectively vmi , cmij and dmij for m = m1, . . . ,m|M|). Furthermore, define

for any vector x ∈ R
|M| its mean x̄ := |M|−1

∑
m∈M xm and the centered vector x̆ = x − x̄. Then, the

parameters optimizing f are given by

α̂k = v̄k − 2ĤkL̄, (20)

µ̂ij = c̄ij − (Ĥi + Ĥj)L̄, (21)

ν̂ij = d̄ij − (Ĥi + Ĥj)L̄, (22)

Ĥk =

(
L̆tL̆

)−1
L̆t

λ

{
2vk +

∑

j 6=k

(wcckj + wddkj)

− (wc + wd)(
λ+ p(wc + wd)

)
p∑

i=1

(
2vi +

∑

j 6=i

(wccij + wddij)
)}

, (23)

where λ := 4wv + (p− 2)(wc + wd). Note that setting wc = wd = 0 and wv = 1, we find for Hk

Ĥk =
L̆tvk

2L̆tL̆
, (24)

which is the estimator found when estimating the Hurst exponent of a scalar fBm [11]. Equation (23)
appears therefore as a generalization for which the estimates are still independent of the other parameters
(σ2, ρ, η). When p = 2, wv = wc = 1, wd = 0, it takes for example the simple form:

Ĥk =
L̆t
{
10vk − 2vj + 4ckj

}

24 L̆L̆t
, j 6= k.

To conclude the identification of the mfBm, parameters σi, ρij , ηij , can be estimated by plugging
estimators (20,21,22) into Equation (19). We then obtain

σ̂2
i =

eα̂i

π̂a
ii(0)

, (25)

|ρ̂ij | =
eµ̂ij

σ̂iσ̂j π̂a
ij(0)

=
∏

m


 |Cm

ij (0)|√
Cm

ii (0)C
m
jj (0)




1/|M|

×

√
π̂a
ii(0)π̂

a
jj(0)

π̂a
ij(0)

, (26)

|η̂ij | =
eν̂ij

σ̂iσ̂j |π̂a
ij(ℓ)|

=
1

2

∏

m


 |Cm

ij (mℓ)− Cm
ji (mℓ)|

√
Cm

ii (0)C
m
jj (0)




1/|M|

×

√
π̂a
ii(0)π̂

a
jj(0)

|π̂a
ij(ℓ)|

, (27)
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where π̂a
ij(h) stands for π

a
ij(h) in which parameters Hi are replaced by their estimator Ĥi. or

π̂a
ij(h) = −1

2

∑

k,l∈Z

akal
∣∣h+ k − l

∣∣Ĥi+Ĥj
.

The r.h.s. of (26) and (27) are directly obtained from (25) and (21,22). These last forms are very
interesting, since they are not suffering from the log-transformation and therefore if the model is such that
ρij or ηij equals zero, such parameters can still be estimated (and thus tested). Noting from (16,17) that
sign(E[Cm

ij (0)]) = sign(γm
ij (0)) = sign(ρij) and sign(E[Cm

ij (mℓ)− Cm
ji (mℓ)]) = sign(γm

ij (mℓ)− γm
ji (mℓ)) =

sign(ηij), then estimates of ρij and ηij can be defined as follows

ρ̂ij = |ρ̂ij | × sign(Cm
ij (0)) and η̂ij = |η̂ij | × sign(Cm

ij (mℓ)− Cm
ji (mℓ)), (28)

for any m ≥ 1. Also, letting |M| = 1 allows us to recover the natural empirical estimates (obtained with
one filter)

ρ̂ij =
Cm

ij (0)√
Cm

jj (0)C
m
jj (0)

×

√
π̂a
ii(0)π̂

a
jj(0)

π̂a
ij(0)

and η̂ij =
Cm

ij (ℓ)− Cm
ji (ℓ)√

Cm
jj (0)C

m
jj (0)

×

√
π̂a
ii(0)π̂

a
jj(0)

π̂a
ij(ℓ)

. (29)

In some sense, (26,27) can be viewed, up to a factor and a sign, as the geometric mean of

(
|Cm

ij (0)|√
Cm

ii
(0)Cm

jj
(0)

)

m∈M

and

(
|Cm

ij (mℓ)−Cm
ji (mℓ)|√

Cm
ii

(0)Cm
jj
(0)

)

m∈M

. Finally, note that we use π̂ instead of π in the renormalization of the esti-

mators, and therefore, these estimators are coupled with the regression estimators of the Hurst exponents.

4 Convergence analysis

We concentrate in this section on the convergence of the estimators defined by equations (23), (25),

(26), (27) and (28). We denote by θ =
(
Ht, (σ2)t, ρt, ηt

)t
the whole set of parameters where the vec-

tors H , σ2,ρ and η contain all the parameters to be estimated (a vector of length p(p + 1)), stored

in an appropriate order. Likewise, let θ̂ be the corresponding estimator with components ordered as
the ones of θ. Finally note our abuse of notation: the dependence on n, the number of observations,
is not explicit in the notation of the estimators. We begin by addressing the almost sure convergence of θ̂.

Proposition 3 For any filter a ∈ Aℓ,q, any set of dilations M and whatever the values of the weights

wv, wc and wd are, then the vector θ̂ converges almost surely towards θ, as n → +∞.

Let us underline that the almost sure convergence holds whatever the number of vanishing moments
for the filter a chosen, that is for all q ≥ 1, and for all the values of the Hurst exponents. A similar result
was already proved when p = 1, i.e. for a scalar fBm ([11], Proposition 2 (i)). The proposition is proved
in section (6.2). The proof relies mainly on proving the almost sure convergence of Cm

ij (h) to γm
ij (h).

We now state the central limit theorem for the estimators. To state it, we need the additional
definitions and notation: let

Cn :=
(
Cm

ii (0), C
m
ij (0), C

m
ij (mℓ), Cm

ij (−mℓ), (m ∈ M, i, j = 1, . . . , p, j > i)
)t

(30)

γ = E[Cn] =
(
γm
ii (0), γ

m
ij (0), γ

m
ij (mℓ), γm

ij (−mℓ), (m ∈ M, i, j = 1, . . . , p, j > i)
)t
.
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In these notation, the vectors of length DM,p := |M|p+ 3|M|p(p− 1)/2 = |M|p(3p− 1)/2 are ordered
as follows: first we put the empirical variances starting with the component x1 for all the values of m
and then the component x2,. . . . Then, we place the empirical covariances at lag zero (with the same
convention: i, j fixed, and m is varying), then the empirical covariances at lag mℓ and finally the ones at
lag −mℓ.

Now, we note that the definition of the estimators by equations (23, 25, 26, 27, 28) define unambigu-

ously a function g : RDM,p → R
p(p+1) that maps the vector Cn to the vector θ̂. In the following result,

the notation
d→ stands for the convergence in distribution as n → +∞. Recall that the quantity H∨

denotes the largest Hurst exponent, that is H∨ := maxi=1,...,pHi.

Proposition 4 Under the notation and assumptions of Proposition 3 with the order of the filter, q,
satisfying q > H∨ + 1/4, then
(i) √

n(Cn − γ)
d→ N (0,Σ), (31)

where Σ is the DM,p ×DM,p matrix explicitly given by (44) and (45) p.22.
(ii) The vector θ satisfies θ = g(γ), g is differentiable in γ and

√
n
(
θ̂ − θ

)
d−→ N

(
0,∇g(γ)Σ∇g(γ)t

)
, (32)

where ∇g(γ) denotes the gradient of g (a p(p+ 1)×DM,p matrix) evaluated at γ.

The matrix Σ is quite complex but it may be evaluated (or at least approximated because it containes
infinite series) in order to build asymptotic confidence intervals. The most interesting point of this result

is that the rate of convergence of θ̂ is the optimal one,
√
n (for the whole set of parameters and whatever

the values of the weights wv, wc, wd) as soon as q ≥ 2 (see also remark after Proposition 2). The proof
of this proposition is given in section 6.3. It mainly consists in establishing (i). The second point (ii)
will be derived using the classical delta method. We underline that no assumption is made on γ in (ii).
This means that the differentiability is true for all the values of the parameter vector θ (such that the
models exists). In particular, there is no differentiability problem when ρij and/or ηij equals zero. This
may allow us to use (32) to test the absence of correlation at lag zero or to test the time reversibility of
the process.

In the next section, we show via experiments that when interested in estimating solely the Hurst
exponents, the best strategy is to set wc and wd to 0. In this case, the gradient vector of g evaluated at

γ reduces to terms of the form L̆t

2L̆tL̆
1

γm
ii

(0) and, with little algebra, we may derive the more simple and

nice central limit theorem

√
n(Ĥ −H)

d−→ N
(
0,

1

4(L̆tL̆)2
(Ip ⊗ L̆)tΣ̃(Ip ⊗ L̆)

)
(33)

where Σ̃ is the Mp×Mp matrix with elements

2
∑

j∈Z

γm1,m2

i1i2
(j)2

γm1

i1i2
(0)γm2

i1i2
(0)

.

And we end this section by remarking that when p = 1, (33) is in agreement with Proposition 4 (ii)
obtained in [11].
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5 Experiments

The previous theoretical results are important since they insure convergence at a good rate. However,
the complexity of the variance terms makes the results difficult to exploit, especially when we want to
compare different estimators corresponding to different choices of the weights wv,c,d. Hence, we now turn
to some Monte-Carlo experiments to study the estimators, and we present an illustration of the method
on a high dimensional example.

5.1 Experimental study of convergence

Depending on the weights used in the objective function, we may study 8 different situations. However,
all of them are not a priori useful and do not perform well (a posteriori). For example, setting wv = 0
leads to very poor performance and the corresponding cases are not studied. We limit ourselves to the
three situations for the estimation of the Hurst exponents:

1. wv = 1, wc = wd = 0: this case corresponds to applying the univariate estimator to each of the
components of the mfBm. To indicate this situation, we add a v in exponent to the estimators. For
example we will study Ĥv.

2. wv = 1 = wc, wd = 0: in this case, we study the advantage of including the empirical correlation in
the observation set of the linear regression. To indicate this situation, we add a c in exponent to
the estimators.

3. wv = 1 = wc = wd: in this setting, the empirical measure of asymmetry is also taken into account
in multiple regression. To indicate this situation, we add a d in exponent to the estimators.

We have generated 100 snapshots of length n = 1000 for different cases of mfBm: different Hurst
exponents, different dimensions, different correlation coefficients, for the causal, well-balanced and general
mfBm. For the causal case, parameter ηij is dependent on ρij , in the well-balanced case it is zero, and we
have set it to 0.2×(1−Hi−Hj) for all i, j in the general case. The range of the parameters is constrained
by the existence conditions recalled by equation (5). For each case described, we have evaluated the Mean
Square Error (MSE) of the estimators in the v, d, c cases reported above. For the correlation and the
asymmetry coefficient, we have studied the v and d cases only, as well as the empirical estimators, in
which parameters Ĥv are used in the renormalization. The hyperparameters used in this simulation study
are M = {1, . . . , 5} and the generic filter a = db4 corresponding to a wavelet Daubechies filter with two
zero moments. These choices are guided by the fact that they provided good results when dealing with
a monovariate fBm, [11]. Other parameters have been tried leading to the same general conclusions.

The results are reported in tables 1,2 and 3. The main conclusions from these experiments are the
following:

• Regarding the estimation of the Hurst exponents, adding the empirical correlation as an observation
over which regression is performed does not improve the performance of the scalar estimator applied
to each of the components. If Ĥv and Ĥc perform equally well for high correlation coefficient, the
performance of the latter is at least one order of magnitude less than the performance of the former
when the correlation coefficient goes to zero. The performance of Ĥv appears almost independent of
ρ. The same conclusion holds for Ĥd. However, the estimators including the empirical asymmetry
is considerably degraded, at least two orders of magnitude worse.

• The estimation of ρij using the renormalized empirical estimator or the regression estimator based
on the variance data only (when plugging in the estimate of H) leads to the same level of perfor-
mance.
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• Parameters ηij are very difficult to estimate, at least with the method adopted here. The difficulty is
conformed in figure 2 where the MSE is plotted in a log-log plot of the estimated standard deviation
versus the sample size. If

√
n is clearly observed for the other estimators, it is not (almost) observed

by η̂ij , at least for the sample size up to 214 points.

Thus, in the following, we focus on the convergence of the estimators of the Hurst exponents, the
correlation and the variance (Ĥ, σi, ρij , ηij)

v.
We have already remarked that the estimators of the Hurst exponents seem almost independent of

the correlation. We thus study the behavior of the estimators with respect to the correlation. For p = 2,
we use Monte-Carlo simulation (1000 snapshot of 1024 samples each, m = 5 dilations used) to plot the
MSE of each estimator as a function of ρ12. Results are displayed in figures (3). In the left plot, we study
the causal case for H1 = 0.3 and H2 = 0.4, whereas the right plot is concerned with the well-balanced
case with H1 = 0.3 and H2 = 0.8. In the left plot, the admissible range of ρ is almost all the interval
(−1, 1), whereas it is restricted to approximately (−0.5, 0.5) in the case of the right plot.

The main conclusion of these plots is the fact that the estimation of the Hurst exponents and of the
variances are almost not dependent on the correlation coefficient between the components of the mfBm.
However, the quality of the estimation of the correlation coefficient depends on the actual value of the
coefficient, and depends on it in a rather strange non monotone way. Indeed, the MSE increases with ρ
for moderate values and then decreases.

5.2 A high dimensional example

As a conclusion we present an illustration of the model and its identification in the context of complex
networks. Suppose that we observe a p = 100 dimensional fBm obtained from a graph as follows. Let A
be the lower triangular part of the adjacency matrix of the graph (i.e. Aij = 1 ⇔ nodes i and j < i are
connected, and Aij = 0 otherwise). Then, each non zero elements is given a random value, and we use
ρ = (I−A)−1(I−A)−t as the correlation matrix of the mfBM. The rationale hidden there is the following.
Let X be a 100 dimensional vector such that X = AX+B where B is 100 dimensional Gaussian random
vector with zero mean and identity correlation matrix. Then X has obviously ρ as correlation matrix.

As underlying graph, we choose a Watts-Strogatz model. A Watts-Strogatz network is a model of
complex network that jointly presents the property of small-world effect (small mean geodesic distance)
and the property of high clustering (neighbours of a node are strongly connected) [42]. This model was
one of the first that adequately described graphs with these two properties. It is in a sense in between
Erdös-Rényi random graph (low clustering and small mean geodesic distance) and regular grids (high
clustering but low small mean geodesic distance). It is obtained by randomly rewiring edges in a regular
grid. In the example depicted here (see figure 4), we use a ring of nodes where each nodes is connected
backward and forward with two neighbors, and each edges is rewired to a randomly chosen node (possibly
the same) independently of the others with probability 0.2 (self-connections are prohibited). This gives
the adjacency matrix we use to create a 100 dimensional fBm as described above.

The resulting sample paths are illustrated in figure (4) where we have plotted in some insets some
components. For example, component 19 with Hurst exponent 0.3 is positively correlated with component
76, which Hurst exponent is slightly greater than 0.7, but negatively correlated with 18 which Hurst
exponent is 0.64. Furthemore, since H19 +H76 > 1, the two components are long-range cross-correlated,
whereas 18 and 19 are short-range correlated.

We have generated a sample path of length 8192 samples, on which we apply our estimation procedure.
Since the procedure does not depend on the dimension, we of course obtain good results for the estimation
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Figure 2: Estimated standard deviation of the estimators obtained from the regression as a function of the size
of the sample. The plot is a log-log plot. The estimators of H is Ĥv, and this is used in the estimation of the
others. We observe a clear 1/

√

n behavior. This rate is confirmed by the theoretical analysis. Note that this
result is not clear for η̂. The sample size should be much gretear to validate or invalidate this rate. Parameters
chosen here : H1 = 0.3, H2 = 0.8, σ1 = 2, σ2 = 1, ρ12 = 0.4, η = 0.

Figure 3: Estimated mean square error of the estimators obtained from the regression as a function the correlation
coefficient. Left plot: H1 = 0.3, H2 = 0.4, σ1 = 2, σ2 = 1, causal case. Right plot: H1 = 0.3, H2 = 0.8, σ1 =
2, σ2 = 1 well-balanced case. The inset depicts a zoom for the MSE of ρ̂ vs ρ. Note that in the right plot, ρ can
not vary in the whole interval (−1, 1) because otherwise the model is undefined.
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of the parameters. In figure (5), we plot the true vector H and its estimation, as well as the correlation
ρi,i+1 and its estimation. We also show in figure (6) the true partial correlation matrix and its estimation
via the inverse of ρ̂. Recall that in the Gaussian case, a zero partial correlation between two components is
equivalent to the independence between the two components conditionnally to the remaining components.
This could be used to infer dependence link between the components of the process, as is done for example
in [3] for connectivity studies in the brain [36].

6 Proofs

6.1 Optimization of f

We differentiate f with respect to all the parameters and set the derivatives to zero to obtain necessary
conditions for optimality. For parameters α we solve and obtain immediately

α̂k =
1

|M|
∑

m∈M

[vmk − 2Ĥk logm] (34)

= v̄k − 2ĤkL̄, (35)

where L = (logm1, . . . , logm|M|)
t, vk = (vm1

k , . . . , v
m|M|

k )t, and x̄j = |M|−1
∑

m∈M xm
j . Likewise, we

easily get

µ̂ij = c̄ij − (Ĥi + Ĥj)L̄ (36)

ν̂ij = d̄ij − (Ĥi + Ĥj)L̄, (37)

where µij = (µm1

ij , . . . , µ
m|M|

ij )t. Obtaining parameters Ĥk requires a little bit more work. Differentiating
f with respect to Hk and setting the result to zero leads to

1

|M|
∑

m∈M

wv(v
m
k − 2Hk logm− αk)(2 logm) +

1

|M|
∑

m∈M

wc

∑

j 6=k

(
cmkj − (Hj +Hk) logm− µkj) logm +

1

|M|
∑

m∈M

wd

∑

j 6=k

(
dmkj − (Hj +Hk) logm− νkj) logm = 0.

Introducing the centered vector x̆ = x− x̄ and replacing in the previous equation parameters αk, µkj and
νkj by their estimate (35,36,37), we obtain

2wv

(
L̆tv̆k − 2HkL̆

tL̆
)
+ wc

(
L̆tµ̆ij − (Hj +Hk)L̆

tL̆
)
+ wd

(
L̆tν̆ij − (Hj +Hk)L̆

tL̆
)
= 0.

Isolating H terms leads to

Hk(4wv + (p− 2)(wc + wd)) + (wc + wd)

d∑

j=1

Hj =
(
L̆tL̆

)−1
L̆t
{
2v̆k +

∑

j 6=k

(wcc̆kj + wdd̆kj)
}
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Figure 4: Watts-Strogatz graph used to model correlation between the components of a 100 dimensional mfBm.
The two south-east inset depict components 18 and 19 that are in the example negatively correlated ρ18,19 = −0.09,
with H18 = 0.64 and H19 = 0.30. The north-west inset depict component 76, positively correlated with 19,
ρ76,19 = 0.13, with Hurst exponent H76 = 0.7.

Figure 5: Estimation of the Hurst exponents and of ρi,i+1 for the high dimensional example described in Sec-
tion 5.2.
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Figure 6: True and estimated partial correlation matrix as the inverse of the correlation matrix for the high
dimensional example described in Section 5.2.
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Collecting the p equations into a vector, we have to solve
(
(4wv + (p− 2)(wc + wd))Ip + (wc + wd)Jp

)
H = X (38)

where the kth component of X is
(
L̆tL̆

)−1
L̆t
{
2v̆k+

∑
j 6=k(wcc̆kj+wdd̆kj)

}
, where Ip is the p dimensional

identity matrix and Jp is the p dimensional matrix which entries are all equal to 1. Now consider the
auxiliary result

Lemma 5 Let λ, λ′ > 0. The (p, p) matrix B = λIp +
1
p (λ

′ −λ)Jp has eigenvalues λ and λ′ of respective
multiplicity p− 1 et 1. The inverse of B is thus

B−1 =
1

λ
Ip +

1

p

(
1

λ′
− 1

λ

)
Jp.

Applying Lemma 5 (for which the proof is omitted) to (38) and noticing that for any z ∈ R
|M|, L̆tz̆ = L̆tz,

we obtain (23).

6.2 Proof of Proposition 3

Proof. The only thing to prove is that for fixed h, for all i, j = 1, . . . , p and m ∈ M,

Cm
ij (h)

a.s.→ γm
ij (h), (39)

as n → +∞ (the notation
a.s.→ stands here and in the following for the almost sure convergence). Indeed,

if (39) is true, the following convergences hold

vmi
a.s.→ log γm

ij (0) = 2Hi logm+ αi,

cmij
a.s.→ log |γm

ij (0)| = (Hi +Hj) logm+ µij ,

dmij
a.s.→ log 0.5|γm

ij (mℓ)− γm
ji (mℓ)| = (Hi +Hj) logm+ νij .

Plugging these results in (23) and noting that L̆t1 = 0 leads with a little computation to the convergence

of Ĥk to Hk for all k and then to the convergence of α̂k to αk. The convergences of σ2, ρ and η follow
from their respective definition and (39) applied to h = 0,±mℓ.

Let us now focus on the proof of (39). Define y(k) = xm
i (k)xm

j (k + h) and assume that y(·) is
observed at times 1, . . . , n. This is not a loss of generality since for fixed m, ℓ and h, n−mℓ − h ∼ n as
n → +∞. Let y := E[Y (k)] = γm

ij (h) and yn := n−1
∑n

k=1 y(k) − y. From Theorem 6.2 of [16], p. 492,
establishing a condition under which almost sure convergence is implied by mean-squared convergence for
the convergence of empirical means of discrete stationary processes, the proof will be ended if we manage
to prove that E[y2n] = o(1). Since y(·) is a stationary sequence

E[y2n] =
1

n2

n∑

k=1

(n− 1− |τ |)ry(τ) ≤
1

n

n∑

τ=1

|ry(τ)|, (40)

where ry is the covariance function of y(·) given by ry(τ) := E[y(k)y(k + τ)]. Using for example Isserlis
formula, [23], we can derive

ry(τ) = γm
ii (τ)γ

m
jj (τ) + γm

ij (τ + h)γm
ji (τ − h). (41)

Proposition 2 (i) states in particular that γij(τ) = O(|τ |Hi+Hj−2q) as |τ | → +∞. Moreover, let us recall
that for H ∈ (0, 1)

1

n

∑

|τ |≤n

1

(1 + |τ |)2(2H−2q)
=





O(1/n) if q ≥ 2 or q = 1 and H < 3/4.
O(log n/n) if q = 1 and H = 3/4.
O(1/n2−2H) if q = 1 and H > 3/4.

(42)
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From (40) and (41), then using Cauchy-Schwartz inequality and (42) (with H = Hi, Hj , (Hi + Hj)/2)
allows us to conclude that E[y2n] = o(1).

6.3 Proof of Proposition 4

The proof of the central limit theorem is done in three steps. First we prove in Lemma 6 a central
limit theorem for Cm

ij (h), then a central limit theorem for the vectors containing all the data used in the
regression, i.e. Cm

ij (0), C
m
ij (ml) and Cm

ji (ml), i.e. the proof of Proposition 4 (i). Finally we apply the
delta method to prove the central limit theorem for the estimators. We thus begin with the first limit
theorem, stated as a lemma:

Lemma 6 Let i, j = 1 . . . , p, m ∈ M and h ∈ {0,mℓ} and let a ∈ Aℓ,q with q > max(Hi, Hj) + 1/4.
There exists τ2 < +∞ such that the following convergence in distribution holds as n → +∞

√
n
(
Cm

ij (h)− γij(h)
) d−→ N (0, τ2). (43)

We note that a central limit theorem also holds for Cm
ij (−mℓ) since we recall that Cm

ij (−mℓ) = Cm
ji (mℓ).

Proof. From the definition (18),

Cm
ij (h)− γm

ij (h) =
1

n−mℓ− h

n−h∑

k=mℓ+1

[
xm
i (k)xm

j (k + h)− γm
ij (h)

]

=
1

n−mℓ− h

n−mℓ−h∑

k=1

f(y(k)),

where y(k) = (xm
i (k +mℓ), xj(k +mℓ+ h))

t
for k = 1, . . . , n−mℓ− h and where

f : R
2 → R

y = (y1, y2)
t 7→ y1y2 − γm

ij (h).

Since Cm
ij (h)−γm

ij (h) can be expressed as a centered empirical mean, the result is based on the application
of a multivariate central limit theorem for non-linear functional of stationary Gaussian sequences obtained
by [4], Theorem 4. For this, note first that the Hermite rank of the function f (in the sense of [4], Equation
(2.2)) is two. Secondly, the condition on q and Lemma 2 (ii) (with α = 2) ensure that for any i′, j′ = i, j

∑

k∈Z

γm
i′,j′ (k + h)2 =

∑

k∈Z

γm
i′,j′(k)

2 < +∞.

Theorem 4 of [4] can be applied, leading, as n → +∞, to the convergence in distribution of
√
n−mℓ− h(Cm

ij (h)−
γm
ij (h)) to a centered Gaussian random variable with finite variance (that we de not want to explicit here).

The result is obtained since m and h are fixed.

Now, let us focus on the proof of Proposition 4.
(i) To prove this convergence, we follow the Cramèr-Wold device [17] and prove that for any α ∈

R
DM,p , αt

√
n(Cn−γ) converges in distribution to αtZ where Z is a random normal vector. Let α ∈ R

DM,p

be decomposed as follows

α =
(
αm
ii , α

m
ij , α

m,+
ij , αm,−

ij , (m ∈ M, i, j = 1, . . . , p, j > i)
)t
,
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ordered as Cn and γ. Then,

sn := αt(Cn − γ)

=
∑

i

∑

m

αm
ii

1

n−mℓ

n∑

k=mℓ+1

[xm
i (k)2 − γm

ii (0)]

+
∑

j>i

∑

m

{
αm
ij

1

n−mℓ

n∑

k=mℓ+1

[xm
i (k)xm

j (k)− γm
ij (0)]

+αm,+
ij

1

n− 2mℓ

n−mℓ∑

k=mℓ+1

[xm
i (k)xm

j (k +mℓ)− γm
ij (mℓ)]

+αm,−
ij

1

n− 2mℓ

n−mℓ∑

k=mℓ+1

[xm
j (k)xm

i (k +mℓ)− γm
ij (−mℓ)]

}
.

Let M = maxm∈Mm (M < +∞) and define

s̃n :=
1

n− 2Mℓ

n−Mℓ∑

k=Mℓ+1

{∑

i

∑

m

αm
ii [x

m
i (k)2 − γm

ii (0)]

+
∑

j>i

∑

m

{
αm
ij [x

m
i (k)xm

j (k)− γij(0)] + αm,+
ij [xm

i (k)xm
j (k +mℓ)− γij(mℓ)]

+αm,−
ij [xm

j (k)xm
i (k +mℓ)− γij(−mℓ)]

}}
.

Our first aim is to prove that
√
n(sn − s̃n)

P→ 0 as n → +∞ (here and in the following
P→ stands for the

convergence in probability). For this, let us decompose the difference sn − s̃n = d1,n + d2,n where

d1,n :=
∑

i

∑

m

1

n− 2Mℓ

∑

k∈Im

αm
ii [x

m
i (k)2 − γm

ii (0)]

+
∑

j>i

∑

m

1

n− 2Mℓ

∑

k∈Im

αm
ij [x

m
i (k)xm

j (k)− γm
ij (0)]

+
∑

j>i

∑

m 6=M

1

n− 2Mℓ

∑

k∈I±
m

αm,+
ij [xm

i (k)xm
j (k +mℓ)− γm

ij (mℓ)]

+
∑

j>i

∑

m 6=M

1

n− 2Mℓ

∑

k∈I±
m

αm,−
ij [xm

j (k)xm
i (k +mℓ)− γm

ij (−mℓ)],

where form 6= M , Im = {mℓ+1, . . . ,Mℓ}∪{n−Mℓ, . . . , n},I±m = {mℓ+1, . . . ,Mℓ}∪{n−Mℓ, . . . , n−mℓ}
and IM = {n−Mℓ, . . . , n}. The remainder term d2,n is given by

d2,n :=
(m− 2M)ℓ

n− 2Mℓ




∑

i

∑

m

αm
iiC

m
ii (0) +

∑

j>i

∑

m

αm
ijC

m
ij (0)





+
2(m−M)ℓ

n− 2Mℓ

∑

j>i

∑

m 6=M

[αm,+
ij Cm

ij (mℓ) + αm,−
ij Cm

ij (−mℓ)].
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Let e1,n and e2,n be the firt (generic) sum terms of d1,n and d2,n given by

e1,n =
1

n− 2Mℓ

∑

k∈Im

αm
ii [x

m
i (k)2 − γm

ii (0)]

e2,n =
(m− 2M)ℓ

n− 2Mℓ
αm
iiC

m
ii (0).

We now prove that
√
nek,n

P→ 0 (k = 1, 2). The other terms follow similar arguments. Since the sum in
e1,n contains a finite number of Gaussian random variables, V ar[

√
ne1,n] = O(n−1/2), which implies the

convergence of
√
ne1,n to 0 in L2 and so in probability. Finally, since

√
ne2,n = αii

(m−2M)ℓ
n−2Mℓ

√
nCm

ii (0),
Lemma 6 and Slutsky’s Theorem ensure the expected convergence.

As a consequence of the previous computations, we can concentrate ourselves on the asymptotic
normality of s̃n. For this, let us define y(k) = (xm

i (k+mℓ+1), xm
i (k+2mℓ+1), (m ∈ M, i = 1, . . . , p))t

for k = 1, . . . , n− 2Mℓ and

fα : R
2|M|p → R

y = (ymi , ỹmi )t 7→ ∑
i

∑
m αm

ii [(y
m
i )2 − γm

ii (0)] +
∑

j>i

∑
m αm

ij [y
m
i ymj − γm

ij (0)]

+
∑

j>i

∑
m

(
αm,+
ij [ymi ỹmj − γm

ij (mℓ)] + αm,−
ij [ymj ỹmi − γm

ij (−mℓ)]
)
.

Then s̃n can be expressed as the following empirical mean

s̃n =
1

n− 2Mℓ

n−2Mℓ∑

k=1

fα(y(k)).

For any vector α, the Hermite rank of the function fα is 2. Now, similarly as the proof of Lemma 6, we
notice that for all i, j = 1, . . . , p, m1,m2 ∈ M, h < +∞,

∑

k∈Z

γm1,m2

ij (k + h)2 =
∑

k∈Z

γm1,m2

ij (k)2 < +∞,

as soon as q > H∨ + 1/4. We can therefore apply Theorem 4 of [4] and obtain as n → +∞

√
nsn

d−→ N
(
0, τ2 :=

∑

k∈Z

E[fα(y(t))fα(y(t+ k))]

)
.

The variance τ2 is given by τ2 = αtΣα. According to the definition of s̃n, the matrix Σ can be partitioned
into

Σ =




Σ1 Σ12 Σ13 Σ14

Σt
12 Σ2 Σ23 Σ24

Σt
13 Σt

23 Σ3 Σ34

Σt
14 Σt

24 Σt
34 Σ4


 . (44)

The matrix Σ1 is the |M|p × |M|p covariance matrix of the vector containing the xm
i (t)2, Σk (for

k = 2, 3, 4) are the dM,p × dM,p (dM,p = |M|p(p − 1)/2) covariance matrices of the vectors containing
the xm

i (t)xm
j (t), the xm

i (t)xm
j (t +mℓ) and the xm

j (t)xm
i (t +mℓ) respectively. Other matrices are cross-

covariances matrices (with dimension dM,p × dM,p). Thus, the dimension of Σ is DM,p ×DM,p where
DM,p := |M|p+3dM,p = |M|p(3p− 1)/2. Generic elements of these matrices can be evaluated using for
example Isserlis Formula, [23]. The notation used hereafter follow the ordering of the vector Cn (30): the
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indices i, j, i1, j1, i2, j2 vary from 1 to p (such that j > i, j1 > i1, j2 > i2), the indices m1,m2 vary in M

(Σ1)
m1,m2

i,j =
∑

k∈Z
E
[
(xm1

i (t)2 − γm1

ii (0))(xm2

j (t+ k)2 − γm2

jj (0))
]

= 2
∑

k∈Z
γm1,m2

ij (k)2,

(Σ2)
m1,m2

i1,j1,i2,j2
=

∑
k∈Z

E
[
(xm1

i1
(t)xm1

j1
(t)− γm1

i1j1
(0))(xm2

i2
(t+ k)xm2

j2
(t+ k)− γm2

i2j2
(0))

]

=
∑

k∈Z
[γm1,m2

i1i2
(k)γm1,m2

j1j2
(k) + γm1,m2

i1j2
(k)γm1,m2

j1i2
(k)],

(Σ3)
m1,m2

i1,j1,i2,j2
=

∑
k∈Z

E
[
(xm1

i1
(t)xm1

j1
(t+m1ℓ)− γm1

i1j1
(m1ℓ))(x

m2

i2
(t+ k)xm2

j2
(t+m2ℓ+ k)− γm2

i2j2
(m2ℓ))

]

=
∑

k∈Z
[γm1,m2

i1i2
(k)γm1,m2

j1j2
(k + (m2 −m1)ℓ) + γm1,m2

i1j2
(k +m2ℓ)γ

m1,m2

j1i2
(k −m1ℓ)],

(Σ4)
m1,m2

i1,j1,i2,j2
=

∑
k∈Z

E
[
(xm1

j1
(t)xm1

i1
(t+m1ℓ)− γm1

i1j1
(−m1ℓ))(x

m2

j2
(t+ k)xm2

i2
(t+m2ℓ+ k)− γm2

i2j2
(−m2ℓ))

]

= (Σ3)
m1,m2

j1,i1,j2,i2

(Σ12)
m1,m2

i,i1,j1
=

∑
k∈Z

E
[
(xm1

i (t)2 − γm1

ii (0))(xm2

i1
(t+ k)xm2

j1
(t+ k)− γm2

i1j1
(0))

]

= 2
∑

k∈Z
γm1,m2

ii1
(k)γm1,m2

ij1
(k),

(Σ13)
m1,m2

i,i1,j1
=

∑
k∈Z

E
[
(xm1

i (t)2 − γm1

ii (0))(xm2

i1
(t+ k)xm2

j1
(t+ k +m2ℓ)− γm2

i1j1
(m2ℓ))

]

= 2
∑

k∈Z
γm1,m2

ii1
(k)γm1,m2

ij1
(k +m2ℓ),

(Σ14)
m1,m2

i,i1,j1
= (Σ13)

m1,m2

i,j1,i1
,

(Σ23)
m1,m2

i1,j1,i2,j2
=

∑
k∈Z

E
[
(xm1

i1
(t)xm1

j1
(t)− γm1

i1j1
(0))(xm2

i2
(t+ k)xm2

j2
(t+m2ℓ+ k)− γm2

i2j2
(m2ℓ))

]

=
∑

k∈Z
[γm1,m2

i1i2
(k)γm1,m2

j1j2
(k +m2ℓ) + γm1,m2

i1j2
(k +m2ℓ)γ

m1,m2

j1i2
(k)],

(Σ24)
m1,m2

i1,j1,i2,j2
= (Σ23)

m1,m2

j1,i1,j2,i2
,

(Σ34)
m1,m2

i1,j1,i2,j2
=

∑
k∈Z

E
[
(xm1

i1
(t)xm1

j1
(t+m1ℓ)− γm1

i1j1
(m1ℓ))(x

m2

j2
(t+ k)xm2

i2
(t+m2ℓ+ k)− γm2

i2j2
(−m2ℓ))

]

=
∑

k∈Z
[γm1,m2

i1j2
(k)γm1,m2

j1i2
(k + (m2 −m1)ℓ) + γm1,m2

i1i2
(k +m2ℓ)γ

m1,m2

j1j2
(k −m1ℓ)]

= (Σ3)
m1,m2

i1,j1,j2,i2
.

(45)

(ii) Recall that the function g : RDM,p → R
p(p+1) maps the vector Cn to θ̂, i.e. g(Cn) = θ̂. Now, we

leave the reader to verify that replacing the vector Cn by γ allows us to retrieve θ, i.e. g(γ) = θ. Thus in
view of applying the delta method [29], we only have to prove the differentiability of g in γ. We do not
want to provide all these heavy justifications and computations which are not very informative. We only
focus on the terms that could lead to a problem that is the term related to ρij and ηij . If |M| = 1, the
estimates of ρij and ηij reduce to (29) and it is simple to check that the function g is differentiable in γ for
any γ, which means for any dilations set M and any set of parameters H,σ2, ρ, η (ensuring the model is
well-defined) and in particular for some components of ρ and/or η set to zero. Due to the absolute values
used in the definition of ρij and ηij (26,27,28) when |M| > 1, a problem of differentiability could appear.
We show hereafter that it is not the case. We just choose an example, namely the partial derivatives
of ρ̂ij and assert that the other terms follow similar arguments. We make an abuse of notation in the
following but we believe the context is clear. So, let us focus on the definition of ρ̂ij (26,28) where again
(only) for the sake of simplicity of the presentation we assume that π̂a

ij(0) = πa
ij(0). Then, let j > i

∂ρ̂ij
∂Cm

ij (0)
(Cn) =

∂|ρ̂ij |
∂Cm

ij (0)
(Cn)× sign(Cm

ij (0))

=
1

|M| sign(C
m
ij (0))

|ρ̂ij |
|Cm

ij (0)|
× sign(Cm

ij (0))

=
1

|M|
|ρ̂ij |

|Cm
ij (0)|

.

And therefore, when evaluated at γ we obtain

∂ρ̂ij
∂Cm

ij (0)
(γ) =

1

|M|
|ρij |

mHi+Hjσiσj |ρij |πa
ij(0)

=
1

|M|
1

mHi+Hjσiσjπa
ij(0)

,
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which does not involve any continuity problem for the whole set of parameters M, H, σ2, ρ and η. In the
same spirit for example when differentiating ρ̂ij with respect to Cm

ii (0) we get

∂ρ̂ij
∂Cm

ii (0)
(Cn) = − 1

2|M|
|ρ̂ij |

Cm
ii (0)

× sign(Cm
ij (0)),

leading to
∂ρ̂ij

∂Cm
ii (0)

(γ) = − 1

2|M|γm
ii (0)

|ρij | × sign(ρij) = − 1

2|M|γm
ii (0)

ρij ,

and the conclusion is the same as previously.
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Parameters causal mfBm well-balanced mfBm general mfBm (η = 0.2)

Ĥv Ĥc Ĥd Ĥv Ĥc Ĥd Ĥv Ĥc Ĥd

H=0.2 ρ = 0.1 0.0006 0.0078 0.0126 0.0005 0.0062 0.0203 0.0005 0.0060 0.0131
(p = 2) 0.5 0.0005 0.0007 0.0140 0.0005 0.0006 0.0119 0.0006 0.0008 0.0126

0.9 0.0005 0.0006 0.0140 0.0005 0.0005 0.0148 0.0005 0.0006 0.0149
H=0.5 ρ = 0.1 0.0009 0.0136 0.0171 0.0007 0.0100 0.0204 0.0010 0.0085 0.0111
(p = 2) 0.5 0.0008 0.0011 0.0132 0.0008 0.0011 0.0169 0.0008 0.0012 0.0125

0.9 0.0008 0.0009 0.0140 0.0009 0.0010 0.0146 0.0010 0.0010 0.0126
H=0.8 ρ = 0.1 0.0010 0.0085 0.0148 0.0009 0.0110 0.0176 0.0009 0.0157 0.0194
(p = 2) 0.5 0.0008 0.0012 0.0099 0.0012 0.0015 0.0114 0.0010 0.0014 0.0114

0.9 0.0009 0.0009 0.0104 0.0009 0.0009 0.0126 0.0009 0.0010 0.0126
H=0.1:0.5 ρ = 0.1 0.0008 0.0048 0.0143 0.0007 0.0054 0.0155 0.0006 0.0052 0.0139
(p = 2) 0.5 0.0006 0.0007 0.0116 0.0007 0.0010 0.0113 0.0007 0.0010 0.0154

0.9 × × × × × × × × ×
H=0.5:0.9 ρ = 0.1 0.0009 0.0125 0.0116 0.0009 0.0073 0.0125 0.0008 0.0035 0.0135
(p = 2) 0.5 0.0008 0.0009 0.0090 0.0009 0.0011 0.0099 0.0009 0.0011 0.0112

0.9 × × × × × × × × ×
H=0.2 ρ = 0.1 0.0005 0.0130 0.0255 0.0005 0.0135 0.0270 0.0006 0.0141 0.0243
(p = 5) 0.5 0.0006 0.0011 0.0234 0.0005 0.0011 0.0225 0.0006 0.0010 0.0226

0.9 0.0006 0.0006 0.0232 0.0005 0.0006 0.0250 0.0006 0.0007 0.0248
H=0.8 ρ = 0.1 0.0010 0.03050 0.0265 0.0008 0.0292 0.0239 0.0009 0.0255 0.0249
(p = 5) 0.5 0.0009 0.0017 0.0202 0.0011 0.0021 0.0185 0.0011 0.0021 0.0198

0.9 0.0009 0.0010 0.0199 0.0011 0.0013 0.0214 0.0010 0.0011 0.0192
H=0.1:0.5 ρ = 0.1 0.0006 0.0163 0.0272 0.0006 0.0172 0.0283 0.0006 0.0143 0.0251
(p = 5) 0.5 0.0007 0.0014 0.0220 0.0006 0.0012 0.0247 0.0006 0.0013 0.0229

0.9 × × × × × × × × ×

Table 1: Empirical means of MSE of H estimates based on 100 replications of causal, well-balanced and
general mfBm of length n = 1000. For the general case, the parameter ηij is fixed to .2× (1−Hi −Hj)
for i > j and ηji = −ηij . The letters v, c, d respectively correspond to the Hurst exponents estimators
computed with the weights w = (1, 0, 0) (using only the empirical variances) , w = (1, 1, 0) (using
in addition the empirical covariances) and w = (1, 1, 1) (using in addition the difference of empirical
covariances at lags ±m).
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France, 2011.

[7] J.-M. Bardet, G. Lang, G. Oppenheim, A. Philippe and M. Taqqu. Generators of long-range dependent
processes : A survey. In: Doukhan, P., Oppenheim, G., Taqqu, M.S. (Eds.), Theory and Applications
of Long-Range Dependence: Theory and Applications, pp. 557–578. Birkhäuser, Boston. 2003.
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Parameters causal mfBm well-balanced mfBm general mfBm (η = 0.2)
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0.9 × × × × × ×
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